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Pseudo-ordered polynomials over a finite field *
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1. Imtroduction. In 1902 F. R. Moulton [9] gave a constructior
of a non-Desarguesian plane. The construction essentially consists of
using the real plane and the lines of the real plane, except that those
lines with negative slope are “bent” on the z-axis. The question of gen-
eralizing Moulton’s construction of a non-Desarguesian plane is discussed
in a recent article by W. A. Pierce [10]. Pierce’s generalized construction,
which he calls a ‘‘Moulton construction”, is valid for any field and
a “psendo-order”’ defined over the field. This generalized construction
is bagically determined by certain one-to-one functions of the field onto
itself; these functions correspond to the “bending” of lines on the z-axis
in Moulton’s original paper.

One of Pierce’s results gives necessary and sufficient conditions that
his “Moulton construction” is an affine plane, and further, necessary
and sufficient conditions that the resulting affine plane is non-Desar-
guesian. For & finite field these conditions reduce to an order-preserving
property for the functions defining the ‘“Moulton construction”. In papers
by L. Carlitz ([1], [2]) the one-to-one functions possessing the order-
preserving property necessary to define affine planes and non-Desar-
guesian planes are explicitly determined for the case of a finite field.

In this paper generalizations of Carlitz’s results mentioned above
will be proved. It is anticipated that these generalizations will have
geometrical applications, possibly related to the work of Jérnefelt [5]
and P. Kustaanheimo ([6], [7]). .

This paper is part of a doctoral thesis written at Duke University
under the direction of Professor Leonard Carlitz. The author wishes to
express his graditude for the assistance rendered by Professor Carlitz
during the preparation of this paper.

2. Notation and statement of main results. Let F be a finite field of
order ¢ = p*, p a prime number. It iy a known fact that any function
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of F into itself can be rvepresented by a polynomial with -coeffi-
cients in F. A polynomial f(x) over F is called a permutation polynomial
if the values, f(x) for » ¢ F, are distinct. For references see [3], chapter V;
4], chapter XVIII. Throughout the remainder of the paper, a function
will mean any function of F into 7.

Let d be an arbitrary divisor of g—1. Set md = ¢—1. Define the
function

(2.1) Yalx) = rm
for any x ¢ ¥. Suppose the function f(x) is normalized, that is,
(2.2) f0)=0, fI)=1

and satisfies

(2.3) Valf (@)— 1) = Palz—9)

for all x, y e F. It is proved in sections 3 and 4 that such a function must
be an automorphism of F, that is,

(2-4) f(m) = Japis

where 0 <j<mn and d|p’—1. It should be noted that any funetion
satistying (2.3) is obviously a permutation polynomial and any function
given by (2.4) satisfies (2.2) and (2.3). This result reduces to Carlitz’s
Theorem [1] when d = 2 and p is an odd prime. In section 5 this result
is generalized slightly by removing the restriction that f(z) be normalized.
Now suppose 4, and d, are any divisors of ¢—1 and set
qg—1 = dym, = dym, .
Put
(2.5)

Fiw) =am,  Wyw) =am™

for any @z ¢ F. Let 1 and p be any two fixed elements of F such that
(2.6)

M1, uR=1.

In section 5 it is proved that any function f(z, y) of two variables which
satisties

{2.7) Pi(f (e, )~ 1 (2, y)) = 2Wi(w—2),

(2.8) Yy(f (@, y)—F(x, 2) = Py —2)

for all #,y, 2 ¢F must be of the form

2.9) 1@, y) = az? +by?’ 4o

where 0 <i'<n, 0 <j <n, d|pi—1, and dy|p'—1. Moreover

¥a)=2 and W) =pu.
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Again it is to be noted that any function given by (2.9) satisfies (2.7)
and (2.8). )

In section 6 the result of the preceding paragraph is generalized to
functions of m variables. The hypothesis for this generalization is that
the function of m variables satisfies relationships of the same type as (2.7)
or (2.8) for each coordinate and the conclusion is

[\/Ja

(2.10) F @y oy m) = S ag? b (0 <ri<n).

=,
[}
A

For a complete statement of this Theorem, see section 6. Carlitz’s result [2]
is obtained from this generalization when d& = 2 and p is an odd prime.

3. Case I of Theorem 1. In this section we shall prove some
preliminary results about any funetion satisfying (2.2) and (2.3). These
results lead to a simple proof of our first Theorem for the case that the
arbitrary divisor d of ¢—1 also divides p—1. We denote this condition
by case I. In the next section we consider the case drp—1 and denote
it by case II.

