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This note shows the impossibility of finding an algorithmic solution -
to any of the following problems:

Py: Let M denote any nonempty class of conected 3-manifolds
(a 3-manifold may be bounded or not, compact or not, orientable or not).
To decide: Whether a finite presentation of & group defines a group iso-
morphic to the fundamental group of an element of M.

To understand more precisely what will be proved, the notation of
Rabin [8] will be used. Thus, @ denotes the set of all finite presentations;
for I € @, Gy denotes the group which IT defines; ~ denotes isomorphism.
Since @ can be effectively enumerated, one may speak of recursres subsots
of Q; to say that a subset SCQ is recursive, means (according to the
metamathematical belief called Church’s Thesis) exactly that there exists
an effective way of determining whether an element of Q belongs to &
or not.

If M is a class of 3-manifolds, define 8(M) = {IT Q| there exists
M« D such that z,( M) Gy}

THEOREM. If S(IM) is not empty, then 8(M) is not a recursive subset
of Q.

It has been communicated to me that G. Baumslag and R. H. Fox
have proved this theorem for various special cases, including the cases
M = the class of closed 3-manifolds, and M = the class of eomplements
of knots in 3-space. Their proof utilizes Rabin’s theorem, but requires
other constructions than that used here. In more mystical language,
one may state one of these cases as follows: In general, one cannot tell
wheiher a group, given by a presentation, is a knot group or not.

The proof makes use of Theorem 1.1 of Rabin [3]. The essential
step which is necessary before Rabin’s Theorem can be applied is to find
a finitely presented group 4 which is not isomorphic to a subgroup of the
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fundamental group of any 3-manifold. The proof of this fact about some
group A is perhaps interesting in itself.

Leava 1. If a finitely presented group G is isomorphic to a subgroup
of m( M), where M is a 3-manifold, then G or a subgrouj.a of index 2 in.G isi
isomorphic to a subgroup of 7;(N), where N is a closed orientadle 3 -manifold.

Proof. 'Let K be a finite 2-dimensional complex such that =,(K)~ G
let f: K3 be a map inducing an inclusion of @ into s,(M):

() 53 (1)

~ 7 .
G 3

This diagram, where : i3 a monomorphism (= homomorphism with trivial
kernel), is consistent. .

K is compact; hence f(K) is compact. Therefore, there is a compact
connected 3-manifold 7' with boundary, such that f(K)C T'C M. The
following diagram is consistent:

()

7y (K) ———— m( M)

Since 7,(K)->m(M) is a monomorphism, m(K)—>m(T) is also a mono-
morphism.»

Let U be the double of T: That is, U is obtained from 7' u (T x 0)
by identifying « and (x, 0) for all x ¢ BAT. U is a closed 3-manifold con-
taining T'. There is a retraction»: U-+T, defined thus: r(s) = o, r(2, 0) = =
for all # ¢ T. The existence of this retraction shows that the inclusion
T CU induces a monomorphism u,(T)—m(U). Hence f*: m(K)—>mn(U)
is a monomorphism.

If U is orientable, define N = U; if U is non-orientable let N be
the orientable two-sheeted covering space of U. In the first case, f, embeds
G~ m(K) in 7 (N); in the second case, f, embeds G in m,(TU) which eon-
tains o,(N) a8 a subgroup of index 2, so that either & or a subgroup of
index 2 in @ is embedded in g, (N).

I first saw something like Lemma 2, which follows, in an unpublished
manuscript of J. Milnor on sums of 3-manifolds.

LevMA 2. If a group G can be embedded in m,(N) where N is a closed,
orientable 3-manifold, and if G is neither finite, mor infinite cyelic, mor
a nonirivial free product, then G can be embedded in 7;(R), where R is a closed,
orientable, aspherical 2-manifold.

Proof. Suppose N = N, 4 N,, where N; and N, are non simply
connected 3-manifolds and # is the operation “Summenbildung” ([2],
p. 218). Then my(N)~ m(N;)%m,(N,), where % denotes free product. By
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Kurosh’s Subgroup Theorem ([1], p. 17), G, as a subgroup of this free
product, is a free product of a free group and conjugates of subgroups
of 7;(N;) and m(N,); it has been assumed that G is neither infinite cyclie
nor a nontrivial free product. Hence @ is conjugate to a subgroup of
my(Ny), for ¢ either 1 or 2; thus G can be embedded in 7,(N;). Repeat this
argument with &; in place of N, and repeat it again, ete. Since the finitely
generated group s;(¥) cannot be expressed as a free product of more
factors than the rank of z,(¥) (a consequence of Grushko’s Theorem [1],
p- 57), one will eventually obtain a manifold Nix.. = R, such that G can
be embedded in #,(R), and such that it is impossible to have R = R,# R,
where R, and R, are both non simply connected. Since @ is neither
finite nor infinite eyclie, it follows that m(R) is infinite and not infinite
cyclic. Whitehead [4] has remarked that when R is a closed orientable
manifold, if my(R) 5 0, then =,(R) is either infinite cyclic or a nontrivial
free product; and he has shown that if m(R) is a nontrivial free product,
then R = R,d4F R, where neither R, nor R, is simply connected. This
implies, in the case at hand, that m,(R) = 0; m,(R) being infinite, it follows
that B is aspherical.

By virtue of these lemmas, one can find many groups which cannot
be embedded in a 3-manifold group. In particular, let A be a free abelian
group of rank 4.

Levwma 3. A 4s not isomorphic to a subgroup of the fundamental group
of any 3-manifold.

Proof. Since every subgroup of index two in A is isomorphic to 4,
by Lemma 1 if 4 could be embedded in m,( M), where M is a 3-manifold,
then 4 could be embedded in z,(N), where N is a closed orientable 8 - mani-
fold. By Lemma 2, since 4 is not finite, not infinite cyclie, and not a non-
trivial free product, A can be embedded in m,(R), where R is an aspherical
3-manifold. Hence 4 is isomorphic to =,() where S is a covering space
of B (A is therefore aspherical). Hence the homology groups of 4 and I
are isomorphic; however, with coefficients o, Hy(A4)~ w, whereas, 51 being
3-dimensional, H,(5I) = 0. This contradiction completes the proof of
the lemma.

Proof of theorem. Since M is not empiy, S(M) is not empty.
From the definition of S(IM), it is seen that the property of belonging
to S(M) is what Rabin calls an algebraic property. Finally the group 4
is not isomorphic to a subgroup of the group defined by any element
of S(MM). Rabin’s Theorem 1.1 now gives the direct result that S(M)
is not recursive.
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