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The limiting behaviour of indecomposable branching processes
by

K. URBANIK (Wroclaw)

Let B denote the set of all vectors n = (ny,ny,...,ny> in an N-di-
mensional Euclidean space, whose components n,,#,, ..., ny are non-
negative integers. By e; (j =1, 2, ..., N) we shall denote the unit vector,
whose j-th component is equal to 1 and the others are equal to 0.

Let us consider a physical cascade in a homogeneous medinm con-
sisting of N types of particles in which the decomposition of particles
is a random event. Jlor physical reagons we assume that

(i) future of a particle does not depend on its past and depends only
on its actual state,

(ii) the destiny of a particle and its progeny does not depend on the
future of the actually existing particles.

Tt is customary to treat mathematically such a caseade as a BV -valued
homogeneous Markov process X(#) = (X, (t), Xy(t), ..., Xy (t))>, where
the scalar component X;(¢) represents the number of particles of type j
in the cascade at the time ¢. Let P({, n, m) be the transition probability
from the state n to the state m in the time interval ¢. In particular, a par-
ticle of the type j has the probability P (¢, €;, m) of producing m, particles
of the type 1, m, particles of the type 2, ..., and my particles of the type N
in the time interval . In the language of transition probabilities the con-
ditions (i) and (ii) can be written as follows:

N ny
&b P(t,n,m) = Y [[[[P(t ¢, ki3, 5),

Faal 4=l

where the summation is extended over all systems k(i,]) (1 =1,2,...,

7?"; i=1,2,...,N) of wvectors from BV, satisfying the condition

> 2 k(i, j) = m. Since in every finite time interval only a finite number
J=14=1

of decompositions of particles can happen, we assume that almost all
sample functions of the process X(#) are step functions, i. e. they have
only finitely many jumps in every finite interval and are identically con-
stant in every open interval of continuity points. Every BY_valued ho-
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mogeneous Markov process satisfying (1) whose almost all sample funetions
are step functions will be called a branching process.

There exists now a rather complete theory of branching processes,
which gives a simple mathematical model for the development of physical
cascades and for the growth of populations involving several types of
individuals (see [1], [2], [41, [B], [7], [10], [11] and [12]).

The aim of the present article iy to study the limiting behaviour at
infiniby of sample functions of some branching processes.

A branching process is called indecomposable if each type of particles
can produce any other type. More precisely, a branching process is inde-
composable if and only if for every pair 4, j of types there exists a vector
meBY such that m; >1 and P(t, e;, m) >0 for ¢ >0.

A branching process is called trivial if for every ¢ > 0, for every type
¢ and for every vector m ¢BY such that m = e,, €,, ..., ey Wwe have the
equality P(t, €;, m) = 0.

In the sequel by 0 and co we shall denote the vectors whose all compo-
nents are equal to 0 and oo respectively.

TeBOREM. Let X(t) be an indecomposable branching process. If it is
non-trivial, then for almosi all sample functions the limit tEmX (t) exists and

is equal either to 0 or to oco.
If X(t) i8 & trivial procéss, then for almost all sample functions and all
t > 0 the equality

N N
DX (1) = D) X;(0)
i=1 i=t

holds. Moreover, if N > 2, then

lim X, (1) =

{—o0

hEXi(t) =0 and

[

with probability 1.

The case of one type of particles has been considered in [137] and [14].
It should be noted that the assumption of indecomposability of the process
is essential. We quote an example due to Sevastyanov [11]. Let ¥ ()
denote a branching process of two types of particles. Suppose that
¥ (0) = <0,1> and each particle of the first type at the time t hag the pro-
babilities adt--o0(4t),1—(a+B) 4t+0(4t) and fAt-t+o(dl) (a>f >0)
of producing zero, one, or two particles of the first type respectively in
the interval (¢, ¢+ At). Further, suppose that each particle of the second
type has the probabilities 1—pAi+o(4%) and fAt-+-o(4t) of producing
one particle of the second type, or one particle of the second type and one
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particle of the first type, vespectively. It can be shown that

LmP(t, e,, ke,) = (l—— E) (E)k (k=0,1,...).

t—sr0 aj\¢

Thus for every positive integer k¥ we have the inequality

Pr(N U{Y,(t) =&}) > 0.
8=0 s<i
Before proving the Theorem we shall prove some Lemmas. In the
sequel X (z) will denote an indecomposable branching process. Since almost
all sample functions of X (¢) are step funetions, the limits

