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Proof. We have
L [f(=z)] < ”:l[ for every z¢R, feM, whence If(=) = ’;L/lf(x“)I < T]L/m and
max |f(@)] < lim Vjlz?).

2. Let F be a linear functional defined on R; then
Fhea i then gr (2) = F((e—s0)1) §
a holomorphic function defined for 2| < 1/a, where & — max If ), aJIEEi x i:)a f)ixl:d
felt

0
element of B. It may easily be seen that gr(e) = 3 F(z™" = ZO‘OF (x™2"). Consequently
n=0 n=0
the sequence 2" 2" is bounded, bei 9
o %/ n 4 75/ ’11[5— ounded, being weak I‘y :onvergent to 0. We have ™2 < M,,
and Jx I < VMe/i2l. Consequently Lim y/|iz"| < L/lal for every |¢| < 1/a, and
lim }/ﬁz“j] < a.

By 1 and 2 we have a = lim W]L/Hm”H, q.e. d.
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On Banach *-semialgebras
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1. Preliminaries

We shall use the term halfring in the sense given by the author in
a previous paper [3]. We repeat that a halfring is a semiring which is
embeddable in a ring. Since addition in our semiring § is commutative,
a necessary and sufficient condition for § to be a halfring is that the
additive semigroup of § be cancellative. Following [3], we construct
the ring in which H is embedded. The product set H X H again forms
a halfring according to the laws of addition and multiplication: (s,, 8,)-+
+ (81y Ts) = (S1+11y 83+ 12), (815 82) (81, 8a) = (S1f1+8ats, 8182+ 8a%). The
diagonal 4 = {(z, #)|<H} is an ideal in H X H. We say that (s, s,) =
= (%, %;)(4) if and only if there exist elements (z, #) and (y,y) in 4
such that (s, ;) (2, #) = (31, )+ (¥, ¥). The quotient ring N = H x
X H|[A is called the ring generated by H. Let » denote the natural homo-
morphism of H xXH onto R, then the halfring H is embedded in the
ring R, for the mapping & « »(h+a,a), for any «, is an isomorphism
of H into R. We designate by »(H) this isomorphic map of H in R and
by »(sy, ;) the equivalence class of (sy, $;). A diviston semiring is a semi-
ring, in which the elements % 0, form a multiplicative group. A semi-
field is a commutative division semiring. A halffield is a semifield which
iy embeddable in a field.

In a recent paper [4], we introduced the concept of a normed semial-
gebra. For the sake of completeness we repeat:

Definition 1. A gsemiring § is said to be a semialgebra over a commu-
tative semiring X with wndt, if a law of composition (o, s) =os of the
product X xS is defined such that

(i) (8, +) is a unital left Z-semimodule relative to the composition
(0,8) = os,

(i) for all oceX and s,teS, o(s,t) = (o8)t = s(ot).

Definition 2. A semivector space is a semialgebra over a semifield.

Definition 3. A metric for a semilinear space S is said to be in-
variant if and only if d(s+z,t+2) = d(s,t) for all s,t, ze8.
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Definition 4. A norm for a semilinear space S, over the halffield
of nonnegative reals RT, is a nonnegative real-valued function [ls]] satig-
fying for s,te8 and peR*

(@) fisll =0,

(i) |ls|l = 0 if and only if s = 0,

(iif) llgsll = olis],

V) s+ < llsfi i«

Definition 5. A set § of elements s,¢,... is a normed semiring
if and only if

(1) § is a semialgebra over the halffield of nonnegative reals R+,

(2) § is @& semilinear space with an invariant metrie a(s, 1),

(3) [isll = d(s, 0) is a norm for the space § and |st < lisll- 1zl for
s,tel, .

(4) If 8 containy a unit e, then ¢ = 1.

. Definition 6. A Banach semiring is a complete normed semi-
ring.
) If in definition 6, the semiring is a halfring H, we shall refer to
it as & Banach halfring. .

LEMMTA 1. If H is & Banach halfring, then the halfring H X H is a Ba-
nach halfring over R with invariant metric D((s1, 8a), (ty, ta)) = d(sy, )+
+a(8s, 1) and [(s1, 82)]| = o] + sl '

Proof. Immediate verification. .