Recall that F is a finite field of order ¢ = p* and, for an arbitrary
divisor d of ¢—1, set md = qg—1. Also
(3.1) Valz) = am

for all 2 e F. We now formally state
THEOREM 1. Suppose f(z) 18 a funetion such that

(3.2) flo)=0, jA)=1.
Then
(3.3) Yalf (2)—F(y)) = Palz—y)

for any =,y eF if and only if
(3.4) flz) =a",

where 0 <j <n and djp'—1.
Proof. We first note that

Wil —y¥) = Palw—y)
for all z,y e F if and only if
xm(mm(pi—l)_l) =0

for all z e F. But this is true if and only if d{p’—1. Hence the necessity
of Theorem 1 is obvious and we need only show that any function satisfy-
ing (3.2) and (3.3) is an automorphism of F. In the paper of L. Carlitz [1],
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the Theorem has been proved when d = 2. Thus we may assume 2 < d
<g—1.
For any fixed ¢ e F, let

(5.5) y=f@+0—1().
It follows that '
Yaly) = Yalf(@+0)—1(e)) = Palo)
from (3.3). Thus, as « runs through the elements of ¥ such that ¥y(x) = a

for some a ¢ F, y also runs through the same elements. If « is an indetermi-
nate, then

(3.6) [ ti—f@+ar=[] m—fe)—a].

Yaz)=a Pa(t)=a
By definition (3.1),
[Pa(z)P =1
for any @ ¢F. The equation u?—1 =0 has exactly d solutions, say
@y, Tay ...y Tg. Hence
w—1 = (U— @) (U— @) ... (W—g) .
Replacing # by u», we o'bta.in

d

wmd—1 = ”(umwmi) .

=1

As wrd—1 = ya-1—1 = 0 is satisfied by every non-zero element of r,
each w™— z; has exactly m solutions. Whence

n (v—a) =wr—2; (1<Ki<d).
Pa(x)=a;

Also
(3.7) [l =i —al= w—fle"—a (1<i<a).

V()=

Combining (3.6) and (3.7) we have

[l w—twrol=fu—fo)—a @<i<a.

() =y
Applying logarithmic differentiation we get

1 _ m(u—f(e)"

W@ =y u—f(m—i-o) B (u_f(c))m_mi

icm°®
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Consequently
Vde) _ 0 ¥
T ;
(3.9) L b A ——
~ u—f(z+0) e o u—7f(x-+e)

_ \%ac,-m(fu—f(c))m“1
& w—f)"—a

B e () I o (e
(=)™ ~1& " ()"~

_ md (u—f(c))m_l

@) -1

Continuing, we have

51 Ya(x) _ md (u—7 (o)™ _ (w—f{e))"
“d u—f(z+0) (u—F(e)"—1 (u—Fle)™*—1
e R 1 s
(u—7(0)*—(u—7(e)) wl—u
Therefore
Yalx) (u—7 ()™
(3.10) ﬁZF"u—f(m—;-c):_ i
Using
wl—a = [u—fz+e)I'—[u—Ff(z+0)],
we have
D) W) [(u—f(@+ )" —1] = — (w—F(e)™ .
xelF
As
D Walw) =0,
weF
then
(3.11) D (@) [u— fla+ o)1 = —(u—F(o))™ .
TeF

Since the sum on the left remains the same when a linear transformation
is applied,

(3.12) D Wyw—o) [u—F (@) = — (w—F(c)" .

xeF
9*
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Expanding equation (3.12) and then equating coefficients of the u's,
we obtain
2 [\
(3.13) Do—e(") @ =0 (0<r<m@-1)
2eF
and
m 1l m(d— 9 -
(314) X (a—oy" ()" ) = (1 (N0 0 <r<m).
xeF

As f(z) is a permutation polynomial and f(0) = 0, the residue modulo
#*—a of f'(x) is a polynomial of degree < ¢—1 with constant term zero.
Thus let

md—1
(@) = 2 Wl (1<r<md).
j=1
By substituting this in equations (3.13) and (3.14) and equating coeffi-
cients of the ¢’s, we obtain

md—1
(3.15) (Md) <m) 3 Z =0 (0<r <m(@—1); 0<<s<m),
T fj:l xel
3.16 md ’Sjlbm N7 pndti=s pymt m b(r)
s () ) ~ ()

151"
O<r<<m; 0<s<<md).

In order to simplify equations (3.15) and (3.16), we use the known formulas

()

(=1)" (modp) (0 <7 < md)

i

and

E“S _ {—(]). (md|s) ,

Pry (mdrs) .

Thus equations (3.15) and (3.16) reduce to
(3.17) (m) Wania=0 (0<r<md—1), 0<s<m),
(318) (=1) ( ) » = (— 1)’(’:}) O 0<r<m, 0<s < md).
If » = 1, that is, md = p—1, then, by equation (3.18), » < m implies

degf (@) < m. If degf(x) =k >1, choose the least positive r such that
kr > m. Then r < m; for otherwise,

kr >k+m,
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as k, m >2. Also
kr<md=gp-—1.

