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On ramification points in the classical sense
by - '
J. J. Charatonik (Wroctaw)

Introduction. I call any point p of an arbitrary point set X
a point of order v in the classical sense—or here briefly a point of order r—
if p is a unique common end-point of every two of exactly r simple ares
contained in X. A point of order > 3 will be called a ramification point ().

Hilton and Wylie (see [1] (), p. 380) constructed for every mapping
f: X—>Y a space Y; called a mapping cylinder of f. We may understand
Y; as a cylinder with X as its top and with its base embedded in Y, the
generators being segments connecting a point z ¢ X with its image f(z) ¢ Y.

The first purpose of this paper is to prove that for each continuum @
and for each continuous mapping f of the Cantor set onto @ the mapping
cylinder K, of f can be realized in the Euclidean space of dimension
2dim @ + 3 as a’continuum which is a union of straight segments, disjoint
one from another out of ¢ and such that ¢ is the set of all ramification
points of the continuum K. Namely one can place a cell I* and a straight
line L in the (k--2)-dimensional Euclidean space so that this straight
line and the %-dimensional hyperplane containing the cell are skew,
i.e. that there is no hyperplane of dimension k<41 which contains both
those objects. Then the straight segments joining arbitrary points of
the straight line I with arbitrary points of the cell I* have at most the
end-points in common. We then obtain the continuum K, by placing
the Cantor set O in the straight line as well as the continuum @ = f(C)
in the cell I¥, and by joining every point @ « ¢ with its image y = f(z) @
by the straight segment.

A further result is a construction of another two continua, namely
the continuum K, having the same property, but in which the order
of each ramification point is 2““, and the continuum K,, in which the

(*) A methodical investigation of sets of ramification points in the classical sense
in the continua, i.e. in compact and connected metric spaces, was initiated by Professor
B. Knaster in his Topological Seminar in Wroctaw (Institute of Mathematics of the Polish
Academy of Sciences). I am indebted to him for the project of this paper and for the
idea of the proof of Theorem 1. He suggested also the existence of the singularity realized
in the final part of this paper (see the dendroid A).

(%) The numbers in brackets denote the references, pp. 251 and 252.
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orders of all ramification points. are raised by 3dim@ +3 at most. The
application of this method to dendroids, i.e. acyclic and arcwise connected
curves (see two other definitions, p. 239), leads in particular to a para-
doxical example of a dendroid homeomorphic with the set of all ramification
points of itself. Such a dendroid does not exist in the plane.

Preliminaries. Let K be a continuum and 7 a cardinal number
belonging to the sequence

) 0,1,2, ..., 8, 2%

If any point p ¢ K is a point of order at most » in K in the sense
defined above, i.e. if p is a common end-point of at most » arcs disjoint
one from another out of p and contained in K, we write Ord, K < r.
Correspondingly, we define the notions of a point of order at least » in K
(writing Ord, K >7) and of order » in K (writing Ord,K = 7).

In particular a point p ¢ K will be said (as announced) to be a ra-
mification point of K when Ord,K >3 and an end-point of K when
OrdpK =1, ie. when it is an end-points of every arc containing it.

I denote by B(K) the set of all end-points of K and by R(K) the
set of all ramification points of K.

Let 9 be the segment 0 < # < 1, and let 9° be the cartesian product

of k segments I with itself. Henceforth always
@) F=1,2,..,8.:

A distance between two points @’ = («f, @3, ...) and @' = (1, ', ...)
of the cell 9%, i.e. where 0<2; <1 and 0<w, <1 forj=1,2,
defined for finite & by the formula

(3) ole', @ )-]/lewwf
F=1

and for infinite k¥ by the formula,

-]

(4) o(w, 2") = -zl

fl"’
=2

Let I be the segment defined by formulae
(5) 0w <1, §i=2,3,.,k+2,

and let € be the Cantor set of points of this segment, i.e. the set of points
having coordinates (5), where

z; =0 for

0

\ ' 2 .
(6) Ly = ~§Gl-[ with ¢ =0 or 1.
=0
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Apart from this we denote by € the Cantor set of numbers, i.e. the
set of numbers of form (6).
The set C can be, effectively decomposed on the union of r sets C,
disjoint one from another and homeomorphic with it as follows:

{7 =1 0.,
(8) 4 is compact, dimd =0 and A =r,
(9) Coynly=0 for o = a .

Indeed, take for r =1,2,..,x8,, 2% fhe decomposition of the Car-
tesian product € x 4 on 7 its horizontal linear parts P,, i.e. all the points

“of the a-th part of ¢ x4 having the ordinates equal to o (if » = 2%,

we take 4 = C). Of course, the sets P, are uncountable, perfect, dlsy)mt;
and O x 4 = U P,. Further, ( x A is a 0- dlmensmnal perfect set by (8),

and thus homeommphm with O. Then, if we denote by % an arbitrary
homeomorphism of ¢ x 4 onto C, the decomposition ¢ = {Jh(P,) ob-
a€Ad

viously satisfies conditions (7)-(9) setting C, = & (P,).
Further, let ¥ be a k-dimensional cell given by the formulae

(10) @ =0, @m=1, O0<a;<1 for j=3,4,..,k+2.
Notice that the segment I is, according to (5), contained in the
straight line § determined by the equations
2 =0 for j=2,3,..
(ie. lies on the coordinate axigz Ow,), but the cell ¥, according to (10),
lies in the hyperplane H the equations of which in the (k- 2)-dimensional
Euclidean space are
' =0, o,=1
(i.e. H is-the k-dimensional hyperplane parallel to the hyperplane
Oy y... 0r,4.). We infer from this that there is mo (k-+1)-dimensional
hyperplane containing the straight line § and the hyperplane H. There-
fore 8 and H are skew (according to the definition of this notion, p. 229).
Then, to simplify, we shall also say that the segment I defined by (5) and
the cell Y defined by (10) are skew.
The following notations will henceforth be used: sy will denpte an
arbitrary arc with end-points = and vy, zy the straight segment w1.th the
same end-points, §(X) will be the diameter of X, and ¢(v, A) the distance

between the point # and the set A4, ie. o(z, 4) =min{p(», a): a e A}
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Construction of the continnum B(Q).
following two lemmas:

Levma 1. If I is the segment (5) and Y thevcell (10), then there is
a number 1> 0 such that for every point p of the segment joining points
zel and y e Y the following inequality holds:

e, Y)=nelp,y)-

Proof._ Let 2 =(%,0,0,..,0)¢I and y =(0,1,y,, .., Yiio) € X,
where 0 <7 <1 and 0<y; <1 for j = 3,4, ..., k+2. The segment #j zy
joining # and y is determined by the followmg parametuc equations in
which 0 <t<<1 and §j =3,4,...,k+2:

(11)

First we prove the

94‘1"-:51'(1—77), 502=t, $j=yj-t.

