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PROBABILITY, CREDIBILITY, POSSIBILITY *

' The subject of the present work is associated with the name of Tho-
mas Bayes(t). It is an essential association because Bayes not only
discovered a way of calculating the probabilities of causes whose conse-
quences are being observed but also was the first to have doubts rega.rd-
ing his own d1scovery :

1. Let us recall Bayes’ classical formula. Let 4,B,0,...,N be
a series (set) of occurrences excluding each other. We call them the cau-
ses of a phenomenon Z which we have observed. We are coneerned with
the posterior probability Pz(A) that it was actually A (and not
B, 0, ... or N) that had preceded Z. Let us assume that the prior
probabilities P(A), P(B),..., P(N), i.e. the probabilities of each of
the occurrences 4, B, ..., N, had been known before the consequence Z
was observed, and that P,(Z),Pg(Z),...,Py(Z), the so-called condi-
tional probabilities, had also been known beforehand. Here P ,(Z) denotes
the probability of the fact that Z follows A, Pg(Z) — the probability
that Z follows B, etc. In Bayes' postulate P,4(Z) is expressed by the
well-known prior and conditional probabilities:

P(A)P4(2)

(1) P24 = 55 PA(Z) +P(B)Pp(2)+...+P(N )PN(Z

* Niniejsza praca byla ogloszona w naszym piémie po polsku w tomie 1 (1954),
str. 169-172. Obecnie oglaszamy ja po angwlsku, aby jej tre&é uczynié dms’o@p111eya;zad
obecym eczytelnikom. Redakcja.

HJanxan pabora Omma -ony0aMKoBaHA B HaHieM XYpHale Ha HOJIBCKOM sg3BIKe
B Tome 1 (1954), crp. 159-172. B macrosilee BpeMs myGamxyeM 'ed Ha aHrIMHACKOM
ABHKe TAA TOro, YTOGH conep:kanme pabors cAenarh FOCTYOHHM 9HMTATENAM He BHA-
KOMBIM ¢ IOIBCKOM HBHKOM. Pedaryus.

This paper appeared in our periodical in Polish in vol. 1 (1954), pp- 159-172.
We are now publishing it in English in order to make it easier for foreign readers
to get acquainted with its contents. Hdilors.

(*) T. Bayes, An essay towards solving a problsm in the doctrine ofi chances,
Philosophical Transactions 53 (1763), p. 370.
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Formally formula (1)'is correct, but it ig rarely applicable to practi-
cal problems, since prior probabilities are seldom known. The legal estab-
lishment of paternity is an interesting exception. Owing to Hirszfeld’s
investigations of more than 2000 cases, the prior probability that the
man sued for alimony is really the father has been found to bhe about
709/, (in pre-war Poland)(2). Here, prior probability refers to the moment
after instituting serological investigations but before reading their result
Z. When the result is known, we can compute from formula (1) the poster-
ler probability P;(A) that the man sued is the father of the child in whose
name he has been summoned. It is precisely this postemor probability
that interests the court.

However, here we are not concerned with the exceptions, but with
everyday - situations in which we do not know the prior probabilities.
Sueh situations arise in practically any technical or scientific investiga-
tions, so that the question of retaining formula (1) or replacing it by
another one is a fundamental problem. of scientific induction and statis-
tical inference. N

Such typical questions as: how many TB cases there are in a loeality
where of 10 random persons examined 2 were found afflicted ; or how many
‘steel rods in a warehouse are suitable for building if of 10 checked 2 were
too weak — differ only superficially; their mathematical substance is
identical and may be properly classified among the' problems dealt with
in the present paper.

In such .cases Bayes employed a postulate which we shall call by his
name and denote by #. Namely, he assumes that the distribution of prior
probabilities is wniform, i.e. that the numbers P(4),P(B),..., P(N)
are equal. In the instance of the paternity claim, there are only 2 possi-
bilities, A and B (the defendant either is or is not the father). The Bayes
postulate would thus state that P(4) = P(B) = 0.5.

* Somie anthropologists have indeed been using formula (1), assuming
P(A) = 0.5 but they have not realized the fact that they are employing
the Bayes rule, and they are even less likely to have realised the essential
nature of the problem. '

The Bayes postulate applied to the paternity question is downright
false, because P(4) = 0.70, as. we have mentioned before.

In the steel rod case the Bayes postulate would presume the occur-.
rence with equal frequency of sets of rods of quality 1°/,,2%,,3%,, ...,
100°/,. Such a hypothesis iy undefendable either theoretically or exper-
imentally.

L (2 H. Steinhaus, On establishing paternity (in- Polish). Zastosowania Mate-
matyki 1 (1953), pp. 67-82.
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Let us concede that the Bayes postulate would not be opposed if it
were only applied to cases where uniformity is empirically or theoreti-
cally justified, or where that postulate can be used as & working hypothe-
8is until the moment, when the actual prior distribution is found by
experience. '

Instead, this postulate is usually accepted as a dogma — it is most
needed in the very cases where there is no hope at all that it will prove
either in agreement with or in opposition to reality.

Let us take a new drug as an example. What would be the meaning
of agsuming a uniform distribution of the drug’s efficacy 2 It would mean
that drugs of 10°/, or 15°/, efficacy are produced in laboratories. just
a8 frequently as those of 55°/, or 60°/, efficacy. Such a hypothesis would
never be either disproved or verified, because there are too few drugs
(statistically) for a given disease; what is more, each belongs to a differ-
ent scientific age, which makes it artificial and unreasonable to deduce
the efficacy of modern synthetic drugs, based on entirely new theories,
from the quality of the old serum medicines.