For, if not, then
kr=md>2m>=m-+k,

as k<<m and d > 2. Thus r <m and degf(#) = kr > m. This contra-
diction completes the proof for the case n = 1.
Let # > 2. Put

(319) m=qtap+..+o,_p*', where O0<ag<p—1
for all 4. Let M denote the set of integers
(320) (30 + ﬂl_’p + e + ﬁn-—l?n_l y

where 0 < B; < «;. It is a known result [8] that (m) is prime to p if and

only if » ¢ M. By equation (3.18), if » ¢ M, then b = 0 for s > m. Thus
degf(z) < m. If also se M, then by (3.18), b’ = 0. Thus when r ¢ M,
the only nonzero coefficients by’ of f(x) are those for which s e M.
We now show that j(x) is & monomial in . Since prg—1, then a4 > 1.
Thus 1 and m—1 are in M. Hence degf™ ™ (x) < m and degf(x) < m. As

) (@) = F" (@) = 2™
by hypothesis (3.3),
fl@) = a*
for some % e M. Let

(3.21) k=vy+np+ .t ynad™t,

where 0 < y; < @;. Since the only nonzero coefficients b’ of f(z) for
any 7 ¢ M are those for whieh s ¢ M, then the residue modulo ¢—1 of 7%
is in M for any r e M.

To facilitate the remaining discussion, we make the following defini-
tion. The set of integers A is said to be closed with respect to a e 4, or
briefly, closed, if for any be.A4, ba e A. Thus we have that the set M is
closed with respect to k. Note that equality for the set M is congruence
modulo g—1.

‘We now restrict ourselves to case I, that is, we assume d|p—1. The
notation and general results in the preceding paragraphs will be used
again in section 4.

To prove case I, we note that

-1 _p-1
m=——qd =P~——d A+p+.+pvY).

-
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The set J consists of the integers

BoF Bup + oo+ B (0 < B < (p—1)/d)

and

E=yy+yp+.tyap™t (0<yi<(p-—-1)/d).

If the largest y;> 2, choose the least positive integer # such that
yir > (p—1)/d. Then » << m and hence r e M. We now show that kr < ¢—1.
It will suffice to show that ps < p—1 for all i. Suppose

p—1 p—1
B

-1 -1 —1
7¢T‘>ﬁ‘1=1‘)—2—+£§—> 22'61——-1'7’{;
as d>3. Then y(r—1)> (p—1)/d. Thus for the largest y;, w(r—1)
> (p—1)/d. This contradicts our choice of 7. Thus 7% < ¢—1. Hence
(@) = 2™ and re M, but k¢ M. This contradicts the fact that M is
closed with respect to %. Therefore y; <1 for any d.

It % 5= p7, then
ko=ps4+..+p',

where 0 < 8 <t< n—1. We now show that there is an » ¢ M such that
rk ¢ M, which is a contradiction. To prove this, it will suffice to show that
there is an r ¢ M such that

P p ¢ I,
n—1. For, if this is true, choose an 7 ¢ Al such that

rd4..Fpt-é M.

Then, as M is closed with respect to p* and with respect to pn-s,

rpf(l+...+pi—s) e M,

where 0 < % <

that is, rk ¢ M.
In order to show there is an 7 ¢ M such that
r(l+...+p¥) ¢ M,
let
bo=1+..4p%,

where 0 < u < n—1. Then

1+ )2 -u)h=1+...+p“+(pd 2t +(£—-1-)p”

E[( )+1]+ +p“+( )p”““—i— (modg—1).

Hence

(1+( )pn—u>he M, '(1+p;1

This completes the proof for the case .d|p—1.

p”‘"’) el .

icm°®
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4. Case I of Theorem 1. To complete the proof of Theorem 1,
we need only investigate the case drp—1. In order to do this, we need
to determine an explicit formula for m, which was defined by (3.19).
But first we must determine the subscripts of the nonzero coefficients
in the p-adic representation of m. Let

(4.1) M* = {it a; 3 0},

the set of subscripts of nonzero coefficients in the p-adic representation
of m. Let

(£.2) K> = {j: p; # 0},

the set of subscripts of nonzero coefficients in the p-adic representation
of k. Let

(4.3) 8= (K* {n}),

the greatest common divisor of the integers in K*|J {n}. Set n = gé.
In order that the definitions of the sets K* and M* be consistent with
the definition of the set M, equality for the sets K* and M* must be
congruence modulo #. We also note here that K* C M*.
In order to simplify the notation in the following discussion, we set
olij) = ip'.
The function ¢ has the following properties:

PrOPERTY 1. If i e M* and j e K*, then o(y;,i-+j) e M and i-+j e M*.

