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On the C*|C’ convergence

by L. JESMANowIcz (Torun)

1. Given two complex sequences z = (&y, @, ...) and ¥ = (Yo, Y1y «..)
we denote by %y their convolution, that is, the sequence defined by
the n-th term of the form

n
(m* y)ﬂ = Zﬂ"n—v% .
=0

The convolution hag the following properties:

(i) TRy =Yk,
(ii) (xx%y)%z=z%(y%2),
(iii) (z+y)%2z=2%y+y%z,

for arbitrary sequences z, v, 2.

By A° we denote Cesaro’s sequence of order a, that is, the sequence
with terms

A® —1 , A% = (a+1)(a +n2’) - (a+n)

for n>1.

It is well known that for any « and g
(iv) A% AP = A°HPY

The operator 8% which transforms the sequence z into the sequence
A" "%z, is called summation operator of order a and the sequence S(x)
= A" %z is called the a-th sum of the sequence x. From (iv) it follows
immediately that for any a« and B

(v) 84" = 4",

For any sequence x and for any a and # we have 8%(8%(z)) = 8°"/(z),
which may be written

(vi) 887 = 8*F,
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Since 8%x) = « for any sequence z, we have S° = F, where E denotes
the unit operator. From (vi) follows 8°S™° = §7°8" = E, so that the
operator §7° is inverse with respect to §°. In particular

-1
8 (@) = (%gy Ty — Tpy La—Tyy ...)

so that the operatar §~' may be called the first difference. It is to be noted
that the operator §~' differs from the operator 4 of the same name, for

4(@) = (Be— 2y, T— By, ...) .
2. Let = be an arbitrary sequence. If the sequence
Sz
Ad

defined for a # —1,—2, ..., converges to the limit s, we say that the
sequence z belongs to the field of convergence of the operator C* with the
limit s and we write

Ciz) =

z e Conv ('|s.

If the sequence C%(x) is bounded and K is the upper bound of the numbers
|Cr(z)], we say that the sequence z belongs to the field of boundness of
the operator C" with the upper bound K and we write

z ¢ Bound C*|K .

When the limit or the upper bound are not essential, we write simply
zeConv(C® or ¢ Bound(C’. Since C*=FE, v ¢ConvE or ze¢BoundE
denotes that the sequence x is convergent or bounded in the common
sense.

The operator C° is regular for any a > 0, that is, for any « ¢ Conv E|s
we have x e Conv(°s. For any f > a> —1 the operator ¢’ is an ex-
tension of the operator C° that is, for any e Conv(’s we have
z e Conv(’|s. For any a>—1, §>—1 and ¢+ > —1 the operators
C°C® and C**? are equivalent, that is, for any x e ConvC°C’|s we have
z e Conv(**?s and reciprocally. Moreover, if z e BoundC°C®, then
z ¢ Bound C**? and reciprocally (see Hardy [2]).

8. If there exists such a number s that the sequence C°|C?(x)— 3|

tends to 0, we say that the sequence x belongs to the field of convergence
C°|C? with the limit s and we write

x € Conv C°|C”)s .
If the sequence C°|C’(x)| is bounded and its upper bound is K, we write

z ¢« Bound C°|C°|K .
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We recognize in the case a =1, § = 0 the strong convergence put forward
in 1916 by M. Fekete and in the case a =1, # > —1 the strong summa-
bility of the order S+ 1 first introduced and studied in 1933 by
C. E. Winn {1].

In this note we consider the (0" convergence for a > —1 and
g > —1 (A. Zygmund pointed out to me that only the case —1<a<1
is to be considered, for, in virtue of Hardy’s Theorem, from the con-
vergence of C°|C°(z)—s| to 0 for a > 1 it follows that C'|C’(z)—s| con-
verges to 0).

THEOREM I. Ifa> -1, f>—1 and a+ 8 > —1, then
Conv C*|C?|s C Conv C**#|s ,
Bound €°|¢” C Bound C***.