2. The dogma of uniformity, i.e. the Bayes postulate, has been
vigorously opposed by thé English §chool (R. A. Fisher, K. Pearson).
R. A, Fisher the renovator of statistics, introduced the idea of fiducial
Probability and the Polish scientist Jerzy Splawa-Neyman, who propa-
gated new ideas in statistics in the USA, introduced the concept of “con-
fidence interval” (which is & literal translation of the Polish term: “prze-
dzial ufnosei”). Even before the second world war it was generally accept-
ed that only these new concepts, free from the Bayes postulate, are correct.
Hence W. Feller, a celebrity in the field of the ealculus of probability,
tompares the adherents of the Bayes rule and formula (“who are using
it for the reason of its logical admissibility and its agreement with our
way of thinking”) to “Plato, who used the same type of arguments
to prove the existence of Atlantis...”. And he concludes: “...the con-
temporary theory of statistical tests and estimations is less intuitive but
Inore realistic. One can not only defend it but also apply” it (3). It is
characteristic that in Feller’s text-book the Bayes rule is printed in bre-
vier type.

Obviously the dilemma of “pro or contra Bayes” is not a negligi-
ble one; it comprises a wide field of applications from geodesy to mathe-
matics. Do not let us forget that both the question of outlining a geode-
tic area for a future city and the question of giving permission to use
Deniciline of Polish manufacture require drawing conclusions concern-

(*) W. Feller, An Introduction to Probability Theory and 4ts Applications, New
York 1950, p. 85. ‘
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ing real quantities from data burdened with errors (in the first instance
such quantities are the true coordinates of the orientation points, in the
second — the strength of the peniciline). What makes the chaos in this
. field still greater is the fact that scientists, doctors and engineers were
forbidden to use the Bayes rule before they had time to learn how to
apply it. Many of them are under the impression that it is just an argument
about mathematical terms without any practical significance. Wald’s
sequential analysis in the field of statistical quality control disregards
the Bayes rule entirely, and the advantages of his method have been
attributed precisely to this rejection and consequently used as an argu-
ment against the Bayes rule(?).

In effect practically all serious mathematicians have left Bayes’
camp (5); the only ones that have remained are those who have not under-
stood the objections of the new school. Let us for short call this new
doctrine “the theory of - credibility”. Only Norbert Wiener(®) has
“had the temerity to call it “a terminological trick”. Tndependently,
J. Oderfeld has called attention to the similarity of the rules of proce-
dure in the statistical quality control arising from the Bayes rule and
postulate to those of the new theory(?). This has induced me to study
the prineiples of the statistical quality control; I have found that none
of the existing methods is definitely superior to the others -~ they only
differ in a more or less effective masking of arbitrary .hypotheses(?).
In the present publication I wish to discuss the relation between the Bayes
rule and postulate and the corresponding methods of the new theory.

Here a difficulty arises from the fact that text-books use various
terms, such as: “likelihood”,. “verisimilitude”, “fiducial probability”
“confidence interval” ete., none of which is precisely the right one. The-
refore we shall have to dispense with the exactness of translation or the
agreement with the accepted terminology and ourselves define the con-
cept of credibility, which quantity in Fisher’s theory replaces the prob-
ability of causes and constitutes the fundamental idea of the new doectrine.
We shall explain it with the aid of an example.

() H. Steinhaus, Quality control by sampling, Colloquium Mathematicum
2 (19561), pp. 98-108. See §7 on pp. 105-107.

(®) One of those who remained in it is the well-known astronomer H. Jeffreys,
author of the Theory of Probability, Oxford 1948.

(*) An expression of Wiener, cited in H. Steinhaus’s Quality conirol by sampling,
Colloquium Mathematicum 2 (1951), p. 104. It is taken from Wiener's book Cyber-
netics, New York 1948, pp. 109-110.

() J. Oderfeld, On the dual aspect of sampling plans, Colloquium Mathema-
ticum 2 (1951), pp. 89-97.

(®) H. Steinhaus, The principles of statistical quality comtrol (in Polish), Za-
stosowania Matematyki 1 (1953), pp. 4-27. .
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Let us assume that a certain typical reaction of a guinea-pig depends
on an unknown content x of a certain substance in 1 em? of blood, taken
from the veins of a patient, and injected to the guinea-pig. Let us further
assume that the expected reaction does occur and that it rises with the
increase of x. If the reaction occurs in m guinea-pigs out of a total of »
guinea-pigs while it does not oceur in »—m guinea-pigs, then ex defi-
nitione the probability that the content a of this substance in the patient’s
blood will in n experiments yield the above reaction more than m times
is what we shall call the eredibility of the hypothesis that for the patient
in question # < «. This is the essence extracted from various texts of the
ruling school of thought — and not easily extracted at that.

3. Let us discuss first the concept of credibility ‘on another example
where observation may give any real quantities (and not only a finite
number of them as in the above experiment). Sueh an example is the
position of a material point on a marked material straight line. The true
position of the point corresponds to mark » on the scale, but « is unknown
and the observation gives the result £; £—w is the error of observation.
We know the probabilities of errors, namely the function p(», &), which
enables us to calculate the probability that position x gives observation
& belonging to the interval (&, &-A4¢&>; this probability is

p(@, So)A§+0(A§)()

We could make this exa.mple more striking by & specialization of
function p(z, £), assuming for instance

1
(2) p(w7 E) = e“($“5)2/2a2’

0V2w‘

which corresponds to the normal distribution of errors. This specia.ﬁza—
tion is unnecessary; for our aims it is sufficient to assume that density
P is a non-negative and continuous function of the error &—g,

(3) 2o, &) Ff(E—a),
and that

(4) [ pl@, pag =1
for every «. -

Assumption (4) is a mathematical equivalent of the certainty that
for every quantity « we shall obtain some observation £, which is obvious.

