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for all j, then [Jay; > 2, since z [ a;;. Hence L—@ preserves all the
P 7
products []a;;. Thus I satisties (To,) and by Theorem 4, L e R,
i

CoRrOLIARY. If L is an a-complete chain with a smallest element, then
L is a-representable if and only if every densely ordered interval of L has
power > a.

Proof. Let L be an a-complete chain in By, Let [y, 2] be a closed
interval of L without jumps. If [y, 4] has power <a, then by the a-com-
pleteness of L, [y, #] has no gaps. Therefore, by Theorem 5, [y, z] must
have power > a. Conversely, if every densely ordered interval of I has
power > a, then L is a-representable by Theorem 5 and Lemma 1.

THEEOREM 6. There exists a complete chain L (and therefore a complete,
completely distributive lattice. L) such that for every a > 2°, L is not a-re-
‘presentable.

Proof. Let L be the set of all real numbers in the closed interval
[0,1] with the natural ordering. By the corollary to Theorem 5, L is
not a-representable for any o > 2°.

4. A Boolean algebra B with an ordered basis is an algebra which
is generated by a chain. If B i§ generated by a chain L (or even by any
sublattice L), and B is isomorphic with an a-normal subalgebra of an
a-field of sets modulo an a-ideal, then L ¢ R,,. The converse does not
hold, as may be shown by the example where L consists of all irrationals
in [0,1], and « > 2°. Theorem 4 and its analogue for Boolean algebras
can be used to give a criterion that B be so representable. However no
criterion as simple as that of Theorem 5 seems to hold.
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On o-homomorphic images of o-rings of sets*
by
A. Horn (Los Angeles, Calif.)

In this paper we consider the question of characterizing those
a-complete lattices which are a-homomorphic images of a-rings of sets.
In [2] 2 necessary and sufficient condition for a lattice to be isomorphic
with an «-ring of sets modulo an a-ideal was given. However, in contrast
with the situation for Boolean algebras, not every homomorphic image
of a ring of sets iy isomorphic with a quotient of the ring by an ideal.

It is not hard to see that the class K, of all a-homomorphic images
of a-rings of sets is closed under the operations of taking direct products,
a-sublattices, and a«-homomorphisms. Therefore, by the extension of
Birkhoff’s Theorem [1] to algebras with infinitary operations, K, is an
equational class. We shall determine a set of equations which charac-
terizes K,. A simple sufficient condition is (a, 2%) distributivity in either
sense. Finally the class of a-retracts of a-rings of sets is discussed.

1. Definitions. We adopt the terminology of [2]. Let a be an
infinite cardinal. An «-complete lattice is not assumed to have a largest
or smallest element.

An o-sublattice of an a-complete lattice I is a subset M such thatb
2ra € M, and ]J @ € M for any non-empty a-system {z;} in M.

?

A family F of sets is called a-independent if the intersection of an
a-gystem {z;} in F is contained in the union of an a-system {y;} in F
only when some a; = some y;. There exist a-independent families of
any power. For example, if § is any cardinal, then for each iepf, let
2; be the set of all subsets of # which contain ¢. The family {z;} is a-in-
dependent for any a.

Let K, be the set of all a-homomorphic images of a-rings of sets.
A lattice I in K, is said to be a free lattice of class K, with B generators
if T has a subset W with the following properties:

1) W has power p.

* An abstract of this paper was preaente& to the American Mathematical Society
and will appear in the Notices of the A.M.S. This research was supported by National
Science Foundation grant G14092.
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9) The a-sublattice generated by W is L

3) Any mapping of W into a member L' of K, can be extended to
an «-homomorphism of I into L.

Any two free lattices of class K, with the same number of generators
are isomorphic. See for example the proof of 12.1 in [4]

2. We are going to deal with formal infinitary polynomials. In order
to make the argument precise, it will be convenient to introduce a for-
malism involving expressions of infinite length. Such languages are dis-
cussed in [3].

The variables of our formal system are the symbols v;, ¢ e a. For-
mulas are defined inductively as follows:

1) Any variable is a formula.