Proof. We have, for a > —1,
|O°(C’(w))—s| = ‘C“(C’(:v)—s)| < C°|C%(w)— s

and, therefore, if z ¢ Conv C*|(”|s, then & ¢ Conv C* (’|s. Since the operators
C°C? and C**? are equivalent, we obtain ¢ Conv C**?|s. If z ¢ Bound C°|(?,
then from |C°CP(x)| < C°|C°(x)| it follows that & ¢ Bound C*C® and, there-
fore, « ¢ Bound C***.

THEOREM II. If ¢’ > a> —1; > —1, then
Conv C°|C%|s C Conv C*|C’)s ,
Bound (°|C? C Bound C*'|C° .

Proof. The theorem follows from the fact that the operator c
is an extension of the operator C°.

LEMMA 1. If, for a> 0, Cp(x) 28 o(1) or O(1) for m—oo, then, for
B> —1, OxA’r) is o(AL) or O(AL) respectively.

Proof. From Zygmund’s remark it follows that for our purposes
it is enough to consider the case 0 < a < 1, the Lemma being true for

any a > 0.
We have
C(4°z) 8(4°r) A% A’
A* A°A° 4°4%
whence
O;(Aﬂw) 1 N a—1 48 1 - a—1
= A ——vAvwo = - An-—vmv‘*'
Ol P
n n
1 Y a1, 48 8 a 1
+ An_ (A, — ARz, = Cp(2) + —— z,
A;Aﬁ% 2XAD— Afya, = O )+A;A,‘f§£m ,
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where
Eny = ASTNAS— AD) .

The sequence Ca(x) being o(1) or O(1) we show that > ez, is o(45)

r=0
or 0(A:™?) respectively.
n
Applying Abel’s transformation to the sum J 'e,x, we obtain
r=0

n

D ety = — D, 874(e) B4(@) + enns1 (@) .

r=0 r=0

Since epn+1 =0 and for 0<r < n

e) = AT (A8 — A8 — AT AP— Af)

= An e AT — AT AP — A,
we have

2 Enly = — ZA:+1(7—1)A7+1 S'(a’)

y=0

+ D 45N 4l — Af) @) = [+1T.
p=0
By hypothesis On(x) = 0(1), 0 < a <1, whence Cn(z) = o(1) and, there-
fore, Sa(x) = o(n). In virtue of the well-known fact that for any p > —1
and ¢ > —1

ZA _,0(4%) = o457

we obtain

n
T < D) Al Alvio(n) = Z A7 0(40) = o(477).

y=0

n

Since An—A%= 3 A%, we have, for > 1, [AJ—A) < (n—v)45™"

p=v+1

and, for f <1, |45— A% < (n—»)A%7", so that, for § > 1,
?

I < 457 D) 14572 (n— )0 (»)

=0

— A% ZA “1o(Al) = A2 10(45TY) = o (4%

y=0
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and, for A <1,

11 < )45 n—v) 480 () = D) 43730(40) = 0(43*).

Thus the lemma is established for 0 < a << 1.
LEMMA 2. If B>f">—1,e>¢ >—p'—1, then for any y > —e'—1
there is such a constant K that for any positive integers u,»
Ab Ay - AR 4Tty

+ == gy
Af+; Avﬂ+p.

Proof. Since for any > g’ and ¢> &'

phve ( v \* w \¥[ v\
< y
(u+2)* (~+v) u+v) (AH-v) (ﬂ+v)

we have, for u and » sufficiently great,
Aﬁj‘_: N I'(ﬂ+s+1) . ‘uﬂ,,a+y - P(ﬁ+8+1) . ‘uﬂ va’+7
A4 T DB+ (e+y+1) (u+9)f* T(B+1)I e+y+1> (p 9+
~_ TB+e+l) TE+IYI(E+y+1) AX ALY
~I'(p+1)T(e+y+1) I +¢+1) A;‘,:,' ’

whence it follows that we can find such a constant K that the inequality
of the lemma is valid for any positive g and ».