The ideal 4 in H xH is a closed set in the product topology [5].

. Lmyva 2. The ring R generated by the Banach halfring H is @ Banach
ring over the real field R with norm

[l (81, 83}l = inf  {|(u, v)|.
(e, %)~ Lo (s1,89)

. 1d1;ro;§ In [4], we showed that R is a normed ring over the real
€] - ‘There remaings to be proven that the completeness of I i i
the completeness of R. ? ° mples

Kelley [8] proves the following theorem: Let f be a continuous uni-
fo'rmly open map of a complete pseudo-metrizable space into a Haussdorff
uniform space. Then the range of the map f is complete. Now @ map of a uni-
}’o'rm sgac;; (X, %) into a uniform space (Y, ¥7) is uniformly open iff

or eac n U there is Vin ¥ such that i
il at fLU ()12 V[f(x)] for each
In [4], we showed that the ceontinuous hom

logical ‘halfring H x H onto the to
‘We proceed to

omorphism » of the topo-
pological ring R is an open mapping.
show that » is uniformly open. We recall that I X H has
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the invariant metric D ((s;,85), (fs, 1)) = (81, )+ d(sy, s} while R
the invariant metric D (v(s,, 82), »(ty, ) = |p(8y, 85)—2(f;, t2)]. Henee,
a uniformity for HXH is defined by mneighborbhoods U,[(sy, 82)]
= {(&,3)| D((z, ¥), (51, 85)) < &} and a uniformity for R by neighbor-
hoods V,[v(t, )] = {v(w, 2)|D (»(w, 2), #(ts, 1)) < &}. Let T,[(0, 0)]
= {{& MII(E, Ml < &}, then (sq, 83)+ T,[(0, 0)] ={(s1+&, 82+ 1) [ I(&; )]
<e&p. Now D((81+ &, 3+ 1), (815 8a)) = d(s:+ &, 8) +d(s:+ 7, &)
= (&, 0)+d(n,0) = (& m) <e. Therefore, U, [(sy, 82)]D (81, 8)+
+T,[(0,0)]. Since » is open, then #[U,[0,0]]> V,[4]. Hence,
”[Ue[(su 32)]] D w(sy, 82) +2[U.[0, 0]] D ¥(81, 82) + Vs[4] = Vylv(s, 85)],
which is a é-neighborhood of »(s;, s,) for R is a topologieal ring [4].
Hence, for any & > 0 there exists a § > 0 such that for each U,[(s;,$,)]
there is a V;[v(81,85)] for which v[Ua[(sl, s._,)]] D Vs[»(s1,8,)] for
each (81, 8,) in HXxH. » is uniformly open and this implies that RN is
a complete normed ring.

As a consequence of lemmas 1 and 2, we have

THEOREM 1. A Banach halfring H over the nonnegative reals R*
is embeddable in the Banach ring R over the reals R.

2. Introduction

Gelfand and Naimark [6] proved the following strueture theorem:
Suppose R is a commutative Banach ring with identity and that an invo-
Tution is defined in R satisfying the usual algebraic conditions (Az-+- uy)* =
=t +py*, o =2, (sy)* =y e* and, furthermore, the condition
lls*azl| = ||lz*|||lz||. Then the ring RN is completely isomorphic to the ring
C(M) of all continuous functions (M) in the space M of masimal ideals
of the ring R.

Arens [1] extended this theorem to read: Let A be a commutative
Banach *-algebra satisfying Elf||IF*) < Iff*] but having no wnit. Then
there exists a locally compact Hausdorff space X such that A is the class of all
continuous complex-valued functions on X which vanish at infinity. Also
(@) = f=).

Arens and Kaplansky [2] then obtained a theorem of this type
for a real Banach *-algebra where there is defined an operation* which
satisfies (Af+ ug)* = Af*+ug*, (f9)* =g, [ =F. Let 4 be a com-
mutative real Banach *-algebra, with [without] wnit, satisfying |fI° <
S ENff+g*gll, for f and g in A, & constant. Then there exists o [locally]
compact Hausdorff space X having an involutory homeomorphism o such
that A is isomorphic to the ring of all continuous comples-valued functions
on X [vanishing af infinity] whick satisfy flo(@)] = f(z) for z<X.
Furthermore, if ||| is the norm in A, then |fll = iug If(x)].