We consider separately finite and infinite %.

(@) & is finite. A point » of the segment zy having the coord'mates

11), th
(11), the dlslsﬁnce between the points p and y by (8) is equal to [ — 1)+

A0 4 Z 5 AT e
k+2
= = 1 2
ep,y) = @—1)- (@414 4.

i=s

(12)

The minimum of ¢(p, y) for y € ¥ is realized when y; —
the definition of o(p, Y) D y; =05 thus by

(P, ¥) = (1—1)- @ +1)".
Hence by (12) ep: B =00 @y

k+2
e@, V) =0(p,9)- G+ (2414 Y ) ™"
Since ~
@+ (2 41+ 2 37> )

for all points = of I and all points ¥ of ¥, we have

0@, ¥) 2 o(p,y) (b+1)""

and 7 = (k+1)7"2

(i) k is infinite. In this case the distance o(p,y) accordind to (4)

is equal to %‘51'(]*t)+i(1*t)+§'(1/2’)y,-. (1—1), ie
i=8 7o

2, 9) =(1— t)( 4% 5’ )

(13)
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The minimum of g(p,y) for y e« Y being realized when y; =0,

we have

Y)=(1-1% (37, +1%) -
+l) (el 2_)
Bar)) farls Nk 51

) eo(p,
Hence by (13)

1_
e(p, ¥)=o(p,y) (55"1

Since

“for all points # of I and all points y of ¥, we have

elp, ¥) =
and 7 =}, what finishes the proof.
Since the segment I and the cell Y defined above are skew, the
following lemma holds (3):
LemMA 2. If I is the segment (5) and Y is the cell (10), then every two
different straight segments joining points x eI and y e Y either are disjoint
or have only one end-point in common.

o(p,y)-%

Proof. Let
a4 z =(w§l,0,0,...,0)eI,
= (2{,0,0,..,0 eI,
(15) yl = (0; 1, fl/é, ?I;; e ?/;c+’2) € Y!
Y’ =(0,1,95, 94 s Yhea) € ¥,
where 0 <yj <1 and 0<yj <1 for j =3,4,..,k+2. The segments'

Z'y and z”y" joining #’ and ', as well as 2" and y" are defined by the

following parametric equations in which 0 <#< 1 and j =3,4,..,k+2:
(16) o =w-(1-1), z=1,  =yi-t,
(17) w =o' (1—1), @=1t, x;=y7- &
Suppose that two segments
as) oY T

defined by equations (16) and (17) have a point of intersection p with
the value ¢, of the parameter i:

P = (wl(tn): (l?z(tﬂ), ey

(*) It is, clearly, partial case of the general theorem in analytic geometry about
arbitrary skew hyperplanes of dimension k and I, i.e. not lying in a (k +1)-dimensional
hyperplane. The proof of this theorem is exactly the same, but because it is unnecessary
as a whole in the continuation of this paper, I restrict myself to the proof of
cage I=1.

Trta(to)) -
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Then by (16) and (17) we have
o (1—1) = 2" (1—1),

yi-ty=yi-t, for §=3,4,..,k+2.

If 0 <{, <1, then it follows from these eqﬁalities by (14) and (15)
that @' =" and y' =y"'; thus 'y’ =&""y", contrary to (18). Hence
=0 orf, =1, which leads t0 p = 2" ="' or p =y’ = y". This proves

the lemma.

Let @ be a continuum. I call a continwum K a brush-continuum with
the base @, and I denote it by B(Q), if

(19) QCK,

and if K is the union of straight segments 7y, called its generators, such that
(20)  there is a number 6> 0 such that for every z the inequality
o(z, Q) > 6 holds,

there is a number 5 > 0 such that for every generator zy of K

and for every point p of zy the inequality o(p,Q) > 7 0(p,y)
holds,

for every x the set Zy—y is a component of the set K —Q.

(21)

(22)

Note that condition (21) implies the following one:

(23) 7y ~Q =y for every generator oy of B(Q).

Dgnoting for every y € Q by T(y) the union of all generators zy having
_the point y in common, we have

(24) B(Q) = UTw).

Such a brus'h-continuum B(Q) exists for every continuum Q; in fact,
for every mapping f of the Cantor set .C onto the continuum Q it is
suﬁﬁment to forx.n the mapping cylinder of f according to the result of
Hilton and Wylie ([1], D. 380) cited above (see p. 229).

I. Prove more, namely that for every continuum @ and for every
. mappl.ng f: C—>@ such a brush-continuum B(Q) can be constructed

even in the Eueclidean space of dimension 2dim@+3.

TH]:}OREM 1. For every continuous mapping | of the Cantor set C onto
the continuum Q the set
(25) E=Um

zeC
is & brush-continuum B(Q) which lies in the Buclid ) i

! / ean cell of dimension
2dimQ+3 and is the mapping cylinder of f. !

) Pr'oof. Le.t dim@ = m, where m is a natural number or 8,. By virtue

of the imbedding theorem of Menger-Nobeling ([3], § 40, VII, 1, p. 69)

icm

Ramification points in the classical sense 235
we can homeomorphically imbed @ in the cell I"™*'. Therefore put
2m+1 =k, and imbed ¢ in the %k-dimensional cell ¥ defined by (10).
Further, take an arbitrary continuous mapping f of the Cantor set
on the segment I defined by (5) onto @ and join every point z e ¢ with
its image f(2) = y ¢ @ by the straight segment zy. The set (25) so obtained
is connected ([3], § 41, IT, 2, p. 82) because no segment Zy is separated
from @. In consequence of the compactness of the set ¢ and of the con-
tinuity of the mapping f, we see that if 2" ¢ ¢ and 2° = lima", then

2° e C and y° = f(2°) =limy”, where y" = f(z"). Therefore, by virtue of
. N-~+00
the straightness of segments zy, we have Lima"y” = 2%, which proves
n—oo

by (25) that K is compact. Hence K is a continuum. Moreover, by @ C Y,
we conclude from Lemma 1 that condition (21) is satisfied and, by virtue
of Lemma 2, that condition (22) holds. Since the mapping f is onto, the
inclusion (19) is true. Finally, every point # e C C I has by (5) the co-
ordinate #, = 0 and every point y € @ CY has by (10) the coordinate
oz, = 1. Therefore the distance ¢(x, @) between the point # and
the continuum .Q satisfies by (3) and (4) the inequality o(z, @) > 1/4
for every ». Thus condition (20) is also. satisfied. Hence K is a B(¢) and,
by (25), where y = f(x), K is the mapping cylinder of f!