Pt
g, m) =1tim M) gy,
{0+ t
Pt —1
gin, m) =1im T
0+ ?

exist and satisty the following conditions:

2)

(3) D
meBY

gn,m) <0, gnr,m)=0 i n#m,

a(n, m) =0

(see [8], p.258-261, [6]). The limits g(n, m) are called intensiies, or

infinstisimal tramsition probabilities, of the process X(t). If g(n,n) <0

and it X(f) = n, there is with probability 1 a sample function discon-

tinuity for some t >t,. The probability that the first jump is to m is

g(n, m)/|g(n, n)| (n # m). We shall often write g;(m) instead of ¢(e;, m).
From (1), by simple computations, we get the formula

N
(4) g, m) = > mg(m—nte).

j=1
Since the process X(f) is indecomposable, for every pair i, j of types
there exists a chain of types i, = 4, 4;,...,% = j, and a system m(1),
m(2), ..., m(r) of vectors from BV such that

(5) mk)y =1 (k=1,2,...,7)
and
(6) Gm(k+1) >0 (b=0,1,...,r—1).
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Let us introduce the generating functions of the transition probabi .
lities and the intensities:

(1) Ft,@) = ) Pl e st of (j=1,2,..,N),
ne»‘BN

(8) 297 (n)atag®... o8N (j=1,2,..., )
’ns%N

where @ = @y, Tpy .., Byy, |#] <1 (¢ =1,2,...,,N). The generating

functions satisfy the fundamental equations

(9) —tFi(t, ®) =f;(F(t, x)

0 g 9 )
(10) G Bt @) = 3 fi(a) o Pty ) (i=1,2,...

at iz &y

and the initial condition F(0, ) = «, where F(t, ) =
= (Fy(t, 2), By, x), ---7FN(t7 :13)) (See [2] and [101)-
It is well-known that the limits

11) LmP(t, ¢, 0) = @
t—so0
exigt. The limiting probability @, is the probability that the cascade will

become extinct when initially one particle of the type j is present. More
precisely,

(G=1,2,...,N)

(12) Q,-:Pr(t]ij(t) =0]X(0) =¢) (j=1,2,...,N).
The vector of the extinction probabilities Q = <@y, Qs ..., Qxd
satisfies the system of equations
(13) @) =0 (j=1,2,...,N)
(see [10], p. 87). )
For every vector m = {fy,My,...,ny> from VY we put |n| = 2,97,,

Let J be the set of all types j for which there exists a vector » in QBN su(h
that [n| > 2 and g¢;(n) > 0.

Levwma 1. If the process is non-trivial and the éxtinction probubilities
satisfy the inequalities @, < 1,Q, < 1,...,Qn < 1, then the set J is non-
empty.

Proof. Contrary to this, let ns suppose that the set J is empty, i. c.
¢;(n) = 0 whenever [n| >2 and j =1,2,..,N. Since the process is
non-trivial, there exists a type j, such that

(14) : 0,(0) > 0.
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Equality (3) can be rewritten in the form

¥
(18) GO+ D gle) =0 (j=1,2,..,N).
k=1

Further, according to (8) and (13), we have the equalities

N
(16) GO+ D aleg =0 (j=1,2,..., ).
k=1

Let M be the' set of all types j for which Q; = min@Q,. First we con-
I<kSN

sider the case when M contains all types 1, 2, ..., N, i. e. when Q= Q, =
=... =Qy. From (15) and (16) we obtain the equality

N N
0 = g;y(0)+ ) 015(e) Q— s (0, (0) + Y 15, (e)) = ;,(0)(1—@y),
k=1 k=1

which contradicts the inequality @, < 1 and formuls (14).

Now let us assume that there exists a type which does not belong
10 M. Since the process in question is indecomposable, we can chooset
in view of (5) and (6), a pair of types j;,j, in such a way tha,
tel, j,¢ M and

(17) ¢, (€,) > 0.
Obviously,

(18) &y < Qe

and, according to (2), (15) and (186), the inequality

N

0 = g5 (0)+ 2 @5, (€)@~ @5, (a1, (0) + 24,1(%))

= 4, (0)(1—Q;,) + 2471 (e) (Q—Qy) > ¢

7—71

holds. But this contradicts (17) and (18). The Lemma is thus proved.

e,,,) (@, — Q;I

Lemma 2. Let o = (ay) (4,5 =1,2,...,p+a;p >1,q0 >0) be
a matriz whose elements satisfy the conditions
(19) ay <0 i i (5,j=1,2,...,p+q),
(20) a>— Day  (i=1,2,...,p)
J&l

and for every index i satisfying the inequality p < i < p+q there ewists

Studia Mathematica XXII. 8
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an index k; such that

(21) 1< < i,

(22) i, < 0, @y = — ay,-
and

(23) a; =10  otherwise.