—

(*) The symbol o{x) denotes a ma,gmtude which, when dxwded by =, tends
to zero together with =,
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Notice that density (2), corresponding to the normal distribution
of error (the mean error being independent of the x measured) satisfies
the above assumptions. They are also satisfied by the density correspond-
ing to observation E, which is the mean of %k independent observations
§ (¢=1,2,..., k) if to each of them corresponds one and the same p
sa,tlsfymg the a.ssumptmn

A typical problem now is this: if the observation of # has glven E =b,
what is the probability that # << @ ? We shall denote this probability by
P(r < a; &£ =b). In order to apply the Bayes rule (1) one ought to know
~ the prior probability F(a) that # < a, i.e. the probability of this inequali-
ty at the time before the observation. F(a) may be called the prior dis-
tribution of the random variable .

Those opposing the Bayes rule say that:

1. We do not know F(a) and we are not allowed to accept as F some
arbitrary function, such as the uniform distribution which, furthermore,
does not exist when the random variable « is not bounded;

2. The Bayes postulate of uniform distribution leads to a contra-
diction;

3. Since x is not a random variable, formula (1) has no equivalent
in the law of great numbers to give it a statistical meaning;

- 4. The Bayes formula is applicable only when the conditional prob-
abilities P4(Z),Pg.(Z), ..., are known, which requires — according to
the classical definition of conditional probability — the knowledge of
probabilities P(AZ), P(BZ) ete., i.e. the knowledge of the joint distri-
bution of the pair of random variables (X, Y), of which X runs over
all the causes, such as 4, B, 0, ... ete., and Y runs over all the effects
(such as Z,Z’,Z"). In that case, however, formula (1) is not necessary,
because the required left-hand side (Pyz (4)) is simply the quotient
P(AZ)| Y P(XZ); |

b. The Bayes formula is erroneouns because if the effect Z takes place
the cause A either has or has not occurred; therefore its posterior proba-
bility Pz(A) can only be 1 or 0, contra.ry to formula (1);

6. The Bayes formula i ig unnecessary, because there are other methods,
universal and free from drawbacks.

One of the other methods mentioned in point 6 is based on the con-
cept of credibility. It gives no answer at all to the question how much is
P(x <a; £=0) but defines instead the credibility C(x < a;.£ =0b)
of # < a if & = b by the relation

(5) Cw<a; E=0b)=P(E> b;o=a).
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The calculation of the right side does not require the knowledge of the
function F(a), because

(6) P& >b; 2 =a) = f p(a,t)dt
b

which follows immediately from the definition of the function p. The
new method thus defines uniquely a certain statistical parameter W
a8 the function of @ and b, as has been seen in (5) and (6)

(7) Clo<a;é=0b)= fpat

We have called this parameter the credibility of # << @ for & = b, This
is not the probability of this fact at all but the probability of another
fact (which has not taken place) under another condition, which is not
said to have been satisfied. It is therefore a conventional parameter
measuring the confidence degree which may be accorded to the hypo-
thesis that v < a if £ =5 has been observed.

This convention can aspire to usefulness only if the function f(a, b)
= P(& >b; & = a) is for each b a non-decreasing function of the varia-
ble a; we want the credibility of the consequence to be at least the
same as the credibility of the reason; because for a, <@, the inequality
@ < a, implies ® < a,, we want to have W(x < ay; £ =b) > W(x < a3
& = b), and this together with (5) compels us to accept the above mentio-
ned condition concerning f(a, b); this condition is not at all an automatic
consequence of P being a probablhty

Now let us compute P(» < a; ¢ = b) according to the classical Bayes
rule with postulate &, i.e. with the uniform prior distribution of the ran-
dom variable #. In view of the infinity of the interval, we shall use approx-
imation; we shall first -assume uniformity in the interval |o| < T and
then in the Bayes formula we ghall pass from 7 to oo. Therefore let the
prior probability that » is in the interval {(m,, 2o+ dz) be g(x)dz and let

12T for |o| <T

® o 9(@) = 0 for [ml>.’i’.

The Bayes rule gives

a

[ 9@pen@-d0 [ g@p@, b
(9) P < a; E=b) =2 : = .
) 9@p@,)dbdo [ g@p(@,b)do
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The limit of the fraction (9) for 7 — oo is — for (8)

[ p(t, byt

[>+] ?

[ p(t, b)at

hence by (4) the expressioh

fp(t b)dt.

Let us denote by PT the left-hand side of the formula (9) and by Pg
its limiting value limit for 7 - oo and we shall obtain according to the
preceding sentence

P(w<a,5—~b fp(t b)dt,
from which, by substituting » = ¢+ b—¢ and owing to (3), we obtain
(10) Pyl <a; £ =0) = f pla, u)du.
b

Comparing relations (7) and (10) we obtaiﬁ o
(11) C@<a; E=b) =Pglx<a; & =0).

Let us call the probability Pg on the right side of (11) “a possibility”.
This new term is to remind us that it is a probability calculated not
without hypotheses but on the basis of the Bayes postulate #. Instead
of the symbol Pg let us use the letter M and we shall have

(12) Mx<a; E=b)=0m<a; £=0).

Hence in the present instance the possibility of ¢ < a for & = b equals
the oredibility of x < a for £ = b. We have defined a new concept, the
possibility M(x < a; £ =10) by

(13) M@z <a; §=b)E Pg(w <a; & =b).