PROPERTY 2. If ¢ M* and 0 < B < a;, then o(f,4)k ¢ M. In partic-
wular, o(as, 1)k e M for any ie M*.

To see that Property 1 is true we need only note that, for any ¢ ¢ 2*,
the fact that M is closed with respect to %k means g¢(1, ¢)%k ¢ M. Hence
e, %) o(ys,§) = e(ys, 4+§) ¢ M and also ¢+j ¢ M*. Property 2 is proved
by noting that 0 <8 < e; and 4 « M* implies ¢(B, 4) ¢ M. Hence, by the
closure property of M, o(B,4)k e M. In the remaining portion of this
section we will use these properties repeatedly to determine a represen-
tation of m.

LevmA 1. Let the set M be closed with respect to k. Then there exist
wndegers 0 = j; < jp < ... <<§, tn M* such that

[
M*=\J My, where M}=1{6-+j:0<e<g}.
g=1

Moreover the sets My are disjoint.
As 6 = (E* | {n}), then there exist integers a; and an integer a
such that =

Za{i-f-an:é.

1eK*
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For any a; < 0, let af > 0 be such that ain +a; > 0. Then

6= 2 ag+om = 2 bg (modn) ,

iek* PeR*
where
_ { a; if a; > 0 )

T ldnda; it ;<O
Hence b; > 0 for all ¢ ¢ K*. For any 4; € K*, 2i; ¢ M * by Property 1. As
24, ¢ M* and 1, e K*, then 3¢, e M*, again by Property 1. Thus, by repeated
applications of Property 1, any multiple of 4, is in M*. In particular,
b0y € M*. Suppose 4, e K*, 4, # 4,. By Property 1, for any o¢i, ¢ M*, we
have ci,+14, e M*. Now applying Property 1 to ci,+14, ¢ M* and 4, ¢ K*,
we have ¢i;+24, ¢ M*. Hence by repeated applications of Property 1,
we have ci; + fi, e M* for any ¢ > 0, f > 0. In particular, b;d; -+ byi, ¢ M*.
Thus by repeatedly applying Property 1, it is obvious that

D) b M*,

1€ K*

that is, 0 e M*. It is also clear that any multiple of § is in M *.
Put

Mi={cd:0<e<g}.

Thus M¥ C M*. Suppose M*— Mt # ¢. Let j, be the smallest integer in
M*— Mf. Then j, 0 as 0« Mf. Suppose 4, e K*. Ag j, ¢ M*, then by
Property 1, i,4j, ¢ M*. Applying Property 1 to 4 +j,e M* and i, e K*,
we have 2i,-+4, ¢ M*. Hence, by repeated applications of Property 1,
we have ¢iy+4j, e M* for any ¢ > 0. Suppose 4, € K*, 4, # ¢,. Then, as
ciy+j, € M*, we have ci,+4,+j, ¢ M*. Applying Property 1 again, we
have o¢i;+2i;+j, ¢ M*. Repeated applications of Property 1 leads to
¢l +fia+jy € M* for any ¢ >0, f > 0. It is now obvious that

) b+ = b+ ] (modn) |

1eK*

is in M*. Also any integer of the form edj, for ¢ > 0 is in M*.
Let

MY ={ed+jo:0<ec<g).

Then MY« M¥ C M* If M*—(Mf o M) + ¢, we use the same method
as above to obtain a third set

MF = {eb+j5: 0 < ¢ < g},

icm
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where j,is the least integer in M *— (M o M¥). Thus we have MY v M3 o
v M3§ C M* We continue until

a— Mt =g,
=1

Thus
M= (2.

=1
Moreover, 0 <j, <jz < ... <je. Lot
(4.4) L = {0, Ja, fs, weey feb -

‘We next note that the sets M} each contain g distinet integers (modn}
and are disjoint. For 63-+f, = f8+j, (modn) implies ¢6 = fé (modn) and
hence ¢ = f (mod g), a contradietion. Thus the elements of M7 are distinct
(modn). Also ¢8-+j, = f0+ju (modn) implies j,=j.+ (f—e)é (modn).
But, by our choice of j,, this is impossible unless » = # and f = ¢. Thus
the sets M} are disjoint and the Lemma is proved. )

Now put
(4.5) N=1{0,1,2,..,n—1}.

It M* == N, let w be the least integer not in M *. Then the set of integers
(4.6)

are incongruent (modn) and are not in M*. For wted =w-+ f6 (modn)
implies ¢8 = 78 (modn), or ¢ = f(modg), a contradiction. If w-+6d =j+
+16 (modn) for some j e L, then w = j+(f—¢)é (modn), a contradiction
as w ¢ M*. Moreover, for any distinct j+ué and j--(u-+1)d in M*, there
exist an integer of the form - ¢d not in M* such that

jtud<wted<j+(ut+1)é.

