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Now take a bounded measurable funection ¢(y) of compaet support. The
uniform convergence of Ty(k(-,y)) to T(%(:,¥)) implies

If 7.6, o) dy — [ T(EC, ) o)y
On the other hand,
([ 56, 9)pl)dy) = Ti(Eg) ~ T(Ep) = T [ 5, 9)p()dy).

Thus (6) holds for every bounded measurable ¢(y) of compact support.
However, both sides of formula (6) are linear functionals over £%, and
the seti of bounded measurable functions of compact support is dense in
&%, Hence (6) holds for every PeZy,-
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A characterization of the class & of probability distributions
by

L. KUBIK (Warszawa)

1. Let us consider the sequence
(1) 5n1+§n2+-"+£nkn_‘in (r=1,2,..),

where 4, = const and the random variables & (kK =1,2,...,%,)
are independent and uniformly asymptotically negligible, i. e. for every
e >0

lim max P(|&,;] >¢&) = 0.
n—>c0 1<h<hy,

It is known that the class of all possible limiting distributions of sums
(1) is equal to the class of all infinitely divisible distributions. The elass
of infinitely divisible distributions can be characterized as follows (see
Gnedenko and Kolomogorov [2], § 17, theorem 35):

(i) The class of infinitely divisible distributions is equal to the class
of compositions of a finite number of Poisson distributions and of their
Iimits (in the sense of weak convergence).

Let us now consider the cumulafive sums of independent random
variables

St &t b

2 4 5,

—A4,, A, B, =const, B, >0,

where the random variables &,/B, (k = 1,2, ..., ) are uniformly asymp-
totically negligible. The class of limiting distributions of sums (2) is called
class #. The aim of this paper is to give a characterization of class &
which would correspond to characterization (i) of the class of infinitely
divisible distributions.

2. In the sequel we shall use the following two lemmas (see Kubik
[4]): ;

LemmA 1. Let f(z) be a continuous function defined in the interval
{a, b>. Let the right derivative f'.(z) and the left derivative f_ () emist at every
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point © of this interval. If f(a) = f(b) = 0, then there exisis & number ¢
(a < ¢ < D) such that

file)-fL(e) < 0.

Levna 2. Let f(z) and h(x) be continuous functions defined in the inter-
val <@, b). Let the right derivatives (@), b (2) and the left derivatives f_ (),
K (x) ewist at every point x of this interval. It h(a) # h(b), then there ewists
a number ¢ (& << ¢ <D) such that

(f(b)—f(w) f(&)—f(a)

(3) "o —h) B (e)—f. (,c)) (mlb(b)— o (a) B (6)—f~ (c)) <0.

If (3) holds, then either

. F(®)—fla) ., . FO) =), .
(39 B)—hia) hi(e)=fi(e) <O, =i ) —h(a) h_(e)—f_(¢e) = 0,
or

o T —f(a) ., . F®)—fla) , y
(3") mh_(a)‘”.f—(‘?) <O S h@ 9@ =0

In the sequel we shall use the following notation:

F.(c) i (3") holds, |
7, (c) it (3”) holds.

fl(e) if (37) holds,

)= {f’_ (¢) i (3"") holds,

**f’(c) = l

3. We shall now give the characterization of clags .#, mentioned
in section 1. If X has the distribution from class &, then the logarithm
of the characteristic function ¢(f) of X can be written in the Lévy-Khin-
tehine form

a i\ 1+
{4) loge(¥) = #yt+ __L (6““——1— 1+u2) — G (u);
7 is  real number and G(w) is a non-decreasing bounded function

(@(—o0) = 0) having a right derivative and a left derivative, denoted
indifferently by @'(u), at every point % = 0, and such that

142

w

G’ (u)

is a non-increasing function for « < 0 and for 4 > 0 (Gnedenko and Gro-
shev [1], p.522). The conditions given above are also sufficient for X
to belong to class Z.

icm®
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Let us consider distributions with function G(u) of the form

0 for w< A,
(5) G(u) = alog im lﬁ. for 4 <u<0, {(az=0)
alog(l+4% for u >0
or
0 for w <0,
) Gu) ={blog(l+u?) for O<u<B, (>0
blog(1-+B%) for u > B,
or )
5%) Glu) = 0 for u<0,
¢ for u>0 (c¢c=0).