THEOREM III. If a >0, f# > —1, then for any ¢ >0
Conv C°|C*|s C Conv C°|C**js,
Bound €% ¢? C Bound C*|C°+* .

Proof. Since

, .| 8°+() 8*(4%(CP(z) — 8 4 3)
00|0ﬂ+ ((L‘)—sl = Aﬂ"" —sl=09° ( Aﬁ+c )_
S AP (CP(m)— 8°(A%|CF () —
_ oSO _ 510 )
APte APte
we have
f+e 1 A-:-lv e—1 28 B
G0 @) —s] < =5 2 A,fﬂ‘;A.—yAiny(w)——sl
1 Lid g s Lid Aa—lAn—l
= — — LnrLvop
- Z(;A Oho)—si ), =
u= =u

ZA“wﬁ(w)—sl = ";::;"_ .

y=0 /"'"
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If f+¢<0, then

n

8 1 avée—
GO @)1 <~z gz D) AUClw) —aliEy

u=0

Aa+a C‘H—G(Aﬁ Cﬂ(
= A AP |C"(@)—s]) .
Now, if e Conv(C®|C’s, then, for & > 0, O$.+‘|Cﬁ(a;) 8| = o(1) and, in
virtue of lemma 1, O"*’(A”lC’(:v)-—sl) = 0(A%), whence Cn|0""(x)—s|
=0(1). If zeBound(°|C’, then, for &> 0, C3"°|C%x)| =0(1) and, in
virtue of lemma 1, Oﬁ’,“(A’]Cﬂ(w)]) = O(Aﬁ), whence C5|C** ()| = 0(1).

If B+¢ >0, we choose 8’ and ¢’ in such a way that 8’ <8, & < ¢,
p'>—1,¢ >0and §'+¢ < 0. In virtue of lemma 2 there is such a con-
stant K that, for any u,»,

4547 KA,Q’A:’“

B+e = g'+e !
-Av+p -Av-}-n

whence

, E \,»r whem
ChlCP**(z) — 3| QWZA:Q |Ch(w)— 8| 455
n n “=0
=K i Cﬂ"'"(Aﬂ’ICﬂ(w)_sl)
A2 A" ’
and, therefore, this case is reduced to the previous one. Thus the theorem
is established.

THEOREM IV. If a >0, f > —1 and 0 < e <1, then

Conv C**°|C’|s C Conv C*|C**¢|s ,
Bound ¢***|C” C Bound C°|C*** .

Proof. If f+e< 0 (in this case from g > —1 it follows & < 1),
then referring to the proof of theorem III we have

ats
An C"’L'(Aﬂ[C'B(w)—sl) ,

CRIO @) —8] < 5o

whence, in virtue of the lemma 1, C4|C***(x)—s| =0(1). If f+&> 0,
we can choose such g’ that /> —1, g'<pf and f'+e<0 (for e >1
we have p’'+e& > 0). Applying lemma 2 we obtain (as in the proof of
theorem III)

A:+a

CalC**(z)—8| < K YTVTeS o3 (47| C(2)—s])
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whence, in virtue of lemma 1, C3/C°**(x)—s| =0(1). Supposing
z € Bound C***|C” by the analogous argument we obtain = ¢ Bound €°|C**".
THEOREM V. If a >0, 8 > —1, then for any ¢ >0

Bound C°|Cf ~ Conv C*|C?*!|s C Conv C*|C**"|s

Proof. It is enough to prove the theorem for 0 < ¢ < 1, since for
¢ > 1 the theorem follows from theorem III. We have

0 CP* () —s| = S’(S’(ﬁl :‘ s AP+
=C S’(S’E;c;; sA%)
j" ji Z A7 S)(@) — s4])
1 yras

+ D

I<u<ro ro<u<ye

= e +
An & At

where w is some real number of the interval (0,1) and which will be
chosen in a suitable manner.
If f+e<0, we have