W, w08, ..y Wt (n—8)

‘We now see that

g—1
m = Z 2 PP,

jeL 2=0

(4.7)

where a4 5= 0 for all z and §.
If Theorem 1 is false, then

(4.8) k= pap®+ ... tyup? (0<s<ti<y),
where yg =1 and yw > 1.
Let
(4.9) y' = max y;,
ieK*
(4.10) o' = min a;.
feM®
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We note here that ' < o' For, if ' = yys and o' = ayy; for some j eL,
then [(n—u-+v)6+j]ed* Thus, by Property 1, o(yus, (n—u-+n)s-L
+j+ud) e IU; that is,
ymp(n,-—u—i-r)d-{-:i-i-ud = yuapm-ﬁ (modq—l)

is in M. Thus yus < awerj, that is, ¢’ < a'.

We now show that = 1. To do this we consider two cases, namely

() M*=N,

(ii) A~ N.
We note that y’ = 1 is obvious for the case p = 2, which is excluded from
the proofs of the following two Lemmas.

LEnnra 2. Let the set I be closed with respect to k. Suppose M* = N
Then -

Y =maxy; =1
ieK*

g—1
m = Z o Zpﬂ"” .

jeL 2==0

and

We first show that o' < p/2. For o > /2 implies that

P n— —1_4-
m>§(1-1—...+p d 1) Zﬁ-g—lq—{z—v > 2‘2-1' .

But mﬁ: (g—1)jd < (g—1)/2. Thus o <p/2. As Yy <o, then 1< y'

< ,13/2. ,suppose 2 <y' < p/2. Let r be the least positive integer such that

7y’ >a'. Then r < o' and 7y’ < p. For

SR Y N

izzuplies (r—1)y" > ¢, contradicting our choice of r. Let a’ = a, and
V' =voforueM*andveE* Asr< o and u-+(n—o) € M*, then g (r, u--
+(n—2))% ¢ M by Property 2. As 7y’ < p, then

,,-yvpu-}—(n——u)-l—'v = 7”)/1;17“ = ry/pu (mOd q_ 1)
s in M. But a8 79’ > a’ = a,, this is a contradiction. Thuy 5’ = 1,
" \Yé*now show that Gustj == Gopj, Where j e L. Suppose v < u. Ag vd -
j e M*, thc?n ]}’roperty 2 implies o(awsrs, ¥0+9)% ¢ M. Since p' =1, then
géa,ﬁ:‘.,’, 'u& +7 +’bl) e M for any ’i]_ e K*, Thus, for ’01_ SK*, Qpgtg < Qg fpe o, and
:Ve-{—hy +iy € M*, Henee. by. Prqperty 2, o(austy, V6 4+ 414)k e M. Ag y’1= 1,
T ! ave g(al,.w‘, 06+j 4 414,) € M for any t1y % € K*. It is now obvious
at We can raise the exponent of p by Property 2 until we obtain
0+ D bilu—)i = us+j (modan) .

1eK*

* ©
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Thus we have o(aw:;, w0 +j) e M. Hence awsyj < tusss. Also by Property 2,
o(aystj, wd-+j)k ¢ M because ud-+je M* Since y =1, then o(auw:s,
ud--j-+14) e M for any 4, e K* ThUS auysij < tustjri 10T any 7, e K* By
applying Property 2 again, we have p(auscj, ud-+j+i)ke M. As ' =1,
then g(ausyi, u6+7-+14;+14) e M. It is now obvious that by repeatedly
applying Property 2, we can raise the exponent of p until we obtain

ud+j+ 3 biln— (u—v))i = v8+7 (modn) .
iek*
Thus g(austs, ¥6+7) e M. Hence aysij < dpssj. Therefore auers = apssj.
Lemma 2 gives us an explicit formula for m and the value of y* when
M* = N. The following Lemma disposes of the remaining case.
Lenora 3. Let the set M be closed with respect to k. Suppose M* # N.

Then
A// P .nla,x Vi = 1

ieK

and

g—-1
m = E aj 2p55+7' .

jeL 2==0

To prove y’ =1 when M* 3= N, we first show that, for any j e L,
dysrj = Qprj- Ve note that in this case there is & w such that 0 < w <a
and we M*. Moreover, if w is selected as the least such integer, then
wiecbg M* for 0<<e<g. Let jeL and suppose Gus:j < Gpssy. L€t
r = 0(arsrs; 6+§) € M. Hence rk e M, that is,

