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A BRIDGE WITH A HEXAGONAL FRAMEWORK

The objective aimed at by this Note is to show the advantages of
a framework consisting of regular hexagons; we limit our considerations
to the example of a bridge, or rather to a single arch of a bridge.

. detail a

(|| | €

The sketch (Fig. 1) simplifies the construction we have to describe;
it exhibits only the essential parts: the upper belt or the proper arch, the
lower belt, which we call the beam, and the hexagonal framework connect-
ing these belts. As to the arch and the beam we are not concerned with
details of their construction; the reader may suppose the arch to be made
of concrete reinforced with iron and the beam to consist of a single I-bar;
the only innovation we propose is the hexagonal framework connecting
the upper belt with the lower one — most of the customary bridges employ
long vertical rods for this purpese. ‘

The arch is eonsidered as rigid; it rests on a foundation of masonry;
thus it is rigidly connected with the supports of the bridge. The rigid



334 H. Steinhaus

beam is supposed to hang on the framework; the framework being atta-
ched to the arch, the whole construction seems to be only a variant of
familiar bridges, which, however, is not the case. -

The framework consists of 38 bars, identical as to shape, length,
and the material they are made of. They form a net of 16 meghes; the
boundary of the net is the polygon I1-2-3-4-5-9-6-7-8-9-10-11-12-13-f-1
of 15 sides. Five of the meshes are regular hexagons; the eleven border
meshes are truncated hexagons — the bars separating them. are still the
same. Thus the 15-gon P consists of 4 bars and of 11 other sides, which
are diagonals of the basic hexagon; the points 1, 2, ..., I3 are called the
ends of the net. '

The net has 34 knots, the ends included ; they connect the bars with
other bars or with the belts — in both cases they are pin-connected joints
round which the bars are free to turn(!). The knots 1,2, 3,4,5 are attached
to the beam and cannot move relatively to it — the knots 6, 7,..., 13
are attached to the arch and thus absolutely fixed.

Kinematics. The number of interior knots is 34 —13 =21; if we fasten
the ends of the beam to the supports, the interior joints represent 21
points with 42 degrees of freedom ; the 38 rods give 38 constraints. In spite
of the inequality 42 > 38, the framework is completely fixed. To prove
it let us remark that no movement of the framework:is possible if the border
meshes do not participate in if. Let us suppose that some border meshes
participate in the movement; as the polygon 1, 2, ..., 13, 1 is fixed, any
displacement of & border mesh changes its shape and diminishes its area,
becauge this area attains its unique maximum when the mesh in question
is inseribed in a circle, which is the case for every mesh in its initial shape.
The same applies to the interior meshes which are regular hexagons.
Thus any such movement implies the decrease of the area of some meshes
but in no ease an increase. The polygon P being invariable, its area is.
constant — this contradiction shows the stability of the framework(2).

Let us now study the movements of the system when we cut off the
prolongations of the beam so that it does not reach beyond a and b, and
is not hindered in its movement by the supports. Suppose a displacement
of both extremities of the beam downwards. It starts by a small shift
of I and of 5 downwards, so that the area of P increases — this implies the
inerease of the area of at least one of the meshes of the net, against the

(') Hexagonal frameworks are applied in modern architecture in roof systems.
They are neither vertical nor pin-connected; cf. Z. 8. Makowski, Space Structures:
The Polytechnie, 309 Regeut Street, London, W. 1. '

(®) The same property of stability still holds if the length of the outer bars
(ex. 13-f or 1-7) is not equal to the length of the sides of the inner regular hexagons.
However, this generalization will not be used in the sequel.
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statement above that every mesh attains the maximum area in the ini-
tial position. For the same reason no clockwise turning of the beam round
any of its points lying between o and ¢ is possible — as to the opposite
movement, it implies an increase of the potential energy of the heavy
beam, which is incompatible with the initial zero-velocity (we assume
the weight of the framework to be negligible). The same applies to the
points between b and ¢. This considerations do not, however, exclude
(see Suppl. I) the turning of the part I-5 of the beam round e if the exten-
sions of the beam are cut off and the supports cannot stop such movement.
None the less, symmetry is a sufficient reason for the equilibrium — it
would even be stable if the mathematical line 7-5 were considered as the
upper face of the I-iron beam.