In our theory this is an equivalent of credibility, which was deter-
mined by relation (5). Possibility is-only a term, but its introduction
gives an equal footing to both theories: the classical Bayes theory and the
new theory of his opponents. At present the situation is as follows: We
give up the calculation of P{x < @; & = b) because the opponents of
the clagsical theory are right when they say that without the knowledge
of the prior distribution the probability P is impossible to calculate and
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we do not want to use the arbitrary postulate #. But the expression
“possibility” leads us out of the dilemma because we now call P (calcu-
lated as if the postulate & were satisfied) the possibility M(z < a; & = b)
of the fact that 2 < a for £ = b. '

What course do the opponents of the Bayes rule and the creators
of “fiducial probability” take? They calculate a different probability
from the one they were asked about and they ca.ll it the credibility W (z <
<a; £E=0) of ® <a when & =b.

Relation (12) M = O therefore breaks the myth about freeing the
caleulus of probability from difficulties by the introduction of the cred-
ibility concept and vindicates the Bayes rule and postulate, because it
shows (even if, for the time being, only as an example) that credibility
is simply a probability calculated by the use of this rule and postulate,
all scruples being dispensed with by giving this quantity a special name.
Thus the first accusation mentioned in § 3 is disposed of. ‘

The question arises why we introduce a new name “posmblhty”
if the relation M = C proves that “credibility” is sufficient. We do that
because, though in the example discussed here this.relation does exist,
there are several instances where it does not: there are problems, where
the conditional probabilities do not satisfy assumptions (3) and (4).
In those cases, however, one could just as well apply the method of possi-
bility as that of credibility. The parallelism of both methods is obvious
and in a certain particularly large class of problems we have shown that
they are identical. In that.class the verisimilitude method will still be use-
ful in instances where it is easier to calculate by formula (5) than by the
Bayes formula, which is often the case. E

Just as we have defined the possibility that # < a when & = b,
we may, by analogy, define the possibility tha.t a; <2< a, when & = b
namely

(14) M(a, <w<ay £ =b% Pﬂ(% <ty §=0) (a5 <ay).
Here the symbols are self-explanatory. The left side expresses the

Posgibility of a double inequality under the condition & = b; the right

hand side expresses the probability of the same inequa,lity under the

same condition, calculated from the rule and postulate Q%’ The classical
Probability calculation gives dlreetly

(18) Pg(ay, <@ < a; & =0) =P(x < ay; £ = b)—Pgy(x < a,; £ = b),
and (13), (14) and (15) imply

(16) Mt <& <ty § =) = M(0 < ag; £ = b)—M(a < ay; § —b).
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Property (16) may be taken as a definition of the left hand side instead
of (14). This suggests an analogous definition in the theory of credibility:

(17) Wt <o <ay; E=0)E W(w <ay; & =0b)—W(@ < ay; £ =b)

for a, < a;. This useful generalization of the credibility coneept allows
us to define, for instance, the credibility of the fact that with a certain
result for a sample the quality of the lot lies in the interval (a,, a,); without
the statement that the credibility is the probability (though of another
fact) this generalization would not suggest itself to us.

Let us pass now to a different example, compriging an enormous
field of technical and scientifical investigations.

‘4. Suppose that quantity 'z is not directly measurable and that the
observations consist of independent trials; at each trial let # be the prob-
ability that the phenomenon Z will arise. Thus, for instance, # may be
a characteristic of a drug and Z the test of this drug. Notice that in this
instance the expression “probability” plays one réle more: the gquantity
measured is itself a probability.

We write the result of observations as (£ = m)/n, which is to signify
that there have been n independent trials in which result Z has been
obtained m times (and has not been obtained n—m times); the integers
m, n fulfil the inequalities 0 <m <n.

~ The question is how to calculate Pz < a;( & = m)/n) i.e. the prob-
ability that » is smaller than a, if in » experiments Z has been observed
m times.

- The theory of cred1b111ty gives an evasive answer, calcula.tmg the
ordinary probability P of a different fact in different conditions and cal-
ling it the credibility W of the original fact in the original condition.
We thus have

(18) O’(m<a;§jm),§13(£>m;m_—_a);

n

on the right-hand side, P is the probability that, for = a, Z will occur
more than-m times in »n experiments. One can crificize definition (18)
on the ground that for m = n and for every a we have ¢ = 0. In partic-
ular, we have O =0 for @ = 1. Thus, if for instance in 5 experiments
with a drug all five are successful, the credibility of the hypothesis z < 1,

i.e. the hypothesis that the medicine is not safe, will be zero. This state-
ment will be even stranger with only one successful experiment. One
could avoid this paradox by writing on the right side of (18) the inequal-
ity (£ > m)/n instead of (§ > m)[n, but then another paradox will occur:
the changed definition gives ¢ = 1 for m = 0 with every @, even very
small, because for m = 0 the corrected inequality undoubtedly occurs
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for n = 1 as well as for » = 100; we shall infer hence that the credibility
of the hypothesis that the drug once tried with a negative result is
worthless is 1, exactly the same as the credibility of the same hypothesis
regarding the medicine tried 100 times with a negative -result.

An easy way out of this inconvenience is the change of the denomi-
nator on the right side of (18) from n to n-1:

(19) C(m<a;5:‘m)‘}—_fl"(§>m;w=a)
n n-1
(m=0,1,...,n; 0 <a <1).

Here, there is no paradox elther for m = 0 or for m = n. W assumes the
value 0 if and only if & = 0, which is in agreement with the natural
postulate of the zero credlblllty of the impossible relation # < ¢ when
a = 0. C equals 1 if and only if @ = 1, which is expressed by the no
less natural postulate of a unitary (therefore maximal) credibility of the
relation # < a when a = 1. Whatever the result of a finite number of
experiments, we can assert with the maximal credibility that the medi-
cine is not absolutely efficacious. For 0 < a < 1 we always have 0 < 0<1.