€.
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In section 3 we introduce the concept of a normed semialgebra with
an involution and show that it is embeddable in a real Banach *-alge-
bra. In section 4 we extend the Arens-Kaplansky theorem [2] to
read thgut if H 48 a Banach halfring with an involution, such that
(51, )P < Bll(s1y 82)* (81, 82) 4 (b, 3a)* (8, )| for all (s1y82) and (8,,1,)
in HXH, where k is a constant. Then there ewisis a compact spaceb C_;RZH
with an fnvolutory homeomorphism o such that H is *-isomorphic 1o the
halfring C+(OM) of all continuous comples-valued functions on My, for
which f(o(M+)) = f(M+). ’

5. Banach halfrings with involution

] Definition 7. An involution in a normed semialgebra S is a map-
ping s — s* of § onto itself satisfying for s,¢eS and pe R+

@ ) =s,

(H) (s+8)* = s*+1*,

(i) (s9" = t's",

(Av) (e8)* = os™.

Levwa 3. If H is a normed halfring with an involution s — s*
then HxH is a normed halfring with involution (81y 82) = (57, s¥) '

Proof. Immediate verification.

If (84, 85) = (uq, u,)(4), then (s, s =
(815 83)+ (2%, @*) = (ul, 'u.’;))—]— (v*, y*()i’ 2Y)D—1|1_1'(sm, miinpli?sl, u%)h_:;—t(y’ (ys)* a,?*d;
= (-u/}", QL;)‘(A),. the mapping v (s, 85) = * (5, 8,) = » (s, s¥) delﬁ’n;s
an involution in the ring R and

' LEMJ\IA* 4 The ring R generated by the normed halfring H with invo-
lution s — s* is a normed ring over the real JSield R with involution v(s,, s5) —
- " (84, 85). v

As a consequence of lemma 4 and theorem 1, we have

- ﬂ;'H:EORI?M 2. A *szizach halfring H over the nonnegative reals R+
with _mm.)lutwn 88" 4s embeddable in the Banach ving R over the reals
R with involution v(sy, s,) — v* (s, 85) = v(s}, s¥).

We a,ss'ume* tha.ﬁ H is commutative and possesses a unit e.
Following Stowikowski and Zawadowski [12], we state

5 Definition 8: A commutative semiring § is positive if and onlyy
Dossesses & unit ¢ and e+ s has an inverse in S , for every sin §.

\ We l:eeajll.tha;t .ﬂL(‘? quotient ring of a commutative real normed ring
bye ¢; Ta:mfml ideal is zsom?rphic to the real or complex field. [7]. Let My
b et o .the maximal ideals of the ring R. We denote the natural
momorphism of R onto R/M, M My, by @y If we hold s fixed and

e ©
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let M vary over Mg we obtain a function f, (M) = Py, (s), defined on My,.
We suppose that H is a positive Banach halfring which is isomorphically
and homeomorphically embedded in the Banach ring R. If s is an ele-
ment of H, then the positive nature of H implies that 1-+f(3M)== 0, for

R/M is the complex field C. If fi(M) = —¢, o a positive real num-
ber, then fo,(M)= —1, a contradietion. If f(M)= 24, 1 a real
number, then f, (M) = (M) = —4, a contradiction. If fo(HM) =

= — o+ M, ¢ a positive real number, then f (M) = f,(3)-+f (M) =
= p—o—+M = M, a contradiction. Suppose f;(M) = o+, o<R¥, 1R,
then a power of f;(M) would be equal to —o-+ué, again a contradiction.
Hence, if seH, fy(M) must be a non-negative number.

For each M My, the restriction of @, to H defines a proper homo-
morphism of H into the halffield R* of non-negative real numbers,
which in turn determines a maximal ideal M+e My, the set of maxi-
mal ideals of the halfring, such that f,(M+) = f (M), for seH [4].
If seM+, then 0 = fi(M*) = f(M), which implies that seBf. Hence,
M+=H~M.