Of course the points 17, 2,..., 5 may deseribe identical circular arcs
but — once again — it would increasc the potential energy of the beam.

. Statics. We have to compute the internal forces in the bars of the
framework in the case described above, i.e. in the case of a heavy beam
of weight B hanging freely on the framework attached to the arch.

THEOREM 1. Under the conditions stated above every ba,r of the frame-
work is submitied to a tension equal to B/[5.

Proof. The system being in equilibrium, every knot is at rest. The
knot % being at rest, the forces acting on & along kit y kj, km must be equal
and either all directed away from % (tensions) or all directed towards %
(pressures). Suppose that a tension 7' draws & in the direction %km. Then
m is subjected to the same tension 7' in the direction mk. This implies
that knot 2 (Fig. 1) is also acted upon by a tension T, i.e. by a vertical
force directed npwards. Consequently, all bars are submitted to tension 7.
In particular, the knots 1,2,3,4,5 are drawn upwards with a force T each.
The beam being in equilibrium. under the force of gravity and the five
parallell forces 7', we must have 57 = B, which implies 7 = B/5. It is
clear that a supposition of the 1nterna1 forces being pressures
would be inecompatible with the equilibrium of the beam subjected
to gravity.

Let us suppose now that the beam is extended in both du'eetlons
the weight is still B and the beam is in equilibrium, scarcely touching
the supports. What happens if a load L (see Fig. 1) appears on the left
81de of the midpoint ¢? The equilibrium would be disturbed if there were
no yupports. In fact, the tensions in the five bars carrying B being equal,
the equilibrium becomes impossible, because the momentum of the ten-
sions with respect to ¢ is 0 and the same is true for the momentum of the
gravity acting on B; consequently, the total momentum is Ir % 0 and
directed eounterclockmse The left support, however, immediately stops
the rotation and furnishes a reaction R .acting upwards.
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THEOREM II. Let us call 24 the span of the bridge, r the distance Le,
L the wetght of the load L, T (r) the tension in the bars, and R(r) the reac-
tion of the left support. Then we get

L d—
M T(r) = Tat 5 oy
@ B(r) = Lrd;

here Ty = B/5.

Proof. The necessary and sufficient conditions for the equilibrium
are as follows:

5T (r)+ E(r) = B+L — the conditions that the total force is 0

R(r)d = Lr — the condition that the total momentum is 0.

" Both conditions are satisfied by (1) and (2). The condition for the
total momentum takes the form Rd = Lr because the total momentum
of the tensions computed for the point ¢ is zero.

Formulae (1) and (2) can be read as follows: When the load appears
at point @, i.e when r = d, the reaction of the left support is L and the
tensions in all bars are B/5: the load is carried exclusively by the left
support and the beam is carried exclusively by the framework. When the
load travels from a to ¢, the distance r diminishes from d to 0 and the
reaction of the left support decreases linearly from L to 0; as to the ten-
sions, they are initially B/5 in every bar and they grow ]inea.rly, becoming
(L4-B)/5 when the moving load reaches the midpoint ¢ of the beam.
Thus we have to employ for our construction bars strong enough to be
subjected to a tension (L-}-B)/5, L being the maximum load permitted
to move along the beam (it is hardly necessary to remark that the right
half of the beam behaves exactly like the left one).

~ It is possible that the slackening of the joints and the increase
of the length of the bars exposed for a long time to stress diminishes
their initial tension so that a part B’ of the weight of the beam is carried
by’ the supports and the rest, BB’ = B’/, by the framework. Then we
must write in-(1) 7'y = B’ /5 instead of T3 = B/B, and to introduce on
the right of (2) a supplementary term -+ B’/2.