(4.11) usti YssDETPTT 4+ Qo i p T

isin M. Between the residue (modn) of (s +2)d+4 and the residue (modn)
of the subseript of the next nonzero coefficient in rk there is at least one
number of the form. w--¢d ¢ M+ This is true for any two successive sub-
scripts of nonzero coefficients in 7k. Also there is a number of the form
w--cd which is greater than the largest subscript of the nonzero coeffi-
cients in 7% or is less than the smallest subscript of the nonzero coefficients
in rk. Thus there can be no addition of terms appearing in (4.11) when 7k
is reduced (modg—1). Hence we have o(yi@usyi, v6+7-+14) e M for any
i, e K*. Therefore g@(awsj, v6+7j+14)e M for any 4, ¢ K* Thus auwy;
< parj+y TOT any 4, € K*. Hence by Property 2, o(aw+ss v6+]+i)k e M.
Again we note that there can be no addition of terms when o (s, v6 +
+j+4)k is reduced (modg—1). Therefore o(yyaus+j, 96-+j-+4i+1) e M
for any 4,4, e K* Thus g(awsj, v8-+j+i-+14)e M for any 4,4 ¢ K*
We can continue to use Property 2 until the exponent of p is

(412) w84+ 2 bi{n— (v—m))i = ud+j (modn) .

ieK*
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Thus we have o(yituwss, u6-+7) e M for some ¢ e K* If awyjys < p, then
Ura+i Vi < Ays4ie But then s+ < Qus+iy & contradiction. If Qpa+5Y > P
then ayse; = P—1 3 psyj > Gusts. TLENCE Quarj = Groyy fOT any jel.

We now show that ' = 1 when JM* = N. Suppose y' > 2 and y' > p/2.
Let w be the least integer such that w ¢ M* Then w # 0, w—1 > 0, and
w—1e M* Let y' = yus and w—1 = v5+j for some jeLl. As o' =y =2
and [(n+v—u)d+4j]e M*, we have by Property 2

(4.13) optnto-uetif ¢ M .

Following the same method of reasoning as used above, we see that there
is no addition of terms in (4.13) when reduced (modg—1). Thus we have
2y’p(n+v~ﬂr)5+ud+i e M.

But
2y’p(n+u—-u)d+1ld+;i = Zy’pvﬁ-]' (mOd{[*—'l)

and p <2y <2(p—1). Hence
(4.14) 27/pw+i = (2y’_p)pva+i+p'ud+i+1
= (2y'—p)p* 4 p* (modg—1).
Thus a, 5 0, which contradicts the hypothesis that w¢ M*.
Suppose 2 <y’ < pf2. Let w be the least integer such that w¢ IM*.
Then w # 0, w—1=>0, and w—1 e M*. Let 9 = yyus and w—1 = v6-+7
for some j e L. Select the least 8 such that By’ > ap—. Then B < cy-1

= dysrj. Thus f < azy; for any « such that 0 <@ < g as these coeffi-
cients are all equal. As [(n-+v—u)d-+§] e M*, then, by Property 2,

(4.15) Bplntv-wstik ¢ I

By the same reasoning as used previously, we see there is no addition
of terms in (4.15) when reduced (modg—1). Hence

ﬂyMp(n+'u-—u)d+J'+ud e M.
But
(4.16) Byuapnomibtitus = By'pwti (modg—1) .
If By’ < p, we have a contradiction because gy’ > auy;. If p < fy’ < p%/2,
then

(417) By' Pt = (Ap + &)p*t! == gp®ti+ Jp* (modg—1),

vvihere By'=Ip+e 1<A<pf2, and 1<e<p. Hence o, % 0, contra-
-dicting our hypothesis that w ¢ M*. This completes the proof of Lemma 3.
From Lemmas 2 and 3 we now have

. g—1
ne 3o S

jel z=0

{4.18)
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and

(4.19) F=pot..+pf (0<s<t<g).

With m given explicitly by equation (4.18) we can complete the
proof of Theorem 1. Suppose M* = N and let o’ = ays-; for some j e L.
As noted in Lemma 2, o' < p/2 since I* = N. Let

P o= aw+jp(n—t+u)6+j+p(n—s+u)a+7"
which is in M. Then

(£:20) 7% = qyppypHIHIn— oML sy ypetT 4

-+ pud-l-] o .:_pud+7+(t*s)6

is in M. But the coefficient of p**7 in rk is ays;;+1, which is greater
than ayssj. Thus, if as:;+1 < p—1, we have a contradiction. If p > 4,
then

apsi+l=d+1<E11<p-1.

As M* = X excludes the cases p = 2 or 3, this completes the proof of
Theorem 1 when M*=X.

Suppose M* == N. Let w be the least integer such that w ¢ 2[*. Then
w0, w—1>0, and w—1 e I* Let w—1 = ud-+j for some j e L and

o= au‘sT,j:p(n—H'u)dH+p(ﬂ-‘8+u)6*7' .
Then » ¢ [ and hence

(4.21)

Tk = aypq g pUtTITIU=O0 L s p e
_;_pud—j—i - _}pu¢§+j+(t~.9)a

must be in 3. But the coefficient of p*+7 is «ys-5+1, which is greater
than aysej. If ayses+1 < p—1, we have a contradiction. If aysr;+1 = p,
then

(%+j+1)p1'd*j - pu5+f—‘,l = pw e .