Let M+My and M be the ideal generated by M+ M consists
of all differences m, — My, With m, myeM+. M is a maximal ideal of R
for the mapping which associates to each element 8;—85eR the num-
ber f;_s, (M*) = fsl(M*‘) —fs, (M+) defines a proper homomorphism
of R into R, with M as kernel. Hence H~1M = M+. Since M is the
minimal such ideal of R, M+ is contained in no other ideal of
My .

We have set up a 1-1 correspondence between the sets Mg and
My such that f,(M+) = f; (M) for any seH. Since f:(M) = g, oeR™,
se<H, the quotient semiring H/M™ is the halffield of non-negative real
numbers R+,

We have just proved the basic result which is an extension of the
Mazur theorem [9]:

TasoreM 3. If H is & positive Banach Lalfring, then the gquotient
semiring of H by o mazimal ideal is the halffield of mom-negative real
numbers .

We topologize My after the manner of Gelfand [7 1. It is the weakest
topology in which the funetions fs(M*) are continuous and My is
a compact Hausdorff space. Since the halfring H generates the ring R,
Mg > My, and [, (M+) = fo(M), M+ M, seH, the topology of
My, is the same as that of My. Let R+(My) denote the halfring of econ-
tinous functions f, (M+) on space My of maximal ideals of the halfring
H. Then we have an extension of Gelfand’s theorem [7]:

TamoreM 4. If H is a positive Banach halfring, then there exists
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& homomorphism of H into the halfring R+ (Mg) of all continuous functions
on a compact Haousdorff space.

4. Structure of Banach *-halfrings

In accord with Naimark [10] we give

Definition 9. A mapping s — s’ of the *-semialgebra § into the
*_semialgebra §' is a *-homomorphism if and only if (1) s — 5" is & homo-
morphism, (2) s — s’ implies that s* —s"™.

Definition 10. A complete isomorphism of the *-semialgebra §
onto *-semialgebra §' is an isometriec mapping of the space § onto the
space §' which is a *-isomorphism of the *-gsemialgebra S omto the
*_gemialgebra S'. :

Asin [11], by embedding the Banach *-halfalgebra H into a real
Banach *-algebra whose structure is given by Arens and Kaplansky [2],
we obtain

TaEOREM 5. Let H be o Banach halfring with an involution such
that  [[(s1, 8)IP < Bl(s1, 82) (81 So) (B 82)" (b0, T for all (51, 8) and
(t1,%,) *n HxXH, where k is o constant. Then there exists a compacvi
space Mg with an involutory homeomorphism o such that H is *-isomorphic
to the halfring C+(Mg) of all continuous complem-valued funciions on My,
for which f(o(M*)) = f(M+).

Proof. We embed H in RN = HxH, then RN is a real Banach
*-algebra, with the involution »(s;, 8,) — (s}, 85). Now

Bl* (51, 82)2 (815 82) 4" (81, 12) v (81, 22)]]
= Eklv(sfsy+sssa+ b+ 151, sTs+ 83 81+ a1 83|
= [ inf

(11, ug)er ™~ 1v(81,52)
(1,020 Ity lg)

st s+ w3 g+ 0F v, + 05 Vgl 4 floas g+ 3 21+ 07 vy 405 04|

>k inf
(ug,uz)er— In(sy.59)
(v, 09)e™ Lo(ty fa)
=k inf
(g, u9) e 1n(8),89)
(v1,09)ex— Lo(ly tn)

*
ll 20y 4+ 043 20— 3 20y +- 05 10y + 0} 0+ ’U;k V- 0] Uy 0304

M0y we)* (10, %e) + (01, 93) (v4, v5)]].

Since  [|(uy, ) < Ty, wa)* (415 )+ (01, 03)* (vy, v,)]|  for all
(uy, us) and (v, v,) in H X H, we have
Elp* (s1y 82)v (81, 82) + 9" (b, 1a)w (1, 1)]| > mf g, w)l?