Let us denote by # the class of all such distributions. A distribution
from the class ¢ is, for class %, an analogon of the Poisson distribution
for the class of infinitely divisible distributions; namely the following
theorem holds:

THEOREM (). Class & of distribulions is equal to the class of composi-
tions of a findte number of distributions from class ¥ and of their limils
(in the sense of weak convergence). '

Before we present the proof of this theorem we shall give two simple
auxiliary propositions.

PROPOSITION 1. 4 composition of two distributions from class £ belongs
to class Z.

Proof. Let g (f) and ¢,(f) be characteristic functions of X, and
X, from class & Then (see Gnedenko and Kolmogorov [2], § 29, theorem 1)
for every a (0 <a < 1)

7 () = gu(at) prall) (B =1, 2),
@ra(l) being a characteristic funetion. (It is also a sufficlent condition
for a distribution to belong to class #.) The characteristic function (1)
of the composition of X, and X, is
y(t) = g1() @) = [ga(at) a0t} [g1a(F) aa(t)] = w(at) 9. (2},
where

'Pa(t) = ¢]u(,t) '(qu(t),

(1) This theorem has been pubh'sheci witheut proof in [5].
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whence y, (¢) is a characteristic function. We see that w(f) is the cha-
racteristic function of a distribution from class 2.

ProOPOSITION 2. The limit of distributions from class & belong to class .
Proof. Let ¢,(t) (n=1,2,...) be a sequence of characteristic
tunctions from class &. Thus we have

on(t) = pn(at) *Pnall) -
We assume that
lim g, () = ()
Nn—>oo

uniformly in every finite interval |t
and t

< T'. Hence for every « (0 < a < 1)

i P2 _ o) e
s Pult)  plad)

i

lim Pra () =

n->00

and ¢a(t) is a characteristic funetion.
belongs to class £.
Proof of the theorem. Every distribution from clags ¢ belongs

Thus the limiting distribution

to class &, since

1+u? . . . X
" @'(u) is a non-increasing funetion for w < 0 and

tor # > 0. Compositions of a finite- number of distributions from
class % and their Limits belong, acecording to propositions 1 and 2,
to class Z.

We shall now prove that every distribution from eclass % is a limit
of compositions of distributions from class #. Let us consider an arbi-
trary distribution from class &. The logarithm of the characteristic func-
tion of this distribution is given by formula (4). Let us define the fune-
tions G(u), &(u) and G*(u) as follows:

Gu) = G (u) for % <0,
G(—0) “for w >0,
5 0 )
Bu) = for w <0,
G (1) —G(+0) for >0,
0 ] /
6 () = ; for u <0,
G(+0)—G(~0) for w>0.
Thus ) N
(8) G (u). = G(uy G u) G (u).

icm
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The funetions @(u) and &(u) are continuous.
Let us consider the sequence of functions
(0 Galw) =
0 for u < 0.
G B 2 k=1 _ k y 9 o
G (u) = by log(l—4*)+d,, for i < '"<?7' (k=1,2, ..., n-2"),

é(n) for u >n,

where b,; and d,; are chosen in such a way that

(®) a0 (5 - 6(5). Gﬁ"(z“:)=a(z_)
) 1

Thus we have

(h=1,2,....n2"%

Since @(-+oo) < oo, for every £ > 0 there exists an ny such that for
% > ny We have G(-+o0)—G(u) <e. The function G(w) is uniformly
continuous, whence there exists an =, such that for n >n, we have

w2t

sk - (k—1
G(__)_G( S )<s for k=1,2.....

on
Since &, () is a non-decreasing function and since (8) holds, we have
for n > max(n,y, 7,) and for every u (—oc < u < oo}
Gu)—Gy (u) < &
Thus

O T T T Him @ =) (—x < u < “oof.

Hor

We ghall now show that

(10) bpjos <bw  (B=1,2,... 02" —1).