Then det &7/ > 0.

Proof. We prove our Lemma by induction with respect to ¢. For
¢ = 0 the assertion is well-known (see e. g. [97, p. 108). Now let wus suppose
that ¢ > 1 and that the assertion of the Lemma is true for indices less
than ¢. Let' & = (b;) denote the matrix obtained from A by adding
the last column to the k,.,-th one. Evidently,

(24) by = ay it § F pyg, bt‘k:,H.,j = aikp,l.,l‘i" ®ip.1q
(t=1,2,...,p+9¢)
and
(25) det o7 = detZ.
From. (21), (22), (23) and (24) we get the equalities by gpra =

=Opiapigr bpigy =0 (j=1,2,...,p+¢—1). Consequently, by the
development of & with respeet to the last row we get the formula

(26) det B = 6, 4p4q deb B,

where %, = (b;) (4,j =1,2,...,p4¢—1). Further, it is very easy to
verify that the matrix %, satisfies the conditions of the Lemma. Con-
sequently, by induction assumption det &, > 0. Thus, by (22), (25),
and (26), dets/ >0, which completes the proof.

LeMma 3. If the process is non-trivial and the extinetion probabilities
samfy the imequalities @, < 1,Q,<1,...,0Qy <1, then the Jacobian

8, f £
By N)) is different from 0 at the point Q = (Q,, O, N

01, @y, ..., oy
Proof Introducmg the notation $; = {n:m % 0,n # e;, neBY}
» V), we have, according to (3), (8), and (13), the equations

(t=1,2,.
)+ D an) =

ne;

¢ (0)+ %:(€)Q;+ 2 g (n) Q”Ian QnN

ne;

0)+qm

icm
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Hen'ce we obtain the formula

aile) = (1—Q)7" Y qu(n)

nedy

"1 Qn., nN 1)

Setting this expression into the formula

i)
0x;

Ji{ee) 'w=Q= q:(€;) 5 nq; (M) Q1 Q52 .. QT QYT QL. .. QR

neS‘L
we get the equality
0
6-’/07;

= (1—)~

i), g

P () (@i QR —1—mQl1Qi QTN QRO

ney;

Furthermore, for 4 s j the equality

m Voo = D a:m)m @G5 QI QP QR . QW
nedy’
holds. Hence, by simple computations, we obtain the expansion
¢
(@7) (_1)N _(_._f11f27 s Iwv)
0(%y,y Loy «vvy Ty) le=0Q
~
=[] a—@
k=1 n(1)ed; n{2)ela
. 0:(n(1)) g:(n(2))... qn(n(N)) det (aﬁ (n@),n2),..., n(N))) )
n(N)eIN
where
(28)  au(n(1), n(2),..., n(N)) = 1—@iPr@pO2. .. QY
—n (@)@ Q... QU1 Q-1 QRAit | @RI (1—;)
(6=1,2,..., N),
(29)  ay(n(L), n2),..., n(N)
= —n(iQLnQI%. . QY QRO L QRN (1—q)

(¢ #j54,§=1,2,...,N),
We shall first prove that
det (ay; (n (1),

)531’ n(2

(30) n(z),...,n(N))) >0

for all systems m(1 YeBgy .oy N(N)eQSy. To prove this it is

1
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sufficient to show that for all such systems the inequalities

an(1),n(2), ..., n(I) = | ay(n(1), n(2), ..., n(N))‘ (t=1,2,..., §)

J#L
hold (see e. g. [9], p. 108). These inequalities, according to (28) and (29),
are equivalent to the following ones

1—-QMingrdz  QriN
N .
> (i@t Qp. . Qr-1QpO Q... QAN (1—))
j=1

(t=1,2,...,N).
Consequently, to prove (30) it suffices, for every neJ3™ , o prove
the equality

N
(B1) 1-@NQP... Q¥ = Y m@Qi... QTN Q.. QA (1—)).

st

" In order to establish the above inequality we multiply by Q1. .. Qi
the obvious inequality

wi—l

1-Qf = (1—Q) Y Qf = m@i (1—@,) > nQp= Qi1 ... QI (1—@y)
k=0

and sum over j. This completes the proof of (30).