Incidentally, let us observe that even practical physicians have
noticed the difficulties involved in the extreme experiments of m — 0,
m = n, which make it impossible to assume naively that the strength
of the drug is equal to m/n.

Let us now determine the possibility M that x < a if Z happened
m times in n experiments; analogically to (13)

(20) M(m<a;§=m)9—fP(w<a;§=n).
, n n /-

To obtain the relation M = C analogous to (12) it is necessary to prove
the equality of the right-hand sides in (19) and (20) According to the
Bayes rule, we have ,

P(m < a’_f_';“) fw (1— m)“ mdm/fm’”(l—-m)““mdw,

.. n+1 n+1
P 4 = = P M = S By gk —_— n+1fk
| ( PRSI “) k=2m+1 (n+1 39 “) k.zml( e

- fa a™(1— )" ™do / fl w”‘(l—“w)"""dw,

which gives the very equality that is reqmred and allows us to write the
theorem

(21) 'M-(m<a;6=m)'=0(w<a;§=m).
| n n
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The basic relation (21), exactly as in the continuous case of relation
(12), vindicates the Bayes rule, demonstrating that th1s rule leads to
the same number as credibility(1°).

5. There remains, however, a serious objection 2° relating both
to the continuous case and to our recent discussion. This objection sta-
tes that Pg, and therefore also M, do not satisfy the condition of invar-
iance. Speaking more precisely: When we observe # and obtain &, some
other investigator, interested in 2® for instance, reads, simultaneously
with our reading &, a number on a different seale connected with the scale
£ in the same manner as two scales side by side on the same ruler are con-
nected. Let us mark them X = 3, & = &3, 4.= %, B = b3. The second
investigator’s question is ‘

P(X<A; E=B)=1

Now, propositions X < A and z < ¢ are equivalent and proposi-
tions & = B and & = b are likewise equivalent. Consequently, the ine-
quality X < A with the eondition & = B occurs if and only if the ine-
quality # < @ occurs with the condition & = b, and the possibilities of
both conditional events should be equal:

(22) M(X <A; 8=B)=M@<a; =)

when both investigators caleulate the possibilities of the relations they
are interested in, they ought to obtain identical results; definition (13)
and this demand give

(23) Pg(X <A; E=DB) =Pglo <a; §=0).

Postulate # for », however, denotes something else than postulate #
for °, because the uniform distribution of variable » is inconsistent with
the uniform distribution of #® By the transformation from the variables
x, & to X, E the eonditional probabilities change also, so that relation
(23) may either hold or not. It is easy to show, however, that the main
rble here is played by the conditional probabilities. Namely, if we denote
by P(X, £) a function which is analogous to the one denoted already by
p(#, £) and which may be -caleulated from the expressmn p(z, §)ds by

substituting @ = y(X), £ = y(5) (here y(X) = VX), then it will be
suficient to verify whether P(X, Z) has the form P = F(X —Z%). If so, then

(19 Cf. J. Oderfeld, On the dual aspect of sampling plans, Colloguium Mathe-
maticum 2 (1951), pp. 89-97. Some of the formulas from that paper have been
checked by B. Kowalezyk.
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we have relation (23) and therefore also (22). Indeed, by (11) and (5),
we obtain

Pe(X<A; E=B)=P(E>B; X =4),

(24)

Pglx <a; E=0b)=P(& >b; 2 = a),
where the right-hand sides are equal, being the probabilities of the equi-
valent relations, whence follows (23). The conclusion is the following:

The calculation of possibilities according to our definition (13) gives
always the same results if we use as the objects of observation variables for
which the law of error agrees with relation (23). Since that law is not
hypothetical bat ean .be found with arbitrary precision on the bagis of
sufficiently numerous observations, and can also be calculated mathema-
tically for the transformed variable if it is known for the initial variable,
it is never doubtful whether the proper variable is used. However, it may
happen that neither the variable itself nor its transformations satisfies
rélation (23); then the concept of probability loses its proper significance.

Here the adherents of credibiliby may raise the objection that cred-
ibility can always be calculated without investigating the charaoter
of the variable observed, and that a transformation of the va.na.bles does
not change it. We may answer that in cases where it is impossible to use
the concept of poss1b1h1;y there sometimes occur functions of the error
for whieh it is possible to choose a suitable prior distribution in such a way
that the Bayes rule together with that distribution gives a posterior
probability equal to credibility. Obviously, to rely on absolute invariance
of credibility (which invariance is indisputable) is to impose unconsciously
upon the variable observed a prior distribution, every time completely
different and at times completely fantastic. If the Bayes postulate has
been condemned for imposing every time a uniform distribution, often
inconsistent with the nature of the problem, then the unconseious apph-
cation of the Bayes rule to various prior distributions and, moreover,
without specifying them and comparing them with nature, seems to be
even more risky.

In the continuous case an instructive example is that of a variable =
which is bounded in a finite interval (¢, ) and has a uniform prior distri- -
bution in that interval. Let the function p(x, §) be defined by (2). If
we know the prior dlstnbutlon, we may use the classical Bayes rule and
calculate, for instance, the probability that if the measurement has given
§ = ¢, o is smaller than ¢; then the posterior probability is zero and the
Bayes rule will give it without any hypotheses. If, however, we do not know
the prior distribution (which is actually such as has been stated above),
then we must resort either to the coneept of credibility or to that of
possibility in order to solve the problem. As we have proved in § 3, prob-
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ability and possibility are equal in ‘this case. It is therefore sufficient
to calculate the credibility C(x < e¢; & = ¢); for which expression (7)
may be used with the resulf

0C

f o0t gy 0.5

[+

Clw < o; 5=c)=fp(o,t)dt._: =
: oV2r

Both methods give 50°/,, which in, view of the actual impossibility of
the relation ¢ < ¢, is false information. The only difference is that the
adherent of credibility would supply this information more freely than
the believer in the possibility concept, because the latter ,would have to
verify beforehand whether function (2) has the form (3); in our example.
it has. .