2) If ¢; is a formula for each j e 8, where § is a non-empty ordinal
<a, then V(@@y...¢;5...) and A(@@;...@;...) are formulas. We abbreviate
these as \ @; and A ¢;.

jep jep

If L is an a-complete lattice, then by an L-assignment, we mean
a function on « to L. If f is an L-assignment, we can associate with f
a unique functi(r)vn fon the set of all iormula,s sueNh that {f‘(w) = f(4) for
each i€ a, and F(\g;) = S(gy), and 7(Ag) = [TF(g). N N

Aun equation ¢ =y is said to be satisfied identically in L if f(p) = f(y)
for every L-assignment f.

8. Lemma 1. If A is a non-empty subset of an a-complete lattice L,
then every member of the a-sublattice generated by A is of the form ﬂcp),
where ¢ s & formula, and f is an L-assignment with range contained in A.

Proof. Let B be the set of all elements of the form ?(zp), where f
is an L-assignment with range in 4, and ¢ is a formula. Clearly BD A.
Suppose that f, ®;) is a member of B for each j € §, where f is a non-empty
ordinal <a. Divide o into disjoint subsets §,, j ef, each of power a,
and let 6; be a one-to-one mapping of « onto ;. Let ; be the result of
replacing in ¢; each variable v; by the variable vy, where k = 0,(¢). Finally,
let g be the L-assignment such that for each jep and each i €8y, ¢(%)
=1;{07" (4)). Then g(y;) = figs) for each j ¢ . Therefore

;’%m) = ;Ewn =g(Vyi) <B.

Thus B is closed under sums of non-empty a-systems. A similar argument
applies to produets.

Lemwma 2. Let h be an a-homomorphism of an o-complete lattice L,
into an a- complete lattice L,. Let f; be Ly - asszgnmems, k=1,2, such that
b{f(3)) = fo(6) for each iea. Then h(fy(p)) = Fue) for every formula @

Proof The proof is immediate by induction on the rank of @.
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4. DeFINITION 1. To each formula ¢ we associate a fa.mﬂy A(p)
of subsets of a aceording to the following rules:

1) If ¢ = v;, then A4 (@) = {{i}}, the family whose only member is {i}.

2) If g = \/%, then 4(p) = UA (9s)-

Y ¢ = /\«pj, then 4 (¢) consmts of all sets of the form U A(j), where
A varies over the Cartesian product PA(q:,)

Notice that A4 (@) is of power <2" for any ¢.

DEFINITION 2. If F is a function, and § is a subset of its domain,
then F[S] denotes the set of images of members of 8.

LevMA 3. Let F be a function on a to a. Let @ be the result of replacing
in @ each variable v; by vpu). Then A (p) consists of all sets of the form F[S],
where 8 varies over A(p).

Proof. This is easily proved by induction on the rank of ¢, using
the fact that F[{J 8] = ij FL8;1 ’

DErFINITION 3. A lattice I is said to be (a, ) distributive in the
[1 sense if it satisfies the following condition: ¥ {wy}, i< I, jed, is
any a, f-system (that is I has power <a, and J has power <ﬂ in L

such “that [] X exists, and [ 1 ;5 exists for every fsJ then
iel jeJ
> Tlaige exists and is equal to Il 3 z;. We also have a dual

tedl ieI i€l jeJ
definition of (a, 8) distributivity in the Y]] sense.

Lenva 4. Let I be an a-complete lattice which is (a, 2°) distributive
in the []15 semse. Then for any L-assignment | and any formula @, we have
for = > []rw.

Sed(g) ie8
Proof. This is obvious when ¢ is a variable. Suppose that the
statement holds for ¢;, §€pB, where 8 is a non-empty ordinal <a. Let

¢ = \/ p;. Then
j€B
flor= Yien =2 2 [t
jep jeB Sedlg) ieS
=2 [
SéAlp) Te8

If =,/\ ®, then

T ”(%

jep jeg SeA(qu) i€S

> ] =
re PA(gy) i€ U
jep i€f

=[1 X [lma= 3 [Illiw

i€ PA(‘W) jep teAN
jep

> [

Sed(q) ieS

18+
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LevmA 5. If R is an a-ring of seis, and f is an R-assignment, then
Ty = U N6, for any formula g.