THEOREM 2. For every continuum Q there exists a continuum K, which
is a brush-continuum B(Q) such that

(26) Q 18 the set of all its ramification points.

Proof. Let » >3 be a number belonging to sequence (1) and let
C C I be decomposed according to (7) with conditions (8) and (9), where
O, are—as before (see Preliminaries)—homeomorphic with €. Further,
h being a homeomorphism of ¢ x A onto C, let ¢, be an arbitrary con-
tinuous mapping of P, = € X (a) onto @ such that

(27)  @a,(®, ay) = o, ay) for every @ ¢ C and every pair a;, a, e 4.
Denote by ¢ the mapping of € x 4 onto @ determined by the condition
(28) ¢lPe=ga-
Putting
(29) f=eb7",

we can easily see by virtue of (27) and (28) that f maps continuously
the Cantor set ¢ onto @. Thus by Theorem 1 the continuum K defined
by (25) is a brush-continuum B(Q). Moreover, by (7), (8) and (9), we have

yeQ.

for every

(30) Fla=r
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From the hypothesis that » > 3 it follows by (30) that every point
y€Q is the common end-point of at least three segments Zy; hence
QC R(K). Conversely, because by virtue of Lemma 2 the segments zy
are disjoint except—perhaps—the end-points y €@, there are in K no
other ramification points except the end-points y of the segments zy;
hence R(K)C Q. Both inclusions give (26). It suffices then to denote K
by K. '

CoroLLARY 1. For every continuwm @ there ewists o continuum K,
which is a brush-continuum B(Q) such that (26) is satisfied and that

(31) Ord, K, = 2% yeQ.

Indeed, it suffices to take r = 2% in the proof of Theorem 2 and
to denote K; by K,.

Let us remark that condition (22) implies the following

for every

COROLLARY 2. The intersection of the continuum K, K, or K, with

the hyperplane v, = x3, where 0 < x5 < 1, is 0-dimensional.

Estimations. In the previous construction of the continuum K,
the orders of all points y of the continuum @ become maximally raised
by 2% (see (31)). This suggests the inverse problem: how to construct
a.brush-conti_nuum B(Q) (possibly having property (26)) such that the
difference Ord, B(@)—Ord,Q be as small as possible? With this in view
we first prove the following supplement of Theorem 1:

THEOREM 3. For every continuous mapping f of the Cantor set O onio
a continuum @ such that N

(32) Fly)<s  for every yeQ,
we have
(33) Ord, K < Ord,Q+s.

P.roof. In fact, it follows from inequality (32) that every point
y eQ_ls & common end-point of at most s straight segments @y, which
by virtue of the disjointness of these segments one from another out
of point y (see Lemma 2) and by (25) gives (33).

CoROLIARY 3. For every continwum Q there emists a brush-comtinuum
B(Q) such that for every point y Q

(34) Ord, B(Q) < Ord,Q +dim@Q +1.

) Indeed, let dim¢ =m. Let us take in the construction of the con-
tinuum K (Theorems 1 and 3) the value # = 1. It is known ([31, § 40,
IT, 1, p. 54) that there exists a continuous mapping f of the Cantor set ¢
onto the continuum Q such that

(35)

i) <m+1

for every

Ye@.
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Hence, by substituting in (32) and (33) m+1 for s and B(Q) for
K, we have (34).
COROLLARY 4. For every continuum Q there exists a brush-continuum
B(Q) such that (26) is satisfied and that for every point y <@

(36) Ordy B(Q) < Ord,Q +3dim¢Q +3.

It suffices to remark that if po'(y) < s for every y «Q, where a ¢ 4,
then the mapping f defined by (29). satisfies by (28) the inequality

(37) i w<rs.

By taking in the proof of Theorem 2 the value » = 3 and by choosing
the mappings ¢, in such a manner that for each of them inequality (35)
holds ([3], § 40, II, 1, p. 54), where m = dim@, and denoting K, by B(Q)
we obtain by (37) and by Theorem 2 inequality (36).

‘We now prove that estimation (34) cannot be lowered. We infer
this conclusion from the following Lemma 3 and Theorem 4.

LemmA 3. Decomposition (24) is upper semicontinuous.

Proof. Let for y* and y, points of @, and for p" e T(y")

(38) limy® =y and limp"=p.
n—>00 N—>00

Thus the segments pmy»C T(y™) tend by their straightness to the

'segment Py. By virtue of the compactness of B(Q) we have

(39) pyCB(Q) -
Note that it follows from (21) by (38) that
(40) ynR=y-.

Let us consider two cases:

Case 1: p Q. In this case we have the equality p =y, because:
otherwise the distance o(p™ Q) would tend to zero and e(p y) would
tend to o(p,y); thus we would have for every fixed number n >0 and
for a sufficiently great n the inequality

o(p™ Q) <7 o(p™ y™)

contrary to (21). Thus, p being y, we have p e T'(y).

Case 2: p € B(Q)—@Q. In this case by (24) p belongs to some T ) -y,
and thus to some @y —y’, which is by (22) a component of B(@)—@-
Since the set y—y is by (39) and (40) a connected subset of B()—@,
we have _
: py—yCay'—y';
thus by (23) y =y’, which implies that p ¢ T'(y) in the case 2 also.
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The condition p e T(y) implies by (38) that the set-valued mapping
which assigns to every point y @ the set T'(y) is upper semicontinuous.
It is. equivalent ([3], § 39, V, 1, p. 42) to the upper semicontinuity of
decomposition (24).

THEOREM 4. For every continuum @, for its every brush-continuum
B(Q) and for every point y €Q it follows from the condition

(41) Ord, B(Q) < Ord,Q +m+1
that
(42) dimQ < m.