GO @) =0l < s (ZA,._.

where

3 S

2 =141,
o<y
Aa Aﬂ+a Z'An—v 2 A::}.Aﬁ[Cp $)—8I

r=0 ro<psy
1 [ BB a—1 ge—-1
- AL|Ch(z)— s An, 4, "4+

+ ) A0 2 YLy an) (B ¢ 18 - O
no<upsn HEISR
1 1 ate—
m=—1 Z AP|CP () — 5| ASHS

A A no<p<sn

a+a-1
- A,H, D) AT AfCho)— sl 2

no<u<n ”-I‘
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Since, for nw < u < n,

A . ]
4ot = O(An—u) = O(A[n(l—m)l) ]
n—up
we have
n
1 Aa - a=
II" =0 (#Z An—iAﬁIGﬂ(w)—ﬂ)

u=0

=0 (———AZ“ 2l o (4%10% a:)—sl))

and therefore, in virtue of lemma 1,

e B
I =0 (A———‘”l;‘fi‘i") = 0((1—w)).
n

Now, for 0 <a <1,

1 S -1
IT' < m Z A,,]C,,(w)— 31A:‘[FIWIAEI‘(1'°I)/0]
L N
Afn(l_ N -1 A?(Tulu— )w)
< e pte 2, A5 OU(@) — 8| Afpg—y — o2
AﬂAﬂ <u<nw [rw—u)

Alna-on Ab
— oty b 4t 0%0) )
n4n

Afn—an Afna A5 o Pt
o) -ou-orort
It is easy to prove that for a > 1 II" = O((1— w)’), but, according to
Zygmund’s remark, this case may be ommitted.

Thus II = II'+II"” = O((1— w)), whence it follows that, if |1— w]
is small enough, the sum II is arbitrarily small.

Let o be fixed. Applying Abel’s transformation to the sum I we

obtain
Aa Aﬁ+a Z A”—’

D AT o) - 42" +

o<u<rw

‘ +1 +1
+ Afv(—w)l(sﬁ’m] (.’L‘) — SA[ﬂ,,,,]

Sz Am[Z A5 Y AT AL OE ) — sl +

=0 o< u<on

+ D) AT A Al IG5l | = T+ T

y=0
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Since, for any » and for fixed o,

+
[-(1-0:)] A[-m} <K Afmf ]

where K is some constant, we have

E ﬂ+ +1
H Aa Aﬂ+a An—v [vw]. ?vm] ((D)—&l o

v=0

Replacing the index [vw] by A we obtain

(nw]
y 1 )
r Aa Aﬂ+s : 2, Afga-nim A0 () — 8]
.—K Bte) f+1
Aa Aﬁ+, A[mul Clnw](A |C (.’D)—SI) ’
n n

whence, in virtue of lemma 1,

I"=o0 Al dini ) _ o(1)
A ALTe '
Next, we have

? 1 [+ Sd [
I = AP Z ASTOL (@) —s 2 el Vb [

ISu<ne slo<r<n

If 0 <a <1, then, for an arbitrary 0 ¢ (0, 1),

U ) Anevea( 3+ M)+

Sp<nod plo<r<ng M<r<n
DR AR CARC RN WtV Es] B3 E5 28
" nWd<u<nw plo<r<n
wiaere
P 1 a—
L S = gpve Z ARTICL (@) — | Afad-on ZlAm.l
e 0<u<nad v>ple
Aa—l f+1, ~8+1 1
<K VIV 2 4,707 (@) — 8| Afa—w)uio)
PR aLusnad
, Ay
<K 2 AL 8 () — 8
ndllp o<hmnod
a—1 1
< B 2R A0 el
n n
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Since, for 0 < a < 1, C3(4°*'|C***(z)—sl) = 0(44™"), this approximation
holds also for a = 1, whence I; = 0(1). Next we have