Sed(g) 1€8

Pro 0;’. Since R is an a-sublattice of the lattice of all subsets of a set,
the result follows from Lemma 4 and Lemma 2 with 4 as the identity map.

DeFINITION 4. If ¢ and vy are formulas, we write p~y whenever
every member of A(p) contains a member of A(y), and every member
of A(y) contains a member of A (p).

TeEEOREM 1. Let L be an a-complete lattice. Then L is an a- homomorphic
image of an a-ring of seis if and only if the equations ¢ =y are satisfied
identically in L whenever p~vy.

THEOREM 2. The free lattice of class K, with § generators is the a-ring
generated by an a-independent family of sets which has power B.

Proofs. We first prove the necessity of the condition in Theorem 1.
Suppose that h is an o-homomorphism of an a-ring R of sets onto L.
Let @,y be formulas such that every member of A () contains a member
of A(p), and let f be any L-assignment. We need only prove 7{g) < fN(w).
Let g be an R-assignment such that k(g (i)} = f(5) for each ¢ e a. If § € A (p),
let 7(8) be a member of A(y) such that T'(S)C 8. For each such 8,

N e . _
QeOc 0 90T U Ml =5,
by Lemma 4, Therefore by Lemma 4, g( ) C g( ). Hence by Lemma 2,

Flo) = 1{g(e) <h{gw) =T .

Now let L be an a-complete lattice satistying the condition of Theo-
rem 1. Let W be a non-empty a-independent family of sets, and let 6
be a function on W into L. We prove Theorem 2 by showing that 6 can
be extended to an o-homomorphism of the a-ring R of sets generated
by W into L. By choosing W and 6 so that 6 is onto I, this will also prove
the sufficiency of the condition of Theorem 1.

By Lemma 1, every member of R iy of the form ﬂqp), where f iy an
R-assignment with range contained in W. For each such f, let ' be the
L-assignment such that (i) = 6(f(i)) for all iea Suppose that an
element of R has two representations 7((7:) = 5(1;;). It will be shown that
for each S € A (p), there exists a member T of A (y) such that g[ 7] C f[8].
If not, there exists an 8 ¢ A (p) such that every T e A(y) contains an
element i(T) such that g(i(T)) # 7(j) for all j ¢ §. By Lemma 5,

O cTo =i = U Neic U gfim).
This contradicts the a-independence of W. Similarly, for each 7' ¢ A (y),
there exists an 8§ ¢4 (p) such that f[8]1C g[T].

icm
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Arrange the members of the union of the ranges of f and ¢ in a non-
repeating sequence {a;}, j ¢ B, where § is a cardinal < a. Let F be the

. function on « to g such that F(i) =j whenever f(i) = a;, and let @ be

the function on e to § such that G(i) =; whenever g(i) = a;. Let @ be
the result of replacing in ¢ each variable v; by vry), and let ¥ be the result
of replacing in y each variable v; by vgs). It is easily seen that if S and T
are subsets of a, then ¢[7]C f[§] implies G[T] C F[S]. Therefore by the
previous paragraph and Lemma 3, we have g~p. Let & be an R-assignment
such that k(z =a; for ie ﬁ, and k(#) is arbitrary for iea—§p. Clearly,
k@ =T(9), ¥(@) =[(g), k) = g(v), and () ) = g'(y). Since g~, the
hypothesxs 1mp11es T (@) = k !p), and therefore F(p) = g'(p).

We have shown that f{ 9) = E(-zp) implies i (@) = g( ). We may there-
fore define a mapping % of R into L by h(j ) = (@). Suppose y = U o5

where {ff ®;)} i8 2 non-empty a-system in RE. As in the proof ,Sf Lemxga 1,
E’here exigt formulas y;,-Nand an R-agsignment g such that g{y;) = fi(e)),
g'(ys) = filgs), and y = g(Vy;). Then

7

W) = 9(Vp) = D, Tlws) = X Te) = D h(fies) -
7 i F i

A similar argnment for products shows that % is an o-homomorphism.

THEOREM 3. If L is an a-complete lattice which is (a, 2°) distributive
in either sense, then L e K,.

