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Criteria of the existence and of the associativity of the product
of distributions
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J. MIKUSINSKI (Warszawa)

Introduction. It is well known that the product f(x)g(z) cannot
be defined for all pairs of distributions f(#) and g(2). Moreover, even when
this product is defined, it fails to have the properties of the product
of ordinary functions. For instance, the associativity law does not
hold, in general. The aim of this paper is to give some simple criteria
for the existence and for the associativity of the product of distribu-
tions. The definition of the product adopted here was given in [1].
It is general enough and embraces the most important particular cases
known.

1. Fundamental sequences and distributions. Indefinitely deriv-
able functions will be called smooth functions. A sequence of smooth
funetions ¢.(2) (2 = (&1, ..., &) is fundamental in an open subset O
of the ¢g-dimensional space if for every interval I (¢-dimensional) whose
closure is contained in O there exist an order &k = (x,, ..., #,) and a uni-
formly econvergent sequence of smooth funections @,(r) such that

1 eanh g
65‘1‘1_-:6_5;,; D, () = g, (2).

Two fundamental sequences ¢,(x) and y,(x) are called equivalent

in O if the iterated sequence

P (x) =

@1(2), 9 (), P2 (@) pa(a), ...

is fundamental in 0. We then write ¢, (x) ~ 3, (2).

Equivalence classes [¢,(2)] of sequences, equivalent in 0, are called
distributions and denoted by f(z), as functions. In particular, every smooth
fanction ¢(z) is a distribution and ean be represented in the form [e(x)]-

The above definition of distributions was assumed in [2] and [3].

2, Regular sequences. By a o-sequence we understand (see [3])
every sequence of non-negative smooth funetions §,(«z) with the following
properties:
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(i) There exists a sequence of positive numbers «,, convergent
to 0, such that 6,(z) vanishes outside the sphere I,:&4..
(i) f 8, (n)dz =1, the

g-dlmensmual space.
Let us consider the sequence of convolutions

L g2 2.,
s E'I < O

integral Dbeing extended to the whole

~

| fla—ns,mar,

—o0

(1) Fal) = Fl)e 8, (r) =

where f(x) is a distribution defined in an open set O. If 0 is not identical
with the whole g-dimensional space, the symbol (1) is meaningless. But
we shall adopt the convention that the product f(z—1)0d,(¢) is defined
in the whole space whenever the support K, of ¢,(x) is contained in
the set of points where f(z—1) is defined. We thus assume that that
product vanighes outside X,. By this convention the functions g¢,(x)
are defined in the sets of the points whose distance from points outside
0 is less than 2q,.

Given any distribution in O and any d-sequence o,,(x), the sequence
(1) will be called a reqular sequence of f(z). Every regular sequence of
flz) is a fundamental sequence of f(x).

3. Product of two distributions.
two distributions f(z) and g(x), defined in an open set O, we understand
the distribution [e,(2)y,(2)], where ¢, (2) and y,(z) are regular sequences
of f(z) and g (=) respectively. The product is defined provided the sequence
on (@), () is fundamental. Suech a definition is very general and embraces
the most important cases.

The product just defined is not associative in general. This is shown
by the well known example

By the product f(x)g(z) of

(1 )6( o( 1(a( )) =0,
— &) d(w) = d( — i =
- ) x), o o (@
where z is a real variable and 1/z = (log|z|)’. In order to have a condi-
tion which ensures associativity, it is convenient to employ the notion
of order of a distribution.

4. Order of a distribution. We say that a distribution f(z)
of order % > 0 in a g-dimensional open set O if f(a‘) isin O the k-th den-
vative of & continuous function f(x).