This contradicts our hypothesis that we M* and completes the proof of
Theorem 1.

It is worth noting that the proof of Theorem 1 when dtp—1 is also
valid when djp—1.

5. Generalization of Theorem 1 to functions of two variables. We shall
now generalize Theorem 1. Tn Theorem 2 we relax the condition that the
function be normalized. We then prove Theorem 3, which is a generaliza-
tion of Theorem 2 to functions of two variables.


GUEST


142 R. McConnel

Recall that d is an arbitrary divisor of ¢—1 and md = ¢—1. Also
(5.1) Yyz) = am

for any z e F,
TuEorREM 2. Let A be o fived element of F satisfying A% = 1. Let f(x)
be any function such that

(5.2) Palf (@)—1(y)) = 1¥alw—1)
jor any x, y e F. Then
(5.3) f(@) = az?’' +b
for some i in the range 0 < i < n. Moreover
(5.4) Vala) = 4.
Proof. Let
(5.5) f@) = a2+ a2+ .4 am (ap #0)

be any polynomial satisfying the hypothesis of the theorem. By hypoth-
esis (5.2), f(z) is a permutation polynomial. Consider the polynomial

(5.6) gla) = L=

It is easily seen that g(x) is a normalized permutation polynomial such
that

(8.7) Yalg (@) — g(y)) = Palz—y)
for all #, y < F. Hence g() satisfies the hypothesis of Theorem 1. There-

fore
(5.8) g(z) = o

for some ¢ in the range ¢ <4 < n. Combining (5.6) and (5.8) we obtain
the desired result.

We now generalize Theorem 2 to include funections of two variables.
Recall that d, and d, are any divisors of ¢—1 and

Mydy = Molly = q—1 .
Also

(5.9) Vi) =am, Wyx)=am
for all weF. Let 1 and p be fixed elements of F such that

(5.10) Mm=1, =1,
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THEOREM 3. Let f(z,y) be a polynomial in z and y with coefficients
in F. Then

(5.11) Yll(f (2, y)—F(z, ?/)) = W¥(r—=z),
(512) Pilf (@, 9)—1 (2, 2)) = w¥(y—2)
for all x,y,zeF if and only if

(313) (@) = aor' +-by? 1,

where 0 <4 <n, 0<j<a, d|p'—1, and dyjp’—1. Moreover
Yia)=2 and Fb)=uau

Prooi. The necessity of Theorem 3 follows easily from the same
argument used in the proof of the necessity of Theorem 1. It is also obvious
that, for any polynomial of the form (5.13) which satisfies (5.11) and (5.12),
we must have d;|p*—1 and d.|p'—1. Hence we need only prove that any
polynomial satisfying (5.11) and (5.12) must be given by (5.13) with

Yia)=24 and W) =np.
Let y be any fixed element of ¥. Then from Theorem 2, we have
f@,9) =ax?+b, ¥la)=1i (0<i<n).
Similarly, for any fixed =,

@, ) =cy?’+d, Wlo)=p ((0<j<n).

Therefore

(3.14) f(@,9) = a(y)a?” +b(y)

and .
(5.15) flz,y) = o(x)" +d(=),

where a(y), b(y), ¢(z), d(x) may be chosen to be polynomials in their
respective variables with coefficients in F. Also i(y) and j(z) satisfy
0<i(y) <n and 0 <j(z) <n for any z,y ¢ F.

For the case n = 1, equations (5.14) and (5.15) imply

(5.16) f@,y) = amy+bz+cy+d.
But, by hypothesis (5.11),

Vil(ay + b) (w—2)] = A¥y(x—=)
for all #, y, 2z e F. Setting #—z = 1 results in

Pilay+b) =4
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for all y e F. It a # 0, then, for y = —b/a, we have

Py =0=1.
Hence a = 0 and the Theorem is proved for # = 1.
In the general case let
={y:i(y) =1},
where 0 < r < n. Let g.(y) be the unique polynomial of degree < ¢ such
that
@) {1 (y € M),
gly) = )
M=V (ean.