, 1 — am
I < Z AB OB (@) — 8] | Afnt—an] 2 A

A2 ASTe
0 p<nwd nI<r<n

Al-2’ o
L AR O T
A"A” 0 u<nad

, A:“‘l-‘z Al
K L}ﬁ_" O:L(Aﬂﬂloﬂﬂ(w)—-sl) —o(1)
nn

! 1 1 B+l a—1; 48—2
L=—m Y IARTARCHR] A48
AnAn M;ﬂw Nﬂ;ﬂ

1 o .
< Aa Aﬂ+n E: Alﬁ‘+lloz+l(w)—8‘ lA[(liw)p!w]lAn—Lu[m]
n<n

nwd<u<nao

~

~=

and

&—2
| Atn—aal
T
4545

< g A5 1Ak

A;Aﬁ-l-s
oA A8

A;Aﬁ-ﬁ

so that Iy + I3+ I3 = o(1) for 0 < ¢ < 1. Thus the sum I 4 IT is arbitrarily

small for 4+ <0 and 0 <a < 1. If 8+ ¢ > 0, we choose such g, &' that

>p>—-1,0<e <1, p'+¢ <0 and we apply lemma 2.

THEOREM VI. If a >0, 8 > —1, v > 0, then for any ¢ >0

. Bound C%|C? A Conv C°|C**?|s C Conv C°|C?*|s .

Proof. If y <1, then, in virtue of theorem III, x ¢ ConvC®C**s,
and theorem VI follows from the theorem V. If 1< y <2, then, in
virtue of theorem III, ¢ Bound °|C***™" and, in virtue of theorem V,
z € C*CP**™ %3 for any £>0. Now, making ¢=2—y, we obtain again
@ ¢ Conv C°|C**|s. If y = 2, then, taking into account that & « Bound 0°|C**?,
we obtain, in virtue of theorem V, xe ConvC?C’t'**|s for any e > 0.
Let s€¢(0,1) and 5 =1+4e¢; then 1 <9 <2 and e ConvCC** s,
whence # ¢ Conv (°|C’|s. This reasoning may be continued for y > 2 in
the obvious way. '

THEOREM VIL. If a>0, > —1 and y > —1, then for any e > 0
Bound ¢°|C? ~ Conv (|3 C Conv C*|C**|s .

2 AP OB (2)— 8| Afnar—s

o<usinw

Cria(4P1CP (@) —5))

N

)=t
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Prloof. Since Ch(x)—s—>0, we have, for any a>0 and & > 0,
050" (@) — 8| > 0. Now, let us choose such &' > 0 that y +¢' > . Applying
theorem VI we obtain theorem VII.

4. Cauchy’s product of the series ) an and ) b, is defined as the

nw=0 Ne=0

series. Y (a % b)s, where a = (a,, a,, ...) and b = (by, b,, ...). This classical

n=0
definition may be formulated in terms of sequences. If we denote £ = S'(a)
and y = S'(b), then the sequence S'(a%b) is Cauchy’s product of the
series S(a) and 8'(b) and may be called Cauchy’s product of the sequences z
and y. Denoting this product by -y we have

zoy = S(axb) = S(872) % 87(y) = 8z %y).

THEOREM VIII If € Conv C%|C’|s for a > 0, 8 > —1 and y e Conv C*|¢
for y >0, then x oy e Conv " P+ st.

Proof. It is to be shown that the sequence

S axky) _ (8°FP~ () % §(v)),,

0‘+ﬁ+y(w o ==
n y) A;+ﬂ+? A;‘l‘ﬁ‘l-r

n

1 -
- 2 820 (2) A? CY(y)

r=0

converges to st. Let us suppose that ¢ = 0. Since C}(y)—0, it is sufficient
to prove that the matrix

_ St (@) AY

Ay o
A: B+y

is a Toeplitz matrix, that is, it fulfills the following Toeplitz conditions:

(1) lima,, =0 for »=0,1,2,..;
n—o00
n
(i) Dol <H for n=0,1,2,..
=0
Since

8P z) = 7 A5 (CP(2) — s)] + 847,

we have
S!:;_—ly AP CP () — A? a+p-1 4y
o < (4%1C° (@) — 3)) el AZHE 47

+A+ T qot8ty °
A:ﬂv A;ﬂr

3
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Now, in virtue of lemma 1, C",‘.(AﬂlCﬁ(w)——sl) = 0(4%), whence
O (&%) (@)—sl) = 0(45"),  87(47|C%(@)—s]) = 0(45"),

and therefore an, = o(1) for n—>oco. Next, in virtue of lemma 1,

2':11’1 < 87 A°| 0P (@) —s|)

A:+ﬂ+y lsl
po=(
Aa'l- +
A0+ﬂ+7 =2 04| 0%(x) — s]) + Is]
Aa+y

= o o(A48)+ s} = 0(1).

Thus the Toeplitz conditions are fulfilled and the theorem is established
in the case t = 0. If ¢ 7 0, we introduce the sequence y' = (y,—1, y,—1,
ys—1, ...). Since 037**"(z)—>s and

CaP M@ o y) = O3 (@ o y') +107 ()

we have, in virtue of the result just obtained, C5'**(x o y)—>t-s.

THEEOREM IX. If @ ¢ C°|C%ls for >0, §>—1 and y e C*|C"|t for
B >—1, then oy e C°|CPTFH 51,
Proof. We have

zmm[

Aﬁ+p’+1 [Sﬂ(w) % 8 (¥)— st AP % AP )|

1
=gl

+[8%@)— s AP} % tA” + 847 % (87 (y)— 47T}
—%v—ﬂ {47 C%(z)—s]% APTCP (y) - 1]+

8P(z)— s AP % [ (y) — 1 47 ] +

+ AP CP(x)— 8] % 1A" + s AP % APTC% (9)— 1]},

‘whence
CAlOP T (@ o y)— st
n | ]
1 AS?
<5 D ar D, A0 — 410 )t +
p==0 y=0

11> U@ -4t 1ol ) a2, 42108 )~ 1)
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AT 48
IZA)C’OD)—SIZ A 102ty —t1+

,u=0 v+p
B A:_-t-yAf
+ 1t 2 ;A- lC a:)——sl Aﬂ+'ﬂ’+l -+
p=0 »=0 v+i

+ |s] ZA,‘i |CE(y) — 1] 2 Aj?l}'lfﬁ } :

If B+ p8'+1 < 0, then, in virtue of lemma 1,
0’10“"’*‘(:» y)—stl

<5 AWH { 2 A1C () — ) A%, O3 47167 () — 1)) -+

p=9

+ lt] A:l+ﬂ’+1 0:+ﬂ/+l(Aﬂ|Cﬂ(w)_sl) +ISIA:L+p+1 O?l+ﬁ+l(Aﬂ’|Cﬂ’(y)—t|)}

n

e | D, ALIC@)— slo (4575) +

F 1] 0(AZHHHY) 4 |s|o(A','.+p+"+1)}
1 , . ’
= W {O(S:ﬂ‘ﬁ +1(Aﬂlcﬁ(m)_ sl)) +O(An+ﬂ+ﬂ +1)l
non
a+p+p'+1
oty

+8’+1
A2 ABYP

If B+ ' +1 > 0, we choose such #, 7’ that f >F > —1,a' > f' > —1
and g+ p'+1 < 0. Then, in virtue of lemma 2, there is such a constant K
that for any u,»

ALAL K AL AY

= ™~
+8+1 +87+1
A5 A73L

and therefore we get the case just considered.

Relerences

[1]1 C. E. Winn, On strong summability for any positive order, Math. Zeit. 37
(1933), p. 481-492.
[2] G. H. Hardy, Divergent series, Oxford 1949,

Regu par la Rédaction le 2, 11. 1960