Proof. Since the dual of any lattice in K, is also in K,, it suffices
to prove the theorem when L is (a, 2%) distributive in the I12 sense. Let
g~y, and let f be any L-assignment. Each -member 8 of A(p) contains
a member T'(8) of A(y). Therefore by Lemma 4, for each such § we have

];If(i)s [iov< X [[io=7w.

1€T(8) Ted(y) iel
Therefore by Lemma 4, f( < flw), and similarly F{y) < fN(qz).

A simple direct proof of Theorem 3 is the following. Let R be the
family of all non-empty hereditary subsets H of L such that H has a least
upper bound Y {H), and H is generated by a subset of power < 2°. R con-
sists of all sets of the form _UJI (a;), where J is a non-empty set of power

j €.

< 2% I(ay) is the principal ideal with upper element a;, and > a; exists.
jeJ

Using this representation, it is easy to show that R is an a-ring of sets,

and the mapping % defined by h(H) = > (H) is an a-homomorphism
of R onto L.

COROLLARY. Bwery a-complete chain is in K,.
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Remarks. Theorem 1 may be proved using Birkhoff’s Theorem ag
follows. By the remarks in the introduction, K, is the smallest equational
class containing all a-rings of sets. Let D be the class of all a-complete
lattices which are (a,27) distributive in the [13 sense. Bvery a-ring
is an a-sublattice of a member of D (see the proof of Lemma 5),
and we have given a direct proof of Theorem 3. Therefore K, is
also the smallest equational class containing D. It follows than an
a-complete lattice is in K, if and only if it satisfies every equation in
our language with a variables which is satisfied identically by all members
of D. If p~p, then by Lemma 4, we see that ¢ = p is satisfied identically
by every member of D. Conversely, if ¢ =y is satisfied in every member
of D, then it is satisfied identically in every a-ring of sets. If g~ does
not hold, it is easy to find an assignment f whose range is contained in
an e-independent family of sets such that f(p) # f(y). This completes
the proof of Theorem 1.

In the case of a-representable Boolean algebras, a very simple class
of characterizing equations was found. The equations given in Theorem 1
are certainly not independent. There remains the question whether it is
possible to reduce their number significantly.

In the case of a-complete Boolean algebras, (a, a) distributivity is
sufficient for -«-representability. We suspect that (e, a) distributivity
is not sufficient for an «-complete lattice to be in K,, but we have no
counterexample.

5. An a-complete lattice L is called an a-retract of an a-ring R of sets
if L is isomorphic with a sublattice M of R, and there exists an o«-homo-
morphism % of L onto M such that h(z) =« for all 2« M. We do not
agsume that M is an a-sublattice of R. Let I, be the set of a-retracts of
a-rings of sets.

In order to state conditions for membership in L,, we first dualize
Definition 1.

DEFINITION 5. If ¢ is a formula, let B(p) be a family of subsets
of o such that:

1) ¥ ¢ = v;, then B(p) = {{i}}.
2) o= \j/w, then B(g) = U B(ey).

3) o= /1\¢p,~, then B(g) consists of all sets | JZ(j), where 1 varies
over PB(g;). ’
The duals of Lemmas 4 and 5, obtained by replacing 4 () by B(p),

interchanging unions and intersections, and interchanging sums and
products, are obviously valid. . :

icm
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THEOREM 4. Let L be an a-complete distributive laftice. A necessary
and sufficient condition for L to be in L, is the following:

If ¢ and v are formulas, and fy,f, are L-assignments such that for
each S e A(p) and each T e B(y), there ewist finite sets 8'C8,and T'CT
such that [ fi(0) < % filf), then [i(#) < July)-

Proof. Necessity: Suppose that there exists an o-homomorphism &
of an a-ring R of sets onto I, and a subring M of R such that h restricted
to M is an isomorphism of M onto L. Let ¢, v, f,, and f, satisty the hypo-
thesis of the condition of Theorem 4. Let g, g, be RE-assignments such
that for k =1, 2, gx(4) is the element = of M such that k(2) = fx(i). Then
for each S e A(p), T ¢ B(y), we have

[T =n( 0, 00) < (| 0s6) = D100 -

ie8” feT

Since % is an isomorphism when restricted to M, we have
()03 C ()00 C L (i) C L) 94t -
i€ ieS’ ieT’ ieT
By Lemma 5 and its dual,
e = Ne®C 0L e =6