In the above definition, the coordinates »; of the order b = (x4, ..., %g)
are all non-negative integers. We also want to admit the case where all
the coordinates »; are non-positive integers. We then say that f(z) i
of order k in O if for every order j such that 0 <j < —Fk the distribution
() is a continuous function in 0.
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We shall also admit a more general case involving the preeediﬁg
two. Let the coordinates of order % be arbitrary integers. Denote by &+
the order obtained from % by replacing the negative coordinates of %
by 0. Similarly, ¥~ will denote the order obtained from % by replacing
its positive coordinates by 0. Evidently &k = kT %k~. We say that f(xz)
is of order % in O if there exists a continuous function F(z) such that
FE) (@) = f(2) in 0 and FP(z) is in O a continuous function for 0 <
<j < —k7. This definition embraces the preceding two as particular
eases.

If f(=) is of order % in O and @,(x) is dts regular seguence, then for
every interval I whose elosure is in O there exist smooth functions D, (x)
such that OF N a) = @,(w) and the sequence DV (x) converges uniformly
in I for 0 <j< -k

In fact, there is & continuous function ¥ (x) such that &) (z) = f(2)
and PY(z) is eontinuous for 0 <j < —k~. Letting

D, (0) = F(z)x6, ()
we have

1) O (@) = FED @) 8, (2) = f(@)+ 8:(2) = gn(@);

2) |90 (@)—F¥ ()| = | f (BO (z—1)— F ()] 8, (1) ]

o

< [ 1PY@—0—FO @) 8.t

and, for 0 <j < —k7, it follows from the continuity of F¥)(z) that
@) (z) converges to F?(x) uniformly in I.

5. An existence criterion for the product. We are going to prove
the following criterion:

In order that the product f(z)g(2) exist in O, it suffices that the disiri-
butions f(z) and g(z) be in O of orders T and 1 such that k-+1 < 0.

Let ¢, (:L) and y, (z) be regular sequences of f(z) and g(x) respectively,
and let m = max(k,l) (i.e. g, = max(ux;, ) for & = (1, .-.;%),
U= (Ay, -0y Ag)y M = (U, ...y 4g)). It suffices to prove the existence,
for every interval I whose closure is in 0, of smooth functions X, (#) such
that X&) () = @,(2)y,(x) and that XU (x) converges uniformly in I
for 0 <j < —m~. It is easy to verify that this assertion holds when
% <0 and I <0. To prove it generally, we proceed by induction. Leb
e; (1 <4 < q) denote the order of which all the coordinates are 0 except
the 4-th coordinate, which is 1. Suppose that the assertion holds for some
k*, 1% and for all £~, I~ such that k+1 < 0. We shall prove that if 2;+ #;
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< 0, then the assertion holds when we replace k& by k+e¢; or I by I-+e,.
This will imply by induction that the assertion holds for all k¥ and I such
that k41 < 0. For reasons of symmetry it suffices to consider the case
k+e; only. If »; < 0, then (k-+e;)* = %¥, and there is nothing to prove.
Suppose therefore that x»; > 0.
Let &
Zn(m) = f (l"n(t)drl';
@

where &, 7; and «; are the 4-th coordinates of @, ¢ and & respectively,
a being a fixed point in I. Evidently

(2) Pt = (Xn "/’n)(ei) — Xn "Psfi) .

The distributions [z, ()], [¥.(2)] and [y (z)] are of ovders k, I, and
1+e;. Since #;+4; < 0 and »; > 0, we have 4; < —1 and (I4e)" =1*.
Thus by the induetion hypothesis, there exist smooth functions @, (z)
and ¥, (x) sueh that

¢gn+) = ¥y (M = maxk,1), ng’ﬂ = angfi) (p = maxk, I+e)
<

in I and that @ (z) converges almost uniformly for 0 < i< —m
and P{(z) converges almost uniformly for 0 <j < —p~. Sinee 4 < —1
we have m = p. This implies that if

&
Xy(@) = Pula)+ [ Yalt)dr,

o
then X™F+e)(5) = @, (@)p,(2), by (2), and XP(z) converges almost
uniformly for 0 <j < —m~. Letting r = max(k-+¢;,1), we have T o=
=m*+e and r~ =m~. Thus X (@) = @,(@)w,(x) and XD(z) con-
verges almost uniformly for 0 < j < —r~. Thus the induction inclusion
is stated from k to k--e;, and the proof is achieved.