By Lemma 1 the set J of types is non-empty. Since the process is
idecomposable, all types, say 8y, 8,,...,8,, which do mnot belong to J
can be ordered in such a way that gs;(€r) >0 (0 =1,2,...,¢), where
kied w {81, 83y ..., 8;_,} (compare (5) and (6)). Without loss of generality
we may suppose that J ={1,2,...,9}(p >1) and ¢ (e) >0
(t=p+1,p+2, ..., N), where

(32) k<i (=p+1,p+2,...,N).

By the definition oﬁr the set J for every type ¢ (L <i < P) wo can
chOf)se a vector :m('b)e% » With [m ()| > 2, such that gi(m(9)) >0. Setting
m(i) = e for i =p41,p+2,..., N we have the inequality

(33) am@) >0 (i=1,2,.., ).

Denoting briefly by a; the matrix elements g (
. i (m(1),m(2), ..., m (N)
defmefl by (28) and (29), we note that, aceording to (’2), (27’), (3;0), a.nd).
(83), in order to prove our Lemmy it suffices to show that det(ay) > 0.

icm
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Starting from (28) and (29) we deduce the relations
(4,j=1,2,..., N),
(i =p+1,p+2,..,N),
(i=p+1,p+2,...,N)

ay <O If 4 #j
Ay = Qr,—1 < 0

Gy = 1—Qs, = — gy
and

Gy =0 j#£i,k  (i=p+1,p+2,..., N).

To prove inequality (20) it suffices, by virtue of (28) and (29), to
show that for n<BY, with |n| > 2, the iequality

v _
(34)  1—QPQP... Q3 > D mQlQh ... QUTQNTQNE ... QW (1-Q)
=1

holds. Without loss of generality we may assume that either n, > 2 or
7, =1 and n, = 1. In the first case we have the inequality
n3—1

17 = (1—-9,) Z Qf > QP! (1—@.) = n QIO .. W (1—@,)
=0

and in the second one -

101 =1—0Q; > (1-01)Qs = 70171032 ... @ (1—Qy).

Further, applying the same arguments as in the proof of (31), we
finally get (34) and, consequently, (20). Thus, we have proved that the
matrix (a;;) fulfils the conditions of Lemma 2, which completes the proof.

LewvMA 4. If the process is non-trivial and the extinction probabilities
satisfy the inequalities @, <1,@Q, < 1,...,Qy <1, then for all vectors
n, meBY (m == 0) the transition probabilities P(t, n,m) are integrable
on the right holf-line.

Proof. By formula (1) it suffices to prove our Lemma in the case
n=e (1=1,2,...,N) We prove this assertion by induction with
respect to |m|. First let us suppose that |mj=1,i.e.m =g¢;
(k =1,2,...;N). By differentiating (9) with respect to z, and putting
& = 0 we obtain the equality : :

N
d .
(35) = Ple,e) = D WPl e,a) (i=1,2,..,N),
=1

0
where ¢;(t) is the derivative Fv fi(x) at the point
i

(Pt e, 0), P, €5, 0), ..., P(t, ey, 0)>. Obviously, by (11),
v__ a(fl;[z-a_-“’fl\’)

" t (e (1)) =
t}_in;de (o33 (1)) 0(@yy Tay « ooy Ty) fx=g,
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and, consequently, by Lemma 3, for sufficiently large ¢, |det(e; (t))[ is
greater than a positive constant. Thus, in view of (35), for sufficiently
large %, the transition probabilities P(f, e;, ¢;) are linear combinations

d
with bounded coefficients of derivatives 7 P(t, e, e;). Hence it follows

that P(t, e;, ;) are integrable on the right half-line.
Now let us suppose that m| > 2 and. that the assertion of the Lemma
8}m|

is true for all vectors k, with |k| < |m|. By differentiating F)

< DN
of (9) and putting x = 0 we get the equality

N

Zcﬁ(t)P(t» eym)-+u{t) (1=1,2,...,N),

=1

d
%P(t e, m) =

where the functions w;(f) are linear combinations with bounded
coefficients of the transition probabilities P(f, e, k) (|k| < |mj;
j=1,2,..., N). By induction assumption the functions u;(t) ave integrable
on the right half-line. Applying now the same arguments as above in the
case [m| = 1, we obtain the integrability of P (¢, e;, m) ({ =1, 2, ..., N).
The Lemma is thus proved.