SeAd(p) €S T'eB(

Therefore by Lemma 2,

Ti@) = h{ge)) < h{gw)) =Falw) -

Sufticiency: If © L, let & be the set of prime filters of L which
contain o. The sets # form a ring M of sets isomorphic with L. Also if
an intersection (1 #; is contained in a union {L; #;, then there exist finite

iel €

gets I' C I and J' CJ such that Qﬂ‘oiC L:J’a‘ci.
iel’ jed’

Let R be the a-ring of sets generated by M. Bach member of R i
of the form f(g), where f is an R-agsignment with range confained in M.
Suppose 'ﬂ(«p) C i), where f,, f, are such R-assignments. By Lemma 5
and its dual, N /(¢) T L%fz(i) for each §eA(p), and T e B(y). By the

ieS ie

previous paragraph, there exist finite sets 8'C8, T'CT such that
LA € U fld)

If f is any R-assignment with range contained in M, let ' be the
L-assignment such that (1) = f(i). By the isomorphism of M and L,

we have )
) [] 56 < X 10 -

ies’ €T’
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Therefore by our hypothesis, flil@) < fiw). Thus fi(p) = falw) implies
Fi¢) = Tiw). We may therefore define a mapping h of R onto L by
Iz(ﬂ¢)) = ?’l(zp). An argument similar to that of Theorem 1, shows that &
is an a-homomorphism. Since k(%) = x for & ¢ M, L is an a-retract of R.

THEOREM 5. Let L be an a-complete lattice which is (a, 2%) distri-
butive in both senses. Then L e L,.

Proof. Let ¢,y,f;, and f, satisty the hypothesis of the condition
of Theorem 4. Then [] #,(3) < ZT fa(%) for all 8 € A (p), and T € B(y). There-
€8 i€

fore by Lemma 4 and its dual, 7y(@) < Faw).

6. Let R, be the set of all lattices which are isomorphic with an
a-ring of sets divided by an a-ideal. Let K, (or L;) be the set of lattices
in K, (or L,) which have a smallest element. The proof of Theorem 4
in [2] shows that R, C I, for all a, and obviously L, C K, for all a. By
Theorem 5, every a-complete chain is in I,. However the chain of all
reals in the closed interval [0, 1] is not in R, for any o > 2°, by Theorem 6
of [2]. Therefore R, = L; for all a > 2°. Since every member of K, is
(2, ) distributive in both senses, the corollary of Theorem 3 in [2] shows
that R, =L, = K,,. It is not known whether L, = K, for some o > .
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Remarques sur les relations d’équivalence

par
J. Aczél (Debrecen)

Dédié amicalement & M. Béla Szokefalvi-Nagy
a Voccasion de son 50-eme anniversaire

1. On peut formuler la question traitée dans le travail [2] de
M. S. Golab — en la généralisant de 1 & n dimensions — comme il suit:

Soient
x = (o, 22, ..., ")

les coordonnées d'un point P de lespace dans un systéme de coordon-
nées arbitraire, mais fixé. ¥tant données les coordonnées x;, x, et x5
des points P,, P, et Py, comment trouver les coordonnées x, de Pextré-
mité P, du vecteur P,P, de maniére qu’il soit équivalent & P,P,? Alors

1) %y == f(%, %5, %)
et M. Golab a postulé comme conditions d’équivalence les suivantes:
I. réflexivité: flx, x5, %;) = %,
IL symétrie: f(xg, £, %5y %), %)) = %ay
IIL. transitivité: f(xg, fx, %2, %), %) = fla1, 24, ),
et, ensuite, aussi la condition
IV. réversibilité: f(x, 2., flag, 25 %5)) = 5.
Dans lespace & n dimensions on voib anssi en posant x, = x, que
IT est une conséquence de IIL et de I et en écrivant

(2) Sy, %y %) = (%, %1, %)

I et III se transforment en

(3) g (x5, %1, %)) = %,

et

(4) g(g(xa,x,_,xa),xs,x‘) = g (x5, %y, x,)

qui sont les équations fonctionnelles des objets géométriques & n compo-
santes dans des espaces & n dimensions.
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