?

6. A criterion of associativity. In order to obtain a criterion of
associativity for the product, we need a stronger form of the theorem
proved in the foregoing section. Let us remark first that in the preceding
proof it is not essential for ¢, () and v,(x) to be regular. It suffices that
there exist, for every interval I whose closure is in 0, smooth functions
@, () and ¥, () such that BFM (2) = g, (2), P (2) = py (4), and that
O (w) converge uniformly in I for 0 <j < —k~ and ¥{(z) uniformly
in I for 0 <j < —1".

Generally, let the sequence g,(z) be called k-fundamental in I for
the distribution f(z) if there are in I smooth functions @, (2) such that
¢ (%) = @, (2) and o) (x) converges uniformly in I for 0 < i< =k
It follows from section 4 that if f(z) is of order % in 0, then its every

regular sequence is k-fundamental in every interval I whose closure is
in O.
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From the proof given in section 5 it follows that:

If, in I, @,(x) s E-fundamental, v, (a) is I-fundamental and k+1 < o,
then @, (%), () is m~fundamental, m = max (%, 1). :

Evidently, if ¢,(z) and ¢, (z) are k-fondamental for f(=), then the
interlaced sequence

1(2), ¢, (), @a(%), go(@), ...

is also k-fundamental for f(x). Similarly, if y,(2) and p, () are I-funda-
mental for g(z), then the sequence

(@), ¥, (2}, v2(2), Yo (a), ...
is l-fundamental for g(a). Consequently, if k-+1 < 0, the sequence
e (@) pu (@), @1 (0) 9, (), Pa(®) p2(2), Pa(®) o(a), ...

iy m-fundamental. It represents the same distribution as each of the
sequences @, (#)y,(#) and ¢,(#)y,(z). In particular, if () and ,(x)
are regular sequences, then f(z)g(z) = [@u ()9, (2)] by the definition of
the product, and consequently f(z)g(z) = [@n(z)wn(x)]. This argument
yields the following statement:

If, in I, f(@) = [pu(2)], 9(®) = [pn(@)], ¢u(@) is k-fundamental, v, (v)
is I-fundamental, and k+1 <0, then F(@)g(@) = [pn (@) v, (2)].

The last statement easily leads to the following eriterion of associa-
tivity:

Let f(x), g(=) and h(z) be distributions in O of orders &, T and m ves-
pectively. If k1 <0, k+m <0, and l+m < 0, then

3) (fl@)g (@) h(@) = fla)(g () (2)).

In fact, let p,(2), v,.(%) and y,(z) be regular sequences for f(z), g(z)
and % (z) respectively. Then ¢, () is k-fundamental, p,(#) is I-fundamental
and z,(o) i3 m-fundamental. Since k41 < 0, the product g, (z)p, ()
is m-fandamental, where m = max(k, 1). But the inequalities k+m <0
and 1+ m < 0 imply that 7% +m < 0. Thus the sequence (#n (@) 9, (@) 2 (2)
is mi-fundamental, m = max (7, m). Consequently, both sides of the
identity

(4) ( n (%) "/’7‘;(”))}%(‘”) = @n () (%(W)Zu(””))
are m-fundamental. Moreover, the product ¢, (#)w,(x) on the left side
is 7m-fundamental, and similarly, the product P (2) Ay () is k-fundamental,
where % = max (I, m). Heunce (4) implies (3).

7. The order of the product. We shall prove that:

If f(x) is of order & and g(x) of order 1 in 0, k1< 0, then f(z)g(z)
is of order m = max(k, 1) in 0.