The advantages of the hexagonal framework:

1. At any time the tensions in all bars are equal. They are maximum
when the moving load is midway of the beam: (L--B)/5. The shape of
the arch and the number of the meshes can be altered arbitrarily —

the only change required is to replace 5 in the formulae by n, n being
the number of joints in the beam.

2. The tensions are linear functions of |r|. This guarantees the absence
of shocks when the moving load travels along: its passing above the joints
1,é,3 4,5 does not affect the bar carrying this joint.
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3. An impaet of a jumping load, causing a sudden displacement A
.0f a bar downwards, displaces other bars too, but these movements are
halved at every junction: for A = 64 mm the top joints are displaced no
more than 1 mm. This property saves the arch from the shocks suffered
by the beam: the framework as a whole behaves like a system of springs
in gpite of the rigidity of the bars.

4. The tension in the 8 bars ending in 6,7,8,9,10,11,12,13 being
equal and directed orthogonally to the arch the weight of the beam and
the load helps to hold the arch together: it prevents the arch from being
flattened by its own weight and its “legs” from being streteched asunder.
Thus, under the action of the weight of the beam and the load, the whole
construction becomes similar to a homogeneous plate submitted to equal
tensions in all outward directions.

5. The slackening of the bars can be counteracted by screws in D
and 7.

6. Formulae (1) and (2) are easy to handle,
7. The hinged connection of the bars presents no difficulty.

8. The tension 7T rises continuously when the load travels from a
to ¢, and then falls continuously when it travels from ¢ to b.

Now let us compare the hexagonal framework with the customary
vertical bars: _ | : ,

Ad 1. The tensions in the bars of the ordinary bridge (OB) are not
equal — thus we must compute the maximum charge. It could happen
(though this is rather improbable) that the whole weight of the beam
plus the weight of the load acts on a single bar — thus every bar must
be capable of standing a tension equal to B--L instead of (B-+L)/5, as
in our construetion. The reason of this phenomenon is the indeterminacy
of the customary framework: the slackening of all the bars, except one,
is sufficient to cause this undesirable effect. Phis cireumstance is usually
taken into account by studying the elastic deformations of the beam and
of the bars — in our framework these deformations have only an infini-
tesimal influence. |

4d 2. The remark ad 1 shows the difficulty of calculating the ten-
sions in the bars for a load moving along OB — if we succeed in that compu-
tation, we get different formulae for two bars whose distance from the
midpoint ¢ i different. The passing of the load above a joint in OB affects
essentially the bar ending at that joint.

4d 3. The impact of a jumping load in OB travels along the bars
uUpwards and exposes the arch to the same shoek at the top of the affected
bar as at its extremity attached to the beam.

. Ad 4. All the tensions in OB being’ vertical, the advantage 4 is
08t, -
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Ad 5. No tuning of the framework is possible in OB — in our con-
struction such possibility is described in 3: the tuning can be achieved,
by a screw turned by man-power. ‘

Ad 6. Cf. remarks ad 1 and 2.

Ad 7. In OB we have no standard bars as in the hexagonal fra-
mework. ‘

Ad 8. The behaviour of T' depends on the elagticity .of B and on
the bar considered.

.Supplemenfs to kinematics, Let us study again the kinematics
of the 15-gon 12345¢67...13f1.

SUPPLEMENT I. We have to prove the possibility of the turning of
the base I-5 about ¢ as centre.

It is not easy to establish this possibility by pure kinematics: we
shall resort to dynamics by supposing I-2 to be a thin, rigid and very
heavy beam, and L a small load. The gketch shows that there is no equi-
librium because the momentum of the weight L is Lr relatively to ¢ and
the momentum of other forces (tensions an gravity) nil. Thus a movement
of the beam must result from these forces. It cannot be a translation
downwards, as we have already shown in the section on Kinematics,
or a translation 'ﬁpwards because of the
increase of the gravitational potential,
which would result from such displacement
of B+ L. Consequently, B must turn about
a certain point p of the line 1-5. Let us
suppose first that p lies to the left of e.
Then a counterclockwise movement would
contradict the potential principle for I suf-
ficiently small. The clockwise turning would
increase the area of the P-gon, as shown
by the displacements of 5g6 and 13f1. If p
lies to the right of ¢, the same argument
works when we write ‘‘clockwise’ for ‘‘coun-
_ terclockwise” and vice versa. Thus p =e¢
Fig. 2 and the only movement possible is a rota-

: tion of 7-5 about ¢. As shown by dyna-
mics, this movement must appear as a result of the forces aeting on
the beam; this is a proof of its kinematical possibility.