By a theorem of Lévy ([8], p. 362) the limits im P (¢, n, m) (n, m <B")

t-r00

exist. Thus, from Lemma 4 we get the following
COROLLARY. If the process satisfies the conditions of Lemma 4, then
EimP(t, n, m) = 0, whenever m 3 0.

Let us introduce the notation

(36) ity )

Zn-? 561.7

Ny =k
where the summation is over all vectors neBY, with n, = &.

LEMMA 5. If the process is non-trivial and the probabilities of extination
satisfy the mequalmes H<1,0:<1,..,Qy <1, then the fumctions
Mi(t, kys8) (1=1,2,...,N; s—2 3, N;k=0,1,...) are ntegrable
on the right ha,lf-lalne.

Proof. From (7) and (36) we obtain the formula
07»-(.1

37 A
(37) Mi(t, &, 8) = AR

Ti(t, a) )

x=eg

We ghall first prove by induction with respect to % that all functions
Mty k,8) (1,8 =1,2, ., V) are bounded on the right half-line. Setting

icm
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x = e, into (10) we get the equation

o

(38) %ZP(t, e, mes) = fy () Milt, 0, 8)+

m=0

+Zf7(es) yPt €;, €+ me;).

78

From the Kolmogorov equations for transition probabilities in Mar-

kov processes
d [~ o
—ZP(t, e, me;) = Zqi(n) P(t, n, me,)
dt m=0 neBN m=0

and from (2) and (3) we get the inequality

ZP(t emen)| < 3 las(mw)] = 2lailen)]:

m=0 ' ned Y

THence and from (38) it follows that all functions M;(t,0,5)
(4,8 =1,2,..., N) are bounded.

Now let us suppose that % > 1, and for all integers 7 (0 <7 < k)
the functions M;(t,r,s) (i,s=1,2,..., N) are bounded. Differentiating
(10) % times with respect to @, and putting @ = e, we have, accordmg
to (37),

[

d
Et— P(t, €;, kel-',L' mes)

M=0

= fo(es) M; (2, k, s)+ (1),

where v;(¢) are linear combinations of functions M;(t,r,s) (0 <r < k)

and probabilities ZP(t,q,e,+Zel+meg) (0 <1< k). Now the proof

can be made sumlarly to that in the case % = 0. The boundedness of
M(t, &k, s) is thus proved.
Since for s > 2

ZP(t e;, me;) < P(t, e, 0)+ ymP(t e;, mey) .
'm._l
SP(t, €;, 0)+1ui(t7 O)S)a

m=0

we can change the order of summation and, passing to the Limit, we have

©0

lim » P(t, e;, mes) = LmP (i, e;, mes).
im 3, P, ey me) = 3l
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Hence, by (11) and by the Corollary to Lemma 4, we obtain the equality
lim ' P(i,e,me)=Q (i=1,2,..,N;8=2,3,..., N),
200 10 :

which, by virtue of (7) can be rewritten in the following form:

(39)  lLimFy(t,e) =@ (i=1,2,...,N;8=2,3,...,N).
a0

‘We proceed now to the proof of the Lemma by induetion with regpect
to k. Differentiating (9) with respect to @, (s > %) and putting « = e, weo
have

N

d .

(0) S Mi(,0,6) = D GBI, 0,8) (i=1,2,..., N),
=1 .

17

‘where d;(?) is the derivative P Ji(@) at the point <F (¢, &), Fy(t, €), ...,
S Uiy

Fy(t, €)>. Obviously, by (39),

— 0(f1>f27 ---3fN)
0@y Bay .-y By) jo-0

and, consequently, by Lemma 3, for sufficiently large ¢, |det (@5 ()] is
greater than a positive constant. Thus, in view of (40), for sufficiently
large ¢, the function M;(¢, 0,s) is a linear combination with bounded
coefficients of derivatives of bounded functions M, (, 0,8)(1=1,2,...,N)
-which implies the integrability of M;(z,0,s) (6=1,2,...,N;5=2,3,...,N)
on the right half-line. :

Now let us suppose that & > 1 and that the assertion of the Lemma i§
true for all indices less than k. By differentiating (9) with respect to Xy,
and k times with respect to x,, and putting & = e, (s > 2) we have the
equality

00

N

da
G Wil k) = AWM, k) buw(t)  (i=1,2, ...