Studia Mathematica, XXT. w
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From section 6 it follows only that f(@)g(a) is of order m in every
interval whose closure is contained in an open set O, where f(x) and g(z)
are of order k and I. To have a general proof, we need the following
statement:

If f(w) s of order k and g(z) of order Tin O, k-+1-+¢; <0, then the
formula

(@) g () = 9 (2) g () +F () g (2)
holds in O. :

In faet, if @,(x) and yp,(x) are regular sequences for f(z) and g(a),
then ¢ (x) and »§?(2) are regular sequences for f(z) and ¢ (a).
Consequently, they are (k+ ¢;)-fundamental and (I+ e;)-fundamental
respectively. This implies that the products ¢i? (z)y,(2) and o () 9 (2)
are fundamental and from the identity

(Pn (@) (2)) D = D (@) (@) + o (@) 9 ()
the required formula is obtained.

The proof of the statement at the beginning of this section is similar
to the proof from section 5. Remark first that the agsertion is true when
k<0 and 1 <0. To have a general proof, we proceed by induetion.
Suppose that the assertion holds for some k*, It and for all k~, I~ such
that k-7 < 0. We shall prove that if A;-+x; < 0, then the assertion
holds when we replace k by k-+e; or I by I+4e;. This will imply by in-
duction that the assertion holds for all k¥ and ! such that k-1 <0. For
reasons of symmetry it suffices to consider the case k- e; only. If % <0,
then (k-+e)" = k¥, and there is nothing to prove. Suppose therefore
that x; > 0. :

There exist functions F(#) and G(z), continuous in O, such that
FETe) () = fo) and 6P (z) = g(s). The distribution FED (g) is of
order % and the distribution ¢ (z) is of order I4-e;. Since »;+4; <0
and #; > 0, we have 4; < —1 and (I+e¢;) *= 1. By the induction hypo-
thesis, the products F*"(z)g(z) and F*(z)g®)(s) are of orders m
= max(k,!) and p = max(k, I+e¢;), respectively. Since

f(@)g(m) = (PP (@) g ()@ —FF) (2) g (),

it is evident that f(z)g(z) is of order r = max(k-e;, 1) in 0, and the
proof is achieved.

8. A remark on the order of the sum. It is interesting to remark
that a similar statement holds for the sum:

If f(x) is of order k and g(x) of order 1 in an open interval I, then
f@)+g(z) is of order m = max(k,1) in I.

The proof is so easy that it is not worth reproducing here. If is in-
teresting to mote that the order of the sur is the same as the order of
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the product. Of course we need not suppose that k-+1 < 0. But the sta-
tement for the sum holds for an interval only and becomes false when we
replace I by an arbitrary open set 0. In fact, the function f(z) = (& + &)™*
iy a distribution of order k = (—oo, —oo) in the set 0 of all the points
of the plane except the origin. The distribution g () = 6(£;) (delta distri-
bution) is of order I = (2, —oo) in 0. But their sum is not of order m
= max (k,1) = (2, —o0).

9. An extension of the foregoing results. The criteria from sec-
tions 5 and 6 can be reinforced by introducing another definition of the
order of a distribution. We shall say in this section that a distribution
f(#) is of order k in O if there exists a function F (z) sueh that all its deri-
vatives FD(z), 0 <j < —k~, are measurable functions in 0, locally
bounded, and that F*D(z) = f(z).

If f(z) is of order k in O and @, (x) is its regular sequence, then for every
interval I whose closure is in O there exist smooth functions O, (z) such
that OF) (x) and the sequence O (x) is bounded in I and converges almost
everywhere for 0 <j < —k™.

In fact, there exist a function F(x) measurable and bounded, and
its distributional derivatives F®(z), 0 <j < —k~, such that F*) ()
= f(z). The sequence @,(x) = F(x)+d,(x) has the required properties,
which can be proved as in [1] (p. 168).

All the theorems from sections 5-8 remain true if the order of distri-
butions is understood in the sense of this section. The proofs are the same
and only need one modification namely that uniform convergent sequen-
ces should be replaced by bounded and almost everywhere convergent
sequences.
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