The proof above is an example of establishing a mathematieal theorem
in which the terms “force, mass, gravity, external force” eté. do not appear
by a reasoning based on these concepts. | _

~ To finish this supplement let us state that the rotation is infinitesimal:
it is a displacement in the vicinity of the maximal area; for a finite load
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L the centre ¢ would rise, as it must do because of the decrease of the area
of the polygen P.

SupPLEMENT II. Suppose that each joint allows two degrees of
freedom to every bar which is attached to it. Is it possible — the beam
being attached to the supports — for a mesh to become skew? If that
happened, we could connect a joint of such a mesh with all the other
joints of the same mesh by diagonals, consider them as hinges (Fig. 2)
and stretch out the mesh in the initial plane. The area of this pew plane
mesh is at most equal to that of the initial plane mesh, and the projection
of the skew mesh on the plane of the sketch has a smaller area than the
skew mesh itself. Thus the projection of the skew mesh is smaller than
the initial mesh. The projections of the other meshes have at most the
areas of initial meshes. Thus the projection of the whole distorted frame-
work is smaller than the area of P, which is absurd. Thus no joint can
leave the initial plane. . '

Dr W. Mromlinigki and Eng. K. Czaplingki (of the Civil Eng. Dept.,

" Wroctaw Inst. of Technology) contributet by their eriticisms to the
paper above — the author states it here with due gratitude.

Praca wplyngla 18. 5. 1961

H. STEINHATUS (Wroctaw)
. MOST Z SZESOIOBOOZNA KRATOWNICA

STRESZCZENIE

Celem Noty jest krétki opis kratownicy zlozonej z umiarowych szeSciobokéw
przegubowych; jej zalety pokazemy na przykla.dme przesta mostowego, ]ako jednym
z mozliwych zastosowan (rys.l).

Jezdria wisi na gérnym pasie noénym za pofrednictwem ciggien — 83 to prety
lub linki stalowe napiete tak, Ze tworza sieé szeSciobokéw umiarowych. Gérny pas
jest sztywny i nieruchomo zlzczony z ziemis. Rysunek ilustruje uklad 38 ciegien.
Wykaszemy, ze kazdy wezel sieci, to jest kazdy punkt, w ktérym lacza sig przegubowo
trzy prety (na rysunku punkty grubo znaczone wyobrazaja przeguby) jest nierucho-
‘my przy dowolnym rozkladzie obciazen jezdni: jak wiadomo, wszelka deformacja
8zedcioboku umiarowego w plaszezyinie zmniejsza jego pole, jeieli boki zachowuja
dtugoké. Wobec tego wezelki ruch wezla zmme]sza laczne pole sieci, a wiec podnosi.
jezdnie, co jest sprzeczne z grawitacja.

Z nieruchomofeci wezl6w wynika, Ze napigeia wszystkich c1gg1en g ‘réwne. Ta
whadeiwosé kratownioy szeSciobocznej utatwia obliczenia i zmniejsza koszt konstrukeji
W poréwnaniu z tymi kratownicami, w ktérych, zaleinie od rozkladu obeigsen na pasie
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dolnym, raz jedno ciggno, innym razem drugie jest maksymalnie obcigZone (twier-
dzenie IT). Takze pas gérny korzysta z ekonomii, jaka daje réwnoéé napieé w cieg-
nach.

Nalezy podkreéhé Ze postac pasa gérnego jest dowolna, byle mozna bylo umiescié
na nim skrajne wezly sieci.