Objection 2°is much easier to refute in the non-continuous case. Here
the phenomenon Z, or any other phenomenon equivalent to it, is given
directly, while x is the probability that Z will occur. Thig uniquely deter-
mines variable x, which we seek on the basis of experiments whose effect
can only be: “Z has occurred”, or “Z has not occurred”. No variable X
expressed by z (e.g. X = «°) (with the exception of X = z) is a probab-
ility and therefore z is marked and pointed out by the problem itself.
This disposes also of objection (B) in an enormous class of random inspee-
tion of quality by attributes.

6. In this class we can — as in the instance of the continuous re-
sult — define the possibility of the two-sided relation a, <» < a,. We
obtain formulae analogous to (14)-(17), replacing everywhere & = b
by (& = m)/n

(25) M(“1<w<“z;~§-%¥wl)g—fP(a1<m<azs ;m),
(26) M(a1<m<az;§=m)=M(m<a2;52”?)._
—M(w<a1, :m)’
(27) 'G’(a1<w<w2;Ez,m)‘.l_——f()(m<a2;§:m)_
: . " %
—G(w<a1; : :m),
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Theorem (26) follows from definitions (25) and (20) and hence theo-
rem (28) is a consequence of definition (27). These formulae facilitate
the understanding of the problems of statistical quality control. If two
values a,, a, (a; < a;) are given, then it is possible to determine a sequen-
tial acceptance plan- by a regulation stating that a certain lot is to be
accepted if the result (£ = m)/n is such that-

E%m

(1) M(al <o <1; );950/0,

and rejected if the result (& = m)/n is such that

_m)>95°/o,

(IT) M(O Lo < ay; $

and that inspection should be continued until either (I) or (II) is satis-
fied. Such & schemé differs from the sequential analysis of A, Wald by
the fact that it always gives the solution in a finite number of steps if
&, < a@,. Expression (28) allows us to determine our sequence also in
terms of the theory of credibility, but it arose from a retrospective way
of thinking, namely from the regulation that investigations should be
eontinued until the'result of the sample reduces below 5° /o the a posteriori
probability that the lot accepted (rejected) is worse (better) than a,(a,).

?. The objection that « is not a random variable ought to be under-
stood to mean that the values of # do not form a set where a distribution
could be defined. It is sufficient, however, for each statement referring
to probability to permit a verification by an experiment (even if only in
thought) and the counting up of the relative frequency of successful
experiments. In our example, however, such a .verification is “actually
unnecessary, because, as we have demonstrated, in the continuous case
we have by (5) and (11)

(.29) Pg(m<q; E=0b)=P(& >b; 2 =a).

Therefore, to compare the quantity Pg with experience it is sufficient
to compare the right side of expression (29), i.e. to find the frequency
of the results & > b for the accepted # = a; it will simply be a verifica-
tion by the ordinary law of great numbers, which is indisputable. On
the other hand, the direct frequency interpretation of the left-hand side
of the formnla (29) is also possible, particularly in the example of § 4.

The variable « is given in turn such values @y, «,, ..., ®, ..., that
the sequence {w,} obtains equipartition in the interval (0,1); thls mea.n&
that the relative frequeney of its terms smaller than ¢ is equal
to ¢ for each t of the (0,1) interval. For each w; a result (& = my)/n
is determined, expressed by the number m, of the oceurrences of the
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phenomenon Z in » independent consecutive trials (with n determined
once for all), each of them having the probability of success equal to x,.
From the sequence {m,} the subsequence {my}, defined by the condi-
tion m; = m, is extracted. For brevity let us denote number ‘@, by &;
and compute in the sequence {z;} the relative frequency of terms for
which @; < . This frequency should be equal to Pz < a;(& = m)/n).
It is a special form of the law of great numbers, though this particular
statement is seldom found in text-books of the calculus of probability.
One of the causes of the aversion against the Bayes rule is probably the
conviction (perhaps mnconscious) that either this concept is impossible
or its proof transgresses the limits of the calculus of probability. How fal-
lacious is this opinion is proved by the elementary formula (1). Namely,
this formula may be interpreted outside the caleculus of probability as
& theorem on relative frequencies in the sequence of pairs ( , ) in which
the first place is occupied by A, B, ..., N and the second by Z or non-Z.
According to this interpretation, P(4) for instance should be read as the
relative frequency in the whole sequence of pairs which have A in the
first place, and P,(4) as the relative frequency of those pairs among other
pairs having Z in the second place, etc. According to the ordinary law
of great numbers it is possible to replace everywhere on the right side
the frequenecies by the probabilities. Such a frequency-is equal to the a pos-
teriori probability Pz(A), calculated from the Bayes formula (1). Q.E.D.