Proof. Let @ be a continuum and let B(@) = @y be an arbitrary
brush-continnum with the base @. Let us take in every generator zy
of B(Q) a point z such that o(y,2) = 6, where the number & satisfies
condition (20), and let Z be the set of all such points 2. By the upper
semicontinuity of decomposition (24) (see Lemma 3) the set Z is compact;
thus by virtue of (22) we have

(43) dimZ = 0.

Let f be a mapping which assigns to each point 2 ¢ Zy the end-point

y €@ of the generator zy. By virtue of Lemma 3 the mapping f is con-
tinuous and by (19) we clearly have the equality

(44) 1Z)=¢@.

It follows from (41) that every point y ¢Q is a common end-point
of at most m+1 generators of the brush-continuum B(Q). Thus we have
Fy) <m+1, and (42) follows from the Hurewicz theorem ([8], § 40,
1, 2, p. 52) by (43) and (44).

.Now, in order to see that estimation (34) cannot be lowered, it
spiﬁces to remark that otherwise it would imply that for every con-
tinuum @ there exists a brush-continuum B(Q) such that for every point

yeQ

Ord, B(Q) < Ord,Q +dim@ +1,

therefore that there exists a continuum @, a brush-continuum B(Q) and
a point ¥ € @ such that

Ord, B(Q) < OrdyQ+m+1

and m < dim@. But that would be contrary to Theorem 4.

] The possibility of a reduction of estimation (36) for all continua @
(with the preservation of condition (26)) remains an open problem.

) Ho?weve.r, with some additional hypotheses about the continuum @
this estlma.filon can immediately be improved. With this purpose notice
that the using of the value r = 3 for the construction of B(Q) in Corol-
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lary 3 had in view the ensuring of property (26) for every Q. In fact, if
there exists in @ a point ¥ lying in no arc (when @ is, for instance, a hered-
itarily indecomposable continuum), then in order that y eR(B(Q)) it
is necessary and sufficient that y be the common end-point of at least
three arcs, necessarily disjoint in this case from @ except at that end-
point. But if @ is a union of ares, ie. if there exists in @ for every y <@
an arc containing y, we can take r = 2 instead of 7 = 3, because in this
case, besides at least two ares (i.e. the segments zy) having the end-
point y only in common with ¢, theré exists in @ at least one more such
arc (and when y e B(Q), exactly one). So condition (26) is also satisfied.
Tn this case estimation (36) can thus be improved: namely we have the
following

COROLLARY 5. For every arcwise connected continuum @ there exists
o brush-continuum B(Q) such that (26) is satisfied and that for every point

yeQ

(45) Ord, B(Q) < Ord,Q +2dimQ +2 .

Applications to dendroids. A gpace X is said to be unicoherent
provided that it iy connected and for every decomposition X =4 v B
on closed and connected sets the intersection A ~ B is connected ([3],
§ 41, X, p. 104). I call—with B. Knaster—a dendrotd each arcwise con-
pected and hereditarily unicoherent continuum. This definition is equiv-
alent ([7], Theorem 1.1, p. 179) to the following:

(46) A dendroid is an arcwise connected continuum every two points
of which can be joined by exactly one irreducible continuum
between them.

In particular, it follows that

(47)  No dendroid contains any indecomposable continuum.

Tndeed, if we suppose that a and b are points of an indecomposable
continuum N which is irveducible between o and b (31, § 43, VII‘, 7,
p. 150) and contained in a dendroid 4, then these points are joingd in 4
by two irreducible continua, namely by an arc (4 being arcwise con-
nected) and by the continuum XN. :

It follows from (47) that

(48)  Hvery dendroid is o curve, L.e. a continuum of dimension 1.

Indeed, any compact gpace of higher dimension contains indecom-
posable continua ([3], § 43, V, . 144). o

Dendroids are a generalization of dendrites: every dendrite is a den-
droid, and every locally connected dendroid is a dendrite ([6], X, 2, Theo-
rems 1 and 2, p. 306).
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From the definition of the dendroid it follows also that
(49)  Bvery subcontinuum of & dendroid is a dendroid.

Especially, from (49) it follows that E(A),. i.e. the set of all end-
points of the dendroid A, does not contain any non-degenerate con-
tinaum ([4], 2.1, p. 302). Thus

(60) If B(4) is F,, then dimE(4) = 0.

The hypothesis of (50) that E(4) is F, is esgential, because Lelek
has given in [4], p. 314 an example of a dendroid D such that B (D) is
not F, and that dim B (D) = 1.

The following examples of curves lying in the plane O, are den-
droids:

E1. The harmonic fan M; consisting of a straight segment joining
the point (0, 1) with the origin and of straight segments joining the same
point with points (1/n,0) for n =1, 2, ...

The set B(M;) is countable and compact (the harmonic sequence
and the origin).

E2. The Cantor fan Mc consisting of straight segments joining the
point (1/2,1/2) with all points (#, 0), where x, has the form (6).

EB(Mc) is the Cantor set.

E3. The Cantor hooked fan M7 defined in the following manner:

Let T* be the set of the left end-points of components of I—(, and
T the set of their right end-points. The set 7% o 7% is countable and
nomrm=. '

Let us assign to every point p = (w,0) of T*u 7? the point
p' = (21, 1/4) defined by the formula

1

1 1 :
&L == ———_.11,_.__.
et - U s

\_Nhere 1/3" is the length of the interval of which p is an end-point, and
t=1 or 2 according to whether p ¢ T or p ¢ T°. We put

Mo =Mco U.—W ’

where p e Tt T2

The set B(M¢) consists of a countable set of the points p’ and of
a Gs-set C— (Tt o T2). .

E4. The brush-continuum B(J) constructed as follows:

I.‘et J be tpe segment 0 <z, <1, @, =1, and f the Cantor stair-
function (“fonection scalariforme” de Cantor) onto the segment J, i.e.
the mapping which maps continuously ([2], § 24a, VIa, p. 236) every
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point @ = (@, 0) € 0 C I, where ®; hag form (6) and I is the segment (5),

onto the point y = (i, 1) eJ, where xf =12001/21. Thus, f(C) =J. The
continuous mapping f is by definition non-decreasing; thus, if #* = (#,4, 0)
and 2? = (#y,0, 0) are points of the set € and @, < ,,, then for its images
gt =flat) = (%11, 1) and 9* = f(2*) = (@13, 1) we have uj; < a1, Hence
-different segments @y either are disjoint or have only end-points y in
common. The brush-continuum B(J) is obtained by putting B(J) = UC@_

B(B(J)) is the Cantor set.