Umieszezanie cigzaréw bezpofrednio na wezlach wewnetrznych (tj. takmh jak
F, G, H itd.) nie jest objete powyzsza teoria; moze ono doprowadzi¢ do zerwania
konstrukeji juz przy nieduzych eigzarach.

Publikacje opisujace rézne wspélezesne struktury heksagonalne pomijajg sieci
przegubowe,

X. MITEAHXAYVC (Bponuas)
MOCT C WIECTHYTOJBHOU ®EPMOH

PESIOME

CraThd CONEPHKUT ONHCAHME (EePMH, COCTABIeHHON M3 NMPABHJLHEX MAPHUPHHX
IMEeCTHYTOMLHAKOB; 66 NpemMyumecTBa OyIyT NOKA3aHH Ha OpuMepe MOCToBoll depMu
(aepr. 1).

MocroBas HPUKpPENIEHA K BePXHEMY HeCyWleMYy HOACY LIPM IOMOIIM TpOCOB, nau
crepxuelt, 06pasylomux CeTh OPABHIbLHHX MECTHYTONBHMKOB. BepxHmi Homc mecT-
KUl I Hexo ZBMKEO CKpeNnués ¢ semuéi. Ha depreske usobpamena cucreMa u3 38 3BEeHbEB.
Tloxaskem, 4To TIOGOK Y3ed, T. €. KAKIAA TOUKA, B KOTOPOH COCTUHAIOTCA TPM CTEPIKHA
(TOUKH, RMUPHO BHENeHHHE Ha 4epreme, 0003HAYANT WAPHUDPH) HENOABMKHA IPH
mio6oM pacmpefelleHMH HArpysok Ha MocroBoi. HspecrHo, qro mpGas MIOCKAA He-
dopManys NPABAILHOTO MECTHYTOIBHEKA, COXPAHAWOMAA LIMHY €ro CTOPOH, YMeHh-
maeT ero Hiaomaxs. IlosTomy di06oe mepeMem[eHMe Y3Ia yMeHbUIaeT 00Iyio INOmIARb
CeTH, BCIENCTBEE Yero MOCTOBAas HOTHMMAETCA, HO STO HPOTHBOPEUMT FPABETATINM.

C HeDOXBHAKHOCTH YBJI0B CIEeNyeT PaBeHCTBO HANPAMEHHNE BO BCeX CTEPMHAX
(epMsi. BT0 CBORCTBO MECTHYroAbHOK PepMH OGmeryaer PacuéTs W YMEHBIIAET CTOH-
MOCTH KOHCTPYKIH IO CPABHEHKIO ¢ PepMaMu, ¥ KOTOPHX B BABHCHMOCTH OT Pacmperne-
JTeHMS HAUPY30K HA HIKHEM moAce, am0o ofMH CTepieHb, an0o APYroi MaKCHMAILHO
marpysmens (I reopema). PaBeHCTBO HanpsMeHW# B CTEPHHAX OHATONPHATHO OTPA-
JRAETCA TaKKe HA KOHCTPYKLMM BepPXHero Xosca.

Cxemyer IOMYepKHYTh, uro fepMa BepXHero mogca HPOUSBONBHA, NP YCIOBHH,
4T0 MOMKEA HA HOM DPasMEeCTHTh KpAalHue IMAPHUPHL CETd.

Teopua He HpeAyCMAaTPUEBAET HATPYSOK, MPUIOAMEHLHX HENOCPENCTBEHHO K BHYT-
peEHEM ysuam (Eampmmep k ysaam F, G, H n 1. p.). Jame ge60ablnne HArPYSKH TAKOT O
PONa MOTYT NPHBECTH K PaspyIIEHWIO -BCel KOHCTPYHKIUM.

IIy6rukanuu, ONACHBAKNIME COBPEMEHHHE NIECTHYTOIBHEE KOHCTDYRIHY, He
paccMaTpuBaiOT MAPHUPEHX ceTeif.