F=1 ’

s )

where w;(f) are linear combinations with bounded coefficients of My, r, 8)
(0 <.r < k). Applying the same arguments ag in the case k = 0, we get
the integrability of M;(t,%,s) (i = L,2,...,N;8=2,3,..., N), which
completes the proof of the Lemma.

Leyma 6. Por every integer & and every vector neBY we have the equality

Pr( L) {Za(w) = B1X(0) = n) = Pr(X,(T) = 4 X(0) = n)+

medp vy ¢

T
2 DB 0 X (T 0) £ BIX(0) = ) glom, 1) P, m, min,

icm
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where
(41) Ay = {m:my =k, m <B}.

Proof. Suppose that ¢ = u; < u, < ... < 4, = T. From the equa-
lity
-1

Ut =B =L@ =8 v U 0 ) #8 ~ X =B

i=1 i<i<e
-1

=(TM=Bo U UU N X)) £8 o X)) =rn

medp rifpi=1i4l<i<e |
~ X () = m}

we get the formula

Pr (_q {Xy (w) =B} X(0) = m) = Pr(X,(T) = k| X(0) = n)+

g—1
+ 3 3 ) (Ely—w) # BIXO) =)

melpr¥pi=1
P (U1 — sy M, )P (2, My m).
Ii can be shown that, when max (u;—u;_,)—>0, the last sum

1<i<q
approaches the series of integrals

T
; - X(0) = , V)P (u, n, m)du.
_22]P1ng_u{xl<f v) # B X(0) = r)g(m, )P (u, n, m)du

el eyt

Moreover, the left-hand side of the last equality approaches the
probability Pr (t UT{Xl(u) # k}| X(0) = m). We note that this reasoning
is justified by fﬁf fact that almost all sample functions of the process
are step functions.

LemmA 7. For all integers k, j (k=0,1,...;§=2,3,...,N) and
for all vectors neBY we have the evaluation .

N
2 mP(t, n, m) < ZZ’””:‘.M't(tv $,0)
melly 4=1 8=0

where the set 2y, and the functions M;(3, s,j) are defined by (41) and (36)
respectively.

Proof. Let m(i,r) (r =1,2,...,n5%t=1,2,...,N) be a system
of vectors from BV satistying the condition

N omg
Z'Zm(i,w) =m,

1=17=1
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" From (1), (36), and from the evaluation

N ny N ng. N g
m,” Pt e, m(i, 7)_(224%7,7 )n”Pfe,,m;ﬂ)
=1 = i=1 =1 e R
N ng ,
< 22 m(i, 7y P(t, e, m(i,r)
im=] =1
we obtain the inequality
N g
: Z m;P (¢, n, m) = 2 Z mj”n P((t, e;, m(3,7))
melj; mallp m(,r) i=1 r=1
N ng N k
<Y yPe el Zm Mi(t, s, ),
i=1 =1 1w A;... v Az 1=1 §=0

which completes the proof.

Proof of the theorem. First let us assume that the process X(t)
is non-trivial. Put I = {i: Q; = 1}. We shall now show that either I =
{1,2,..., N} or I is an empty set. Contrary to this let us suppose that
0#1+#{1,2,..., N} Since the process is indecomposable, we can choose
apair 4, j of types such that ieI, ¢ I, and according to (5) and (6), g;(m) >0
for a vector m «BY, with m, > 1. Further, from (3), (8) and (13), we
get the inequality

0= ) amere:...

nedv

W< ) an) =0,

ne8v

which gives the contradiction. Thus, we have either @, = @, = ... =Qy =1
or @;<1,Q.<1,..,0y <1 In the first case from (12) we deduce

that for almost all sample functions of the process X (¢) the equality
Hm X (f) = 0 holds.
100

Now let us consider the second case: @, <1, @, <1, ..., Qy< L

Put

Hy(t, n) = 2 Zq(m,r)P(t,n,m)

mey vy

(k=0,1,..;neB"),

where the set 2, is defined by (41). From (2),

A (3), (4), and Lemma 7, we
-obtain the inequality
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Hy(t,n) =k Y D' gy(r—m+-e)P(t,n, m)+

me g v}

+2 2"”’7% (r—m-+e)P(t,n, m).