TuroREM b. Hach brush-conltinuum B(A4) of a dendroid A 1is also
a dendroid. :

Proof. The continuum B(4) iy by definition of the form

B{d) = Uwy,

where the generators #y satisfy conditions (20)-(22). Let p’ ex'y’ and
p" eay". I &'y’ ="y, then the partial segment p'p" is by (22) a single
irreducible continuum between p’ and p” in B(4). If a'y’ #2"y", we
join ¢ with y'* by amn are y'y" in A (this arc can shrink to one point if
v =4"). Then p’y’ wy'y" vy p" is obviously an arc p’p" in B(4)
and it may eagily be seen by (22) that there is in B(4) no other irreducible
continuum between these points. Thus the conditions of definition (46)
are patisfied.

Theorems 2 and & imply the following

COROLLARY 6. For -every dendroid A there ewists o brush-continuum
B(A) which is & dendroid such that 4 is the set of all its ramification points.

Moreover, we conclude from Corollary 5 by virtue of (46) and (48)
that Corollary 6 cam be specified as follows:

COROLLARY 7. For every dendroid A there emists a brush-aontmu'um
B(A) which is a dendroid such that A is the set of all its ramification points
and that for every point yed

Ord, B(4) < Ordy4+4.

By, using a slightly different construetion, the estimation of .the
order of ramification points may be lowered for some types of .dendrmds,
namely those having the compact set of end-points. qu this purpose
we prove, in the first place, the following lemma concerning the prolon-
gation of dendroids beyond the set of all their end-points:

LuMmMA 4. If the set B(A) of a dendroid A4 is Fo, then there ewists a den-

droid A’ D A such that

Ord,4, when pe A—E(4),
(51) Ord, 4’ =! 2, when  p e B(4),
r<2, when ped—4,
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and that
(52) the set (4'—A) v E(4) is the union of straight segments which are

its components.

Proof. As a curve (see (48)), every dendroid can, by virtue of the
Menger-Nobeling theorem ([3], § 40, VII, 1, p. 69), be homeomorphically
imbedded in the 3-dimensional cell Y defined by (10) for % = 3. Let

E(4) = GF.,,, where ¥, are compact, and let p = (0, 0, ws, xy, 2{) € F,.
n=1 .

Further, let I(n,p) be a segment defined by equations (in which
n=1,2,..)

(88) =2 =0, my=m, Wm=0ay, H=2, 0<gHG<]1n
and ;=0 for §>6.
Then
o0
(54) d'=40lJ U I(n,p).

n=1 peFy

Since the segments I(n,p), except their end-points y e H(d4), lie
beyond Y, they have no other common points with 4C Y. It is easy
to see that property (51) is therefore verified. The hereditary uni-
coherence of 4 implies that of 4. The length of segments I(n, p) tends
by their definition to zero; thus the limit points of 4’'— 4 lie in 4, namely
in the set B(4)C 4. Hence 4’ is compact. A’ is connected as the union
of the continuum 4 and of segments- I(n, p) having common end-points
with it. Moreover, it is easy to see that 4’ is arcwise connected; hence
it is a dendroid. Condition (52) is satisfied by virtue of definition (54)
and by (50).

The hypothesis of Lemma 4 that E(4) is F, is essential. In fact, the
dendroid M¢& (see example E 3, p. 256), whose end-point set consists
of a countable ¥, and of & G5 of power 2™ (the set ¢— (I* w T?)), cannot
be prolonged beyond all its end-points with preserving property (51).
Indeed, suppose that a dendroid M’ exists satisfying conditions (51) and (52)
with 4 = M% and 4’' = M'. Consider the G,-set C—(Tlu Tz) C B(Mp)
and denote for every point g« C—(I* v T?) by ¢’ the other end-point
of the prolonging segment ¢¢’, i.e. the segment which has one common
point with M¢ only and is, accordingly to (52), a component of the set
(M'—M&) v B(ME). Let m=1,2,..., and let E, be the subset of
0—(T* v T*) consisting of all the points g such that

« , 1
(85) Q(Q;Mz') Zﬁ-v

Every E, is compact. In order to see it, consider a convergent
sequence {g;} of points of a given By, and put g, = lim ¢;. If ¢, were & point
00
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p e Tw T%, then the prolongmg segments g;¢f would tend to a straight
segment pgp such that pqo A~ pp’ =p, because by the definition of Mg
every point a 7 p of pp” lies in the interior of a triangle whose inferior
vertices are end-points of a complementary interval of ¢ and thus cannot
be a limit point of those segments g;g; which lie outside this triangle.
The point p would then be a ramification point of M’, contrary to (51).
It follows that ¢, e C— (1" v T?) and, the end-point ¢y of the limit segment
44 obviously satisfying (55) also, we conclude that Qo € Bp. As a compact
subset of the boundary set O— (7" u T2), the set E,, is non-dense in C.

We would have hence ¢ =T'u T2y GE,,,, which is impossible by
m=1

virtue of Baire’s category theorem.
From Lemma 4 follows

CorROLLARY 8. If the set E(A) of a dendroid A is compact, then there
exists a dendroid A* D A satisfying conditions (1) and (52) (with A* in-
stead of A’) and such that

(b6)  there is @ 0 > O such that for every component Ty of (A*

the inequality o(x, 4) > 6 holds.

Indeed, it is sufficient to put in the proof of Lemma 4 F, = E(4)
for every m =1,2, ... Then, clearly, we have I(n+1,p)CI(n,p) for
every natural » and for every p e H(4). Hence by putting

Ay B(A4)

(57) I(p) =I(,p)

and by substituting in (54) 4* for 4’ we obtain

(58) =40 | Ip).
peE(4)

The proof of conditions (51) and (52) for 4* instead of A’ is the same
a8 in Lemma 4. Condition (56) with § = 1 holds by the definition of the
gegments I(p).

THEOREM 6. If the set E(A) of a dendroid A is compact, then there
exists a brush-continuum B(A) such that A is the set of all ifs ramification
poimts and that

(59) Ord, B(4) < Ord,4+2
(60) Ord, B(4) < Ord,4+3

for every yeAd—E(A),

for every yeB(4).