GUEST


250 L. Kubik e Im

Let us observe that the functions &(w) and log(1-+v*) (u > 0). satisty the
assumptions of lemma 2. Therefore for every & (k= 1,2,..., 5. 1
there exists a w, such that (k—1)/2" < u < k/2" and

G(k/Z")—é((Ic-—l)/Z") .' 271»1,; __'-,
log f1+ (k/2"f]—log [1+-((e—1) /2] "1+ “ (uk)l "

Gk 2™ —G((l—1) /2" LU
tog[L+ (/27| —log[1+{(b— D)2 Tug - "

(11)

< 0.

Since 1+(uL @ () is for w >0 a non-inereaging function we have
&((h+1)2") -G (5/2") Ltuha o, ;
log[1+ ((k+1)/2"PT—log[1+(k/2"V] = 2uy, bt

(12)

Cldup G(k/2") —G((k—1)/2")
B, 0 () S Tog[F (/2] Dlog[i+{(k—1) 27

Hence we have (10).
Let uy now find the difference d, s, dny:

o (k-1 k+1\?]
09 s e = &[] = rsaiog[1 (1) -
k) k\?
a1 B . i
G(fz”) ”"1°5[1+(2”)] _
k\? k4-1\2 “ k\?
= %klog [1+ ("2—%) ] +bn,;,~+1{10g [1+ ('E:-‘) ] - lOg ll + (é"ﬂ) ]} -

) T\
on ) |= (tfw,k'“ n,k~|~1)10g' [1 - (_2_'7;)]

(fo=1,2,..., n2"—1).

— b 11 log [1 + (

From (10) and (13) it follows that the funetion @, (u) defined by (7) re-
p}:esents 2 distribution which is a composition of a finite number of distribu-
tions from class . Namely, we shall prove that ‘

n.2"

(14) 7 &, (u) = 2 G (1),

k=1
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where
0 for <0,
- (bag— by 1) log (14 o) for 0 <u < k2%,

(15) Gup{u) = N
(bar— baep1)log[1-+ (B/2*)]  for w > k2"

(k=1,2,...,n2"),
where we put by,om,; = 0. Distribution (15) belongs, of course, to

class . Let us take a fixed ¢ (1 <4 < n-2"). For (i—1)/2" < u < /2"
we have

nan

. nat i—1 L\2
N Bty = Y (b )og(L+ )+ 3 (b bypn)log [1+ (-9—)]
k=1 k=1 k=1 =

i1 )
= bnilog(l + ﬂz) T E (dn,k-M - duk) = bniIOg(l + uz) -+ dm' = én ('M’) -

k=1

For u < 0 equality (14) is obvious. For » > n equality (14) also holds,
since

n.ak 2?1

D Gu(w) = D (A jsa— )+ bypanlog (1+47)
k=1 k=1

= n,n,-2“+ bn,n.2"10g(1 e nz) = G"(n) = é]z (),

which completes the proof of (14).
Quite analogically we prove that

(16) G(w) =lm G, (u) (— oo <u< + oo),

N0

where @, (u) represents a distribution which is a composition of a finite
number of distributions from clags %.
Let us write

Gy () = Gy (u) +8, () + 6" ().
According to (6), (9), (16) we have
(17) lim @, (%) = G(u) (—oco < u < +o0).
Let us consider the sequence of distributions with characteristic

funetions ¢, (1) (n =1, 2,...) given by the formula

oo

o it 144
log%(t)_wt—.—:{: (e. 1 —*1+u‘3)‘u? i@, (u).
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In virtue of (17) and of the theorem of Gnedenko (see Gnedenko and
Kolmogorov [2], §19, theorem 1) we have
lim ¢, (1) = ¢(?)

uniformly in every finite interval Since every ¢,(t) is a characteristic
funetion of a composition of a finite number of distributions from class ¢,

theorem 1 is proved.

4. Let us also observe that the analogy between the Poisgon distri-
bution and the distribution from class ¢ goes further. It is known that
the Poisson distribution is the limiting distribution of sums (1), where
&, are suitably chosen two-valued random variables. Similarly every
distribution. from class ¢ is the limiting distribution of sums (2), where
& are suitably chosen two-valued random variables. This follows
immediately from paper [3] and from the relation between G (u) and
K (u), where G(u) is the function in Lévy-Khintchine formula and X (%)
is the function in Kolmogorov formula.
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