j=2 me?[k rdlg

< klg(ey)] 2

medly

m;P(t,n, m)

N
(tym,m)+ > gi(e)| D)
j=2

me¥;,
N

kg, (€)[P(t, n, key)+Flgi(e)] D) D mP(t, m, m)+

=2 me¥y,

N
+ 2 lg; (e D) mP(t, m, m)

i= medy,

-+ 2 l; (€5) + g (ey)] 2 Zn.b

=1 §=0

< klgi(e)| P (i, n, ke,)+

4(t5 8,4).

Hence, by Lemmas 4 and 5, the functions Hy(¢,n) (b =
neBY) are integrable on the right half-line.
From. Lemma 6 we obtain the inequality

Pr( U {X,(u

tuT

0,1,...;

(42) = K} X(0) = n)

< Pr(X,(T) = k[ X(0) = n}—;—fﬂk(u., nydu  (k=0,1,...;0eBY).
i

Further, from Lemma 7, we get the evaluation

= D P(T,n,m)

me2ly

Pr(X,(T) = k| X(0)

N
P(T,n, ke)+ D D) mP(T,n, m)
7=2 mey,
N N &k

P(T,n, k61)+222'mM (t, S!J

=2 i=1 8=0

Hence, according to Lemma 5, Corollary to Lemma 4, and formula
(12),

LmPr(X,(T) = k| X(0) =n) =0 i# k=1,
Tes00
limPr (X, (T) = 0| X(0) =n) < Q1Q7>... Q%
T—so0
= Pr(imX(t) = 0| X(0) = n).

00
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Comparing this result with (42), we obtain for any n «BY the formulae
Pr(NU{X:(t) =1} X(©0) =n)=0 if k>1,

8=0 8t
Pr(lim X, (¢) = 0|X(0) =) < Pr{tlimX(t) = 0|X(0) = n).
m —+00

TPaking into account the inclusions

©<ImX,() <o CU A UE0) =5,
oo r=1 st

8=0

(imX(t) = 0} C {lim X, (%) = 0},
{300 0o

we infer, in view of the last formulae, that

Pr(0 < BmX,(f) < oo) = 0, Pr({imX,(t) = 0}\_{”1_i>mX(t) = 0}) = 0.
fae oo 00

By symmetry of our assumptions we obfain the same assertion for
any other type j, i.e.

Pr(0 < ImX;(f) < oo) = 0, Pr({limX,(t) = ON\{lim X () = 0}) = 0
, faresy = el

(G =1,2,..., N).
Hence Pr(imX(f) =0 or oo) =1, which completes the proof o
t>c0

the Theorem for non-trivial processes.

Now let us suppose that the process X(t) is trivial. Then from (4)
the equality ¢(n,m) =0 follows, whenever |n| % [m|. Solving the
Kolmogorov equations
a .

— Pr(IX()] = Inf| X(0) = n) = | .2 g(n,m)Pr (X (1) = |n||X(0) = m)
m|=|n| ’

under the initial conditions Pr(|X(0)| = [n||X(0) = n) =1, we obtain
Pr(|X@)| = |n||X(0) = n} =1 (t > 0; neBY). Hence, we have |X(1)| =
= |X(0)| (# = 0) with probability 1. '

‘ 'Fina.]ly, let us assume that N > 2. We note that P(t, e;, ¢;) >0
(3,§ =1,2,..., N,t > 0) because of the indecomposability of the process
X(#). Hence and from (1), by simple reasoning, we get the inequality
(43) Pt,m,m) >0 (t >0;|n| = |m)).

.G'm}sider ﬂ.le' sample functions of the process in question satisfying
the initial condition X(0) = n. They form a homogeneous Markov proocess
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with a finite number of states m (jm| = [n|). It is well-known that the
condition (43) implies the relation

Pr( Fj} X@):t =5 = {m:m| = nf}| X(0) =n) =1

(see [8], [13]). Hence in particular it follows that if X (0) = », then
HmX;(¢) = 0 and MmX;(f) = n| (j =1,2,..., N) with probability 1.
oo =00

{0
In other words, for almost all sample functions we have the relations
lm X;(t) = 0, imX,(t) = |X(0)}] (j =1,2,..., N). The Theorem is thus
00 00
proved.
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