Proof. Let 4* be the dendroid considered in Corollary 8 and defined
by (58). Let us homeomorphically imbed A* in the 3-dimensional cell ¥
defined by (10) for ¥ = 3, and let f be a continuous mapping of the Cantor
set ¢ C I onto the dendroid 4 C A*

(61) H(0) =

Fundamenta Mathematicae, T. LI 17
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such that (see [3], § 40, IL, 1, p. 54)

“y) <2 for every yed.

(62) 7

Let us join every point ze ¢ with its image y = f(x)
straight segment @y and put

(63) ‘ B(4) =

€4 by the

The set B(A) defined in this manner is connected as the union of
the dendroid 4* and the straight segments having common points with it.
B(4) is compact by the continuity of f. Thus it is a continuum. By (58)
and (63) we see, firstly, that 4 C B(4), whence condition (19) of the de-
finition of a brush-continuum is satisfied, and, secondly, that B(4) is the
union of the segments I(p), where p ¢ E(4), and the segments @y, where
z ¢ C. To prove condition (21) we recall that the dendroid 4 is imbedded
in the cell ¥ C I® defined by (10) for & = 3 and that the segments I(p)
are defined according to (57) by equations (53) for » =1. It follows that
I(p)—p CI¢— I for every p e E(A). Henece o(q, 4) = o(q, p) for every
¢ € I(p). Condition (21) is then satisfied for I(p) putting n = 1; for the
segments Ty the same condition holds by Lemma 1. Also (22) holds by
(82) for the segments I(p) and by Lemma 2 for zy. Finally, condition
(20) is satisfied for I(p) by (56) and for zy by (5) and (10). Thus B(4)
is & brush-continuum, and by virtue of Theorem 5, a dendroid.

Further, every point y € A is a common end-point of at least three
arcs disjoint one from another out of y. In fact, for every point y 4
there exists by (61) at least one segment zy disjoint, neglecting y, from 4*
and hence also from 4. Moreover, if y ¢ A— B(4), then we have Ord, 4 > 2
by the arcwise connectedness of the dendroid 4; then there exist in 4
at least two arcs with the common end-point y, disjoint beyond this
point. If y ¢ B(4), the point y is in A* a common end-point of exactly
two arcs also disjoint beyond y: one of them lies in A, and the other—
the segment I(p)—lies in A*—A wy. Thus 4 C R(B(4)). Further, we
have R (B(4))C 4 by the disjointness of the segments I(p) from the
dendroid 4 beyond their end-points p and by the disjointness of the
segments Zy from the dendroid 4* beyond their end-points y. The equality

(B(A)) =/ i3 proved.

At last there exist by (62) for every point ¥ ¢ 4 at most two arcs Ty
with the common end-point y. If y e A— HE(4), then all other arcs with
end-point y are contained in 4 by the construction, which proves (59);
and if y ¢ B(4), then there exists by (51) and (52) only one more arc,
namely the segment I(y) disjoint, neglecting ¥, from the dendroid 4 and
from the arcs wy. Estimation (60) follows.

icm

Ramification points in the classical sense 245

It is interesting to note that the aforesaid improvement of estimation
{conditions (59) and (60)) can be obtained by virtue of Lemma 4 also
in the more general case when E(4) is F, if we omit condition (20) in the
definition of the brush-continuum (this generalized notion of brush-
continuum T call a nearly brush-continuum).

Indeed, let A’ be the dendroid that exists by virtue of Lemma 4
and is defined by equality (54). By treating the A’ as the 4* in the proof
of Theorem 6 we obtain the nearly brush-continnum B'(4) = 4’ w U Y.

The continuation of the proof is analogical to that of Theorem 6

The dendroid A. Lelek has constructed in the Hilbert funda-
mental cube an example of a dendroid homeomorphic with the set of all
its ramification points (not published). I give here, with his kind consent,
a modification of his example. Namely I construct a dendroid A having
besides the previous property the property Ord, A4 <4 for every point
yed

Construction. Begin to numerate the coordinate axes of Hilbert
eabe I™ from number 0 instead of 1. We shall thus have the axes
Oz,, Oz, and so on. The axis Oz, will be reserved for the end of the
construction. )

Consider the segment I defined by (5) and let I,,C I, where
n=0,1,2,.., be the segment defined by the conditions

(64) 27 <o <27, ;=0 for §=2,3,..

Denoting by p, the end-point of I with abscissa o, = 0 we have
by (5) and (64)

(85)

I=pyu UI —_Uln

n=0

Let m =1,2,..,2n41 and #=0,1,2, ..
m-dimengional cell defined by the conditions

j=1,2..

, and let I; be the

270 < <27 for ,m,

(66)

z; =0 for j=m+1,m+2,..
Thus
(67) lim 6(IF) =0,
>0 -
whence
(68) py = Lim I’  for each gequence of values of m .
>0 N

For instance the umion G I iy then obviously a non-dense sub-

n=0
continuum of I™ (a known weakly infinite dimensional continuum).
In this union the fundamental one third 4, of the example A will be
constructed.

17*
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Denoting by J; the segment defined by the three conditions

=90 for §=1,2,..,2n,
(69) 0<m<2 ™ for j=2n+1,
z;=0 for j=2n+2,2n43,..,

we see by (66) and (69) that J, C In'**, and that J, and I;'™" are skew.
Turther, let C, be the Cantor set on the segment J,.
At lagt, let h be the homothetic transformation with centre p, and
with ratio 1/2. Thus

(70) h(po) = Do,
and by the definition of the cell Iy we have for every m and n
(71) h(L’i‘) = 1;?+1 .

‘We now define by induction the sequence {B,} of dendroids (nearly
brush-continua) which will be the important parts of the dendroid A,.
Put B, = I,. Let f, be the Cantor stair-function which maps continuously
the Cantor set O, CJ, onto the set I = I, (see [2], § 24a, VIa, p. 236,
also the example E4 in this paper). It is known that

(72) fily)y<2 for every yel,
(73) ) =1 i yeB().

Joining every point z ¢ C; with its image y = fy(2) ¢ I, by a straight
gegment, put

(14) B = my.

x€C1

It can be shown ag in the proof of Theorem 1 that the set By defined
in this way is a brush-continuum with the base I,. Therefore B, is a den~
droid by Theorem 5.

Now let n > 1 and assume the dendroids

(75) Bpo,CI?}  and B, ,CIZG

to be defined. We map the dendroid B,-, by the homothetic transfor-
mation » onto the dendroid h(B,—). There exists (by (48) and [3], § 40,

I, 1, p. b4) a coniinuous mapping f, of O, onto the dendroid h(Bn—1)
such that

(76) faly) <2 for every  yeh(Bai1).