This verification is based on the fictitious sequence {r,} provided
with equipartition. It refutes, therefore, the argument that statements
about a posteriori probabilities are statistically unverifiable even by an
imagined experiment but, instead, it stands open to two new accusations.
The first eoncerns the introduction, in another form, of the Bayes postu-
late concealed under the assumption of equipartition. The second con-
cerns the necessity of counting the frequencies of a certain subsequence
in another subsequence of trials, which makes any real experiment almost
illusory. For that reason we shall now verify our theory of possibility
in a different way and by another example, i.e. that from § 3. There possib-
ility was defined by (13).-Suppose that in the j-th measurement (=
=1,2,3,...)X; denotes the true value of the measured quality a;.
In this manner we permit not only -an absolute variety of observations
buf also a variety of functions p; playing the réle of density p (defined
in § 3) in the consecutive measurements, taking care only that the- postu-
late of independence of measurements be satistied. Let &; denote generally -
the result of the Jj-th observation. Let s assume that the results in an
actual series were &; == b;. Let us fix apriori the number P (0 <P < 1;
e.g. P =0. 95) Bach time we caleulate a; from the condition. -

(30) I My <asl—b)=0 (ex. M = 0.95).
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This caleulation naturally does not require the knowledge of X;. The
relation X; < a;, however, is objectively either true or false.

THEOREM. The frequency of those measurements in which X; < a;
48 — with respect o the sequence of all measurements — equal to P (in the
given example 95°/,) with probability 1.

Before we prove the theorem let us notice that it perfectly justifies
the postulate of possibility from the practical point of view, beeause it
does not assume anything at all with regard to the sequence of true values
X;; neither does it require them to be drawn by random out of some pop-
ulation. In spite of that it allows wus, on the basis of measurements,
to judge these values with the frequency of error determined a priori
(here this frequency is 1 —P; for instance 5°/,).

Proof. In view of (5) and (11) relat;on (30) is equivalent’ fo
(31) P& > b3 05 =a) =P

the letter # denobes here the conditional probabilities hither to marked P.
In view of the non-negativity of function », £ is a non- decrea.smg funetion
of a;, whence and by (31) it fellows that for X; < a; (and only for such X)
we have

(32) - P(& >bj; 2 = X;) <P.

But the theorem states that the frequency of cases X; < a;is P (from § 1).

Since in these cases (and in these only) (32) oceurs, the assertion is gyno-
nymous with the fact that (with probability 1) the frequency of cases
# < P is P. In other words the theorem may be said to mean the equi-
partition of the sequence #{&; >b;; #; = X;} has. This is a fairly general
lemms, which it is sufficient to understand o be able immediately to
verify it. Its meaning is as follows: from the measurements of quan-
tity a; (the true values X; of which are unknown to us) we obtain the
results b;, and then; having learned the values of X;, we compute #; —
= P(& >b;; @y = X;}; therefore #; is the probability that a repetition
of the measurement of quantity a; will give a greater result than the actual
Tesult b;. This probability has been calculated owing to the knowledge
of the true value X; of the measured quantity ;. Therefore {#;} is a se-
quence of random variables. It is about this sequence that we assert
that it has equipartition.

‘Proof of the lemma. The lemma will result from the law of great
numbers when we prove that each random variable Z; taken separately
hag a uniform distribution. Dropping the index j, we have to demonstrate
that the random vana.ble # defined by

33) P =Pt >b; o= X)
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has a uniform distribution. From (33) it is obvious that

(34) # = [ p(&, X)d¢
b

Let u, v belong to the interval (O 1) and let < ». Now let us find by, b,
from the relations

(85) [, Dag=u, [ p( DN =o.
U b’l)

In view of (34) and (35) it is obvious that relation w < Z < v i8
equivalent to the relation b, > b > b , whence the probability of the
first relation is equal to the probability of the second one. But this
second probability I'(b,, b,) is

by,

[ e, Dyas

b’U
whence, according to (35),

T'(by, b)) = v—u.

This implies that the proba.blhty II(u, v) of the relation » <& < v
is also v— #, which is exactly the meaning of the lemma.

It should be stressed here that there are obviously two modes of
verification of the possibility rule. The first is ebjectionable to the sta-
tistician because it requires, in the case of the acceptance of a lot, an
artificial assumption of equipartition of the incoming true qualities, and
in the eontinuous case it is totally out of the question. The second one is
free from these difficulties and feasible in practice. As a rule, the second
one is used jointly with the theory of credibility. It must be remembe-
red, howéver, that when the experiment has given a certain result E,
from which we deduce inequality N with probability P, we are allowed
to understand the practician’s question as to the sense of P not only
to mean that we are to determine R and N (according to the first veri-
fication) and then to investigate whether indeed the result B is accompa-
nied by the cause N in the fraction P of the sequence of consecutive
experiments, but also that in every experiment we match the result B; —
according to theoretical computations — ‘with such an N, that the corre-
sponding P; is equal to P, and then we test, taking into aceount the whole
sequence of experiments, whether it gives a fraction P of cases in which
R; actually is associated with N, ealculated theoretically. It is this se-
cond verification that is of a paramount interest to the practician, because
it gives him the means of reducmg at w111 the fractions of erroneous
statements.
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8. The question arises whether the example from §4 lends itself
to a similar verification. The answer is affirmative, but for small # ana-
logous statements are only approximately verifiable. This failure of
single plans of m//n type is caused by the fact that from the discrete
random variable (such as m i8) we draw conclusions regarding the con-
tinuous variable z. It is possible that if one were to accept for m all the
values from 0 to » (fractional as well) without changing the eclassical
formula for the probability of the result m/n, the above inconvenience
could be removed, but the present author has not investigated this possi-
bility.

Such a widening of the concept of the number of good items (for in-
stance “‘in the investigated sample of 10 items there are 9.7 good items”)
would also have practical uses. One could for instance consider as good
only the eable sustaining the weight of 100 kg or more, and regard tha,t‘
breaking at 70 kg as 0.7 good item and 0.3 defective item.