(“1,“‘2)6”_5(31,32)
=( inf Mo, wall]® = [ (51, 85)I

(g, ug)er=o(sy,39)

icm

©
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Hence, this condition which is satisfied in R is precisely the one which
Arens and Kaplansky [2] assumed and makes R *-isomorphic to the ring
of all those continuous complex-valued functions on My which satisty
folo(M)] = fs(M). Since for seH, fo(M*) =f,(M), we examine the
map of H in the ring of all those continuous complex-valued funetions
on Mg.

Now f(sl—sz)*(M) = fsl_32<M) =fsl(.M+)_fsz (3M+). Since (31—32)*
=sf—sf In R, fopame (M) = fof (M) —F3(M+). Therefore we have
_fs;(M‘*)—-fs;(M““) ~——fsl (M) — fs, (M) for all seH. In particular,
it s, =0 we obtain that fo(M*)=f; (HUF). This states that the
mapping § — f;(M+) is a *-somorphism of H into C(Mg).

The involutory homeomorphism o(M+) of the compact space
{9z} onto itself iy defined by fy(o(M+)) = fi(M+). Sinee fu(I¥)
= f,(M+) the map of H in C+(Mg) is contained in the set of those fune-
tions which satisfy fi(o(M+)) = fo ().

Let O+ (Mg, o) denote the halfring of all those continuous functions
on {Mg} for which f(o(M*) =f,(M+) for all M+eMz. For any
feCt(Mg,0) then flo(M+)) = f(M*). Since f is also in CF (Mz),
then F(M+) — f,(3)+ f,(M*), 8, teH. Thus, f(o(3*) = folo (M) +
+ ify(o(M*) = f,(M+) — if,(M+). _ Since fy(o(M+)) =f,(U*) and
filo(M+) = f(MM+), then f,(M+)+ify(M+) = fo(M+)— ify(M+). Therefore
fi(M+) = 0 and f(M*) = fo(M+), for all M+eMy, and f is contained
in the map of H in C+(Mg). Hence, the map of H in C+(My) is
precisely C+(My, o). In the case k=1, the *-isomorphism is complete.
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Asymptotische Auffassung der Operatorenrechnung

L. BERG (Halle/Saale)

W. A. Ditkin hat in seiner Arbeit [5] gezeigt, dal der Korper der
Operatoren von J. Mikusidski [7] einem mit Hilfe von Restklassen und
direkten Summen aus analytischen Funktionen gebildeten Xérper
isomorph ist. Identifiziert man den Operator s von Mikusiniski mit einer
komplexen Verdnderlichen, so wird erreicht, daf man beim Aufbau
der Analysis fiir Operatorfunktionen die klassische Funktionentheorie
verwenden kann. Inshesondere bleiben die Laplace-Transformation und
die komplexe Umkehrformel fir die Rilcktransformation als wertvolle
Hilfsmittel in der Operatorenrechnung. In dem Vortrag [1] wurde bereits
dariiber berichtet, daf man die oben erwihnte algebraische Auffassung
von Ditkin unter Beachtung von [12] auch durch eine asymptotische
Auffassung ersetzen kann. Hierzu sollen jetzt nihere Hinzelheiten
entwickelt werden, wobei zugleich einige Vereinfachungen und Verbes-
serungen gegeniiber von [1] vorgenommen werden, die man zum Teil
auch in dem Buch [2] wiederfinden wird. Verschiedene Anregungen
und Hinweise verdankt der Verfasser Herrn J. Mikusiriski.

1. Die Grundlagen. Wie in [1] wollen wir hier nicht das Faltungsin-
tegral, sondern in Anlehnung an M. Rajewski [10] (vgl. auch [5a])
das Duhamel-Integral

i
da
@ fg == [fa—Dg0)r

als Grundlage der Operatorenrechnung wihlen. Die Menge der fir ¢ > 0
einmal stetig differenzierbaren Funktionen bildet dann mit der gewdhn-
lichen Addition und der Funktionenmultiplikation (1) einen kommuta-
tiven Ring &. Dabei schreiben wir die Funktionenmultiplikation (1)
zur Unterscheidung von der gewohnlichen Wertemultiplikation ft)g (@)
entweder ohne Argument oder mit Malpunkt

fo =f)g =fg(@) =f(#)-g(?)
und bezeichnen Funktionenpotenzen mit f* = f™ (). Jeder Funktion
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