Joining every point = e C, with its image y = fu() ¢ B(Ba—1) bY
a straight segment we obtain the set

(1) ~ B(b(Bn-v) =\ oy
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which is & brush-continuum with the bage % (B,—); this can be shown as
in the proof of Theorem 1. The continuum B,—; being a dendroid by the
inductive hypothesis, continuum (77) is also dendroid by Theorem 5.
Clearly

(78) B(h(Ba)) C 1M,
Consider the set h (h(Bn—z)). By the first inclusion of (75) and by (71)
we have h(Bn_o) C h(IZ3%) = I75° C IitY'; hence
B (h(Bao)) C RIS = I C I7.
Now take in every #y of union (77) a point #’ such that

[4 (ya h (h (Bn—z)))

(79) o(z'yy) = o(@,4)- 5 (B (4(Bad))

(which exists since the last fraction is smaller than 1), and let gn be
a mapping of the dendroid B (k(B,-,)) into itself such that every partial
mapping g.|%y is the homothetic transformation of @y onto its partial
segment &'y with the centre y. Thus

(80) In{B (#(Bar))) C B (h(Baa)) ,

and in consequence of (79) the mapping g, is continuous.
By (49) and (80) the continuum gn(B (h(B,,_l))) is a dendroid and
we see by the definition of the mapping ¢, that

(81) - the mapping g is an identity on h(Bn-i),

(82) gu(@y) =y  for every yeh(h(Bas)) .
Put

(83) B = g,(B (h(Baa))) 5

thus .

(84) B, is a dendroid .
Inclusions (80) and (78) instantly give

(85) B, C I;*";

we then conclude by (85) and (68) that

(86) Do = Lim By,

and by the skewness of the segment J, and the cell I;' ™, that
(87) the intersection Bn ~ Bni1 18 a single point,

namely the common end-point of the segments I and Inya.
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Put

(88) Yn = dn N Loz -
Hence we have by (71)

(89) B(Yn) = Yni1 -
Now let

(90) Ay =pow \UBx-

n=0

By (86) and (90) 4, is compact. The sets B, being connected and

0
arcwise connected by (84), each partial union of | JB, is connected
n=0

and arcwise connected by (87); thus A, is connected by (86) and also
arcwise connected, because the segment I joins p, with every B,.

Finally, 4, contains only one irreducible continuum between any
two points. In fact, p; € B; can be joined with p; e By by the union of
ares A =pi¥i v Yilirr Y ... Y Yr1Yx © YxPr; therefore if there existed
another irreducible continuum N between p; and pg, then, since the con-
tinnum N must contain the points ¥s, Yiy1y ...y Yr—1, ¥ of A, each arc
Y4+ must by virtue of (84) be the same in N and in 4. Thus N, were
identical with 4.

All conditions of definition (46) are satisfied, i.e. it is proved that 4,
is a dendroid.

Let ¢ be the rotation through 2n/3 around the axis Oz, and let

(91) A= Agop(A))w ‘P(W(Ao)) .

Thus A is the union of three dendroids isometric with A, and having
only one point in common, namely p,. Hence A4 is a dendroid.

Proof of the property R(A) =h(A). It follows from the de-
finition of dendroids B, and of mappings % and ¢, by (79) that

(92) R(B,) = B (B (h(Ba_y)) .

It follows, further, from (77) that if y € h(B,_,), then y is the common
end-point of at least three segments: namely of at least one segment Fy
because the mapping f, is onto, and of two segments contained in I,
disjoint from each another and from the segment %y, neglecting the
point y. Thus (B,_y) CR(B(h(Bn-l))}. By (87) it can be shown, as in
the proof of Lemma 2, that the segments Zy in (77) are disjoint except
for their common end-points y ¢ h(By_1)- Thus (B (h(Bn-1))) C h(Bas).
Both these inclusions give R(B (h(B,H))) = h(By-1), whence by (87)

(93) , R(By) = W(Bp_y) .
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We infer from (86) and (90), recording that B, = I,, the equality

s

R(4y— U Bn) =0

n=1

1l

it follows by virtue of (90), (87) and (93), no three of the B, having a point
in common, that

08 R(4) = R = O BB =T Bar) = MU B,

ne=Q

whence by the definition of ¢
95  Rlp(d) =9 R(4) = (b0 Bw) = e B

and there follows an analogical formula for R((p (q:(Ao))).

But the point p, is by the definition of ¢ and by (91) th_e.c.ommon
end-point of exactly three segments I, ¢(I) and @ (p(I)), disjoint one
from another out of p,. Thus

(96) Ordy, A = 3; /
therefore p, ¢ B(A). Thus by (91)
(97) R(4) =po B(4e) © Rlp(4) v Elp [p(4)

whence, b being a homeomorphism by definition, we obtain by (94), (95)
and (70)

R(4) = po o WU Ba) o (o Bal) o (e (o 0 B0)
— (b v h(QOBn)) o h(p(®o unQDBn)) g (ptoew U Bal)
= h{py v GOB,,) U h (tp(po v "Qan)) vh (tp (q)(pu v };JOB,,))) .

Consequently, we have by (90) and (91)
R(A) = h(4o) v b (p(40) v h{p (p(4)
= b (4w (e v 9 (p(A)) =1(4) .

Proof of the property Ord, 4 <4 We prove t?y induction
this property in A, separately for the points y =y, defined by (88)
and for the points ¥ € By—Yn—1—Yn- .

(i) ¥ =yn. If n =0, then y, is by (73) the common ind:pomt
of exactly three arcs of A,, namely of the segments I,, I, and Zy,, where
z is one of the end-points of the segment J, defined by (69). Thus
Ord,, 4, = 3.
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Assume now on y,_; that
(98) Ord,, , Ay < 4.

It follows by the definition of the mapping g, with its properties (81)
and (82) that there are in /, no other arcs with end-point y except the
images under % of the arcs having as their common end-point the point
Yn—1. Thus we have by (89) and (98)

(99) Ord,, Ay < 4.

This is the end of the induction.