The second question would be whether one can verify the example
from § 3.like that from § 4, namely by using the sequence {,} provided
with equipartition. To do this we would have to overcome two difficul-
ties. The first one — less formidable — is the lack of definition of an equi-
partition sequence in an infinite interval (such is the # interval). A more
- gerions difficulty would be involved in extracting from the sequence of
measurements the subsequence composed of those measurements which
resulted in b. Since in each measurement the probability of obtaining
the result b is zero, the probability that there will be no such measure-
ments is 1. Possibly this difficulty is one of the more or less consciously
felt obstacles which discourage the mathematicians from using the Bayes
rule. As we have seen in the example from § 3, one could resort to a veri-
fication considerably more effective and free from theoretical and practical
objections. But the above mentioned difficulty exists not only in stati-
stical verification. It has its analogy in the interpretation of the Bayes
rule itself, namely of the continuous variant of that formula. This is the
variant (9) in § 3. The funection g(x) should now be interpreted an an
arbitrary non-negative function with integral 1 in the interval (—oo, co).
We do not postulate # at the moment. The classical calculus of proba-
bility demands the computing of the conditional probabilities p(z, b)
a8 quotients; namely p(z,d) is the quotient of the prior probability
that “z and b” by the prior_ probability that “o”. Beecause both these
Drobabilities are usually zero, therefore p(w,b) — 0/0 I disregard here
the way out of the difficulty by the limit passage: More important is that
the knowledge of the probability that “x and b” (or more precisely that »
i8 placed between x, and 2,4 dx while at the same time b is between
by and b,+ db) presumes the knowledge of the joint distribution funetion
of the pair of variables (x and b), and in such a case the Bayes formula
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is completely superfluous. This is objection 4°, But in practice there
are many instances of conditional probabilities given directly — just
a8 in the problem of measurements in § 3. Also the problem of paternity
may be formulated in this manner (though it is not necessary). These
remarks suffice to remove all doubts which might arise in reading the
preceding paragraphs.

9. There is still the question of the relation of the present paper
to all that is being said about the Bayes formula arnd postulate by the
present-day authorities in the field of the calculus of probability and mathe-
matical statistics. Undoubtedly a great deal of what the (non-gpecialist)
Polish reader is being told here, perhaps for the first time, may be found
in serious foreign text-books. Unfortunately they do not help one te
undergtand the point of view of contemporary seience, not only because
of the contradietory opinions they present, but also because of their obseure
reagoning. This is caused by the fact that most authors apply our problem
to particular cases. Some of them observe that prior distribution is of
little practical importance; others say that in typieal problems with the
urn, such distribution ¢annot be used. On the other hand, exagerated gene-
ralization is also out of place if, for instance, one wants to define a poste-
riori two unknown parameters at once. It impedes the comprehension
of the reasoning, which should first of all interpret: the principal problem.
J. V. Uspensky believes that the lack of prior distribution in the urn
problems seems obvious only at first sight. J. L. Coolidge, using as an
example Bertrand’s suit for the faulty rulette-table, states that though
the Bayes formula is defective, there is nothing better. A British astro-
nomer H. Jeffreys found a uniform distribution for the infinite interval
(see § 3 formulae (8)-(12) and relation (11)) but for a special p, namely
for the p of formula (2) and not for the general one, given by (3). He is
also interested in invariance (mentioned here in § 5) but he does not notice
eriterion (23). He stresses the fact that no probability, whether prior,
conditional or posterior, is simply a frequence. This could possibly mean
the rehnqmshmg of statistical verification, which the present work con--
siders as the only reagsonable criterion of the correctness of statements.
That he does not see a possibility of sueh verification is probably the
result of his inability to understand the “equal possibility” of Laplace’s
in the frequency sense. Indeed, none of these authors uses our equiparti-
tion model. Even such 2 historical detail as the question of agreement
or non-agreement between Jeffreys and R. A. Fisher, ag represented
by the first of these authors, arouses some doubts in the reader. Accord:
ing to Jeffreys, Charles Pearson was the only man to believe in the Bayes
rule and the frequential definition of probabilities. Even such a serious
author as M. G. Kendall says that the assertion whieh we have denoted
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by z < a; & = b cannot have other probability than 0 or 1, because z
either ig or is not smaller than a — tertéum nmon datur. The present author
congiders this objection (5° in § 5) as unfounded because it can be applied
to nearly every case in the calculus of probability, if one accepts the deter-
minism of physical phenomena (which indeed is not denied by any of the
anthors quoted). When we asgk if the card taken out of the pack is an
ace of spades, the probability — in view of the fact that even before taking
the card out the answer was predetermined — would be 1 or 0. An even
better counter example is a card already taken out of the pack but kept
face down. Each player would apply here the calculus of probability,
though the assertion “the eard is an ace of spades” does not at all differ
from “x < &” because both are applied to facts already accomplished.
None of the above-mentioned authors uses our concept of possibility. It
is common knowledge that R. A. Fisher’s papers are not particularly
lucid. Therefore even now the differences of opinion between his theory
of “fiducial probability” and Jerzy Neyman’s “conﬁdence interval”
are not quite clear to all mathematicians.

The continually reviving controversy about the Bayes rule and the
theory of “inductive reasoning” is characterised by quotations found in
the texts of the above-mentioned authors or at the tops of the chapters
a8 mottoes. Shakespeare’s ‘“‘Hamlet”, Kipling’s “Captain Courageous”,
“Through the Looking Glass” by L. Carroll (author of “Alice in Wonder-
land”), the stories of “One and a Thousand Nights” and other tales based
on the theory of the improbabilities have been called to bear witness
to the agsertions of serious and eminent students of the calculus of pro-
bability. May this remark save the present author from the accusation
that he has been dealing with problems upon which science bas already
pronounced its last word, and which have consequently ceased tob e pro-
‘blems, and have passed to the chapters of generally accepted text-books.