(ii) ¥ € Bp—Yn—1—Yn. If n =0, we have Ord,B,<2 for every
y € By—y, because B, =I,. If n =1, we recall that R(B;) = I, by (i1)
and (93), whence Ord, B, < 2 for every y ¢ B,—I,. Further, every 4 ¢ I,—
—%—¥. is by (72) the common end-point of at most two segments Ty
in (74) and of exactly two segments, ¥7, and yy:, contained in I,; hence
Ord, B, < 4 for y e I, —y,—v,, and thus algo for y e B,~4,—y, by virtue
of the recalled equality R(B,) =1I;. So Ord,B, <4 for n» =0 and 1.

Hence, assuming

(100) Ordy B, <4 " for YeBypo—Yns—Yn-z,
it suffices to show that
(101) OrdyB, <4 for yeBy—Yn-1—7Yn-

We have identically
(102) By = (Ba—R(By) v (R(Bn)—h (h(Bn-s))) © b (h{Ba_s)) .
It follows by the definition of R(B,) that
(103) Ord, B, <2 Y e Ba—R(B,) .
Remark that by (93)
R(By)—h (1(Bn-s)) = h(Bp1)—h (h(Bn-s))
= 1 (Bn-1—h(Bp_s)) = h(By-1— R(Bp-1)) .

for every

Therefore we have Ordy (R(By)—h (h(By-2))) < 2. By (76) y is the
common end-point of at most two segments disjoint from R(B.)—
——h(h(B,L_Z)), namely the segments 'y, where z' = g,(x) and z e« f (y).
It follows that

(104) Ord,B, <4 for yeR(Bu)—h(h(Bns)).

Remark that by (100), 1 being a homeomorphism, we have

Ord,h(h(Byo)) <4 for yeh (B(Bas)) =k (h(yn-)) — P (B(yn—s)) -
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Since by (82) every segment @y, where z  f, (y), becomes mapped

by g. onto the point y, there are in B, no other arcs with end-point y
except the arcs contained in h (h(By—s)). Thus we have by (89) and (99)
Ordy B, < 4

for every g ek (h(Bn-2)) -

S0 (101) is proved by (102)-(104) for an arbitréuy n=0,1,2,..
It follows by (84), (87) and (90) that

Ordy A, = Ordy B, for every ¥y # gy and %' =0,1,2,..

Hence it follows by (99) and (101) that Ord, 4, < 4 for every point
y € Ady—p,, and finally, by (91), that Ord,4 <4 for every y e A—p,-
It remains to add (96).

Remark. As a curve, the dendroid A has a homeomorphic image
in a 3-dimensional cell by the Menger-Nobeling imbedding theorem
(cited here p. 234 and 242). No dendroid 4, however, having the property

(105) - R(4) = h(4)

has a homeqmorphic image in the plane. In fact, suppose that such
2 dendroid A C B? exigts, and let b be a homeomorphism such that (105)
holds. By (105) the set R(R(A)) is also a dendroid. Consider an arc
LCR(R(A)) and let p eL. By the definition of ramification points,

p ¢ R(R(4)) implies the existence of an are

(106) pgC E(4)

such that pg ~ L = p. But, A being a dendroid,

(107) Py # P, implies Py AP =0.
Let I' be the collection of 2% disjoint ares pg, where the point p runs
over the arc L. Then exist an are pgC I" and an interior point a of this

arc such that « is not accessible from the set U = E*— Uqu (see [5],
pE

p. 276, Corollary 3). By (106), a e pq implies that a iy an end-point of
an arc ab C 4 such that pq ~ ab = a, whence ab—aC U by (107). But
this means accessibility of a from U, and hence is impossible.

References

[1] P. J. Hilton and 8. Wylie, Homology theory, Cambridge 1960.

[2] C. Kuratowski, Topologie I, Warszawa 1952.

{81 — Topologie II, Warszawa 1952.

[4] A. Lelek, On plane dendroids and their end-poinis in the classical sense, Fund.
Math. 49 (1961), pp. 301-319. ) .


GUEST


W
=1
P

J. J. Charatonik

{51 — On the Moore triodic theorem, Bull. de 1'Académie Polonaise des Sciences,
Série Mathématique, Astronomique et Physique 8 (1960), pp. 271-276.

[6] K. Menger, Kurventheorie, Leipzig und Berlin 1832.

[7] H. C. Miller, On unicoherent continua, Trans. Amer. Math. Soc. 69 (1950),
pp. 179-194.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCLAWSKIEGO
INSTITUTE OF MATHEMATICS OF THE WROCLAW UNIVERSITY

Regu par lo Rédaction le 14. 7. 1961

On the representation of «-complete lattices *
by
C. C. Chang and A. Horn (Los Angeles, Calif.)

This paper is concerned with the problem of representation for
a-complete lattices. It is well known that a lattice is isomorphie with
a ring of sets if and only if it is distributive. However for an a-complete
lattice L even the condition of (a, a) distributivity is not sufficient for
it to be isomorphic with an a-ring of sets. A necessary and sufficient
condition for such a representation is the following: whenever » < ¥,
there exists an a-complete prime ideal P containing z such that L—P
contains 4 and is a-complete. On the other hand, necessary and sufficient
conditions for a Boolean algebra to be a-representable (that is, to be
isomorphic with an a-field of sets modulo an a-ideal) are known ([1],
[5], [8], [4], [7]). In this paper, we deal with the problem of representing
an a-complete lattice as an a-ring of sets modulo an a-jdeal. Such lattices
are called a-representable.

We shall present a characterization of a-representable lattices which
is a natural generalization of a known characterization for a-representable
Boolean algebras ([5], [1]). There are several differences between the
results for Boolean algebras and those we obtain for lattices. For instance,
while every w-complete Boolean algebra is w-representable ([3], [61)
in order that an o-complete lattice L be w-representable, it is necessary
and sufficient that L satisfy the condition of (2, ») distributivity, which
is satisfied by all Boolean algebras. Also, while every a-complete, (a, a)
distributive Boolean algebra is a-representable, we shall give an example
of a complete, completely distributive lattice which is not a-representable
for any a 3> 2°. The paper concludes with a discussion of a-representable
chains.

1. Definitions. If a is a cardinal, an a-system is a system {z,
i ¢ I, whose index set I has power < a. By an a-complete lattice, we mean
a lattice L in which every non-empty a-system {2}, eI, has a least
upper bound Z L@, and a greatest lower bound ]_[ + #:. We do not require

i€l

that L have a smallest or largest element.

* An abstract of this paper was presented to the American Mathematical Society
and will appear in the Notices of the A.M.S. This research was supported by National

Science Foundation grant G14092.
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