Then, by (5.14),

=1

fle,y)=aly Z 9(y)s®" + b (y)
or
n—1
(3.17) J@, ) = aly)z” +b(y),

K

]
o

where a.(y) for 0 <r<m—1 is a polynomial in y only. Similarly,

using (5.15) we have that

1

3

{5.18)

l\ﬁ

fa,y) = 2, edw)y? +d (@),

'

i
<

where ¢,(x) is a polynomial in # for 0 <r < n—1.
From (5.17) and (5.18) it is evident that

-1 n—1 n—1 -1
{5.19) z,Yy) S‘ E TP Y2 - Vbsaﬂ?‘—l- 5‘ ey +d,
8=0 r=0 8= 0

‘where a,s, bs, ¢, and d are elements of F. Applying hypothesis (5.11),
we have

n—1 n—1

#[ Y D anlw—apry+ 2 w—2p'| = 1P (@—2)
8=0 r=10

for all x,y, 2 eF. Setting y = 0, we have

n—1
7 D byle—
=0

for all @, 2z <F. Thus the function

 EPLACEP)

n—1

h(z) = Z

§=0

bywv®
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satisfies the hypothesis of Theorem 2 and hence all b, = 0 except one,
say bs,. Moreover 7y(b,) = A. A similar argument applies to the coeffi-
cients ¢, in (5.19) by using hypothesis (5.12). Thus we have
n—1 n—1
5 S i v s,
8=0 r=0
where ¥i(bg,) =4 and ¥,(¢,) = u.

To complete the proof of Theorem 3 we need only show that the
matrix [a,] of coefficients in (5.20) is the zero matrix. Applying hy-
pothesis (5.11) to f(x,y) we have

(5.20) ©,Y) =

n—1n—1

¥, [ 2 2 Qrs Y7 (2 — 2)P" + b, (22—

§=0 r=0

2| = 1 (w—2)

for all @, y,z eF. For a fixed y, let

n—1 a-—1

D[ D aney]aw* -+ buge .

8=0 r=0

(5.21) h(z) =
Then k() satisfies the hypothesis of Theorem 2 and must be & monomial
in z. If a5 = 0 for r =0, ..., n—1, then [a,] is the zero matrix because
% (z) always contains the nonzero term bga®%.

‘We now show that, for p > 2, any nonzero elements in the matrix [a,s]
must occur in the s,-column. Suppose dr, # 0 for some s, #* s, and
4,5 7 0. Consider the polynomials

n—1

(5.22) D ey +bays
r=0
n—1
(5.23) D
r=0

There are at least ¢— p—* values of y ¢ F for which the polynomial in (5.22)
is nonzero. The same is true for the polynomial in (5.23). But A(x) must
be a monomial in x. Thus the elements of ¥ for which the polynomial
in (5.22) is nonzero are distinct from elements of F for which the poly-
nomial in (5.23) is nonzero. Thus

2(g—p~) < ¢

or p < 2, a contradiction. Therefore, for p > 2, the only nonzero elements
in [ays] oceur in the s-column. In a similar manner we prove that, for
p > 2, the only nonzero elements in [a, ] occur in the r-row. Hence,
for p > 2, the only element in [a,] which can be nonzero is ay,.

Acta Arithmetica VIII 10
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To obtain the same result for the case p = 2, we use the following
LeMMA 4. Let F be a finite field of order q = 2" Suppose

n—1 n-1

wa=[ 5 ][ 3 nasa],
r=0 8=0

where a,, bs e F. Then
a, ="t and by =n¥

for some n # 0.
Proof. Equating coefficients we obtain the following identities:

ay =1,
' 2
a; = by = by, 1= by = a1,
3 4
Oy =by =a;, by=ab,=ay,
7 8
Oy = by = a1, by=ahy=a,
2r—1 or
ar=ay ", by =m

Setting n = ¢ we obtain the desired result.

We now consider the matrix [a,] for p = 2. First we show that at
most 2 columng, or 2 rows, can contain nonzero elements. Suppose there
are w columns in the matrix [a.] containing nonzero elements and let

-1 n~1

n—1
(324) D ay, oy D e by ey D) Gy
r=0 r=0 r=0

be the corresponding polynomials defined by the rows in [a,] containing
nonzero elements. For any y ¢ F, the function h(w), defined by (5.21),
must be monomial in . Therefore, for any y, ¥ must be a root of w—1
of the polynomials in (5.24). Thus the system of polynomials in (5.24)
must have at least (w—1)2" roots. But this system of polynomials has
at most w2"" roots. Hence (w—1)2" <w2™* or 2 < wj(w—1). This
inequality is satisfied if and ounly if w < 2. Thus the matrix can contain
at most 2 columns with nonzero elements. Moreover, if there are any
columns containing nonzero elements, one of the columns must be the
s-column. A gimilar result is true for the rows in the matrix [aps).

When p = 2, suppose a,, # 0 for some 7, and s, 7= 0 for some
§ 7 &. Since h(z) is a monomial in #, then the polynomials

n—1

n—1
(5.25) 2 amnyﬁr + bsa ’ Z arslyzr
=0 =0

@ ©
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must have precisely 2" roots and cannot have a root in common. Thus
for any y e F,

n-1 n—1
[Z arsﬂy2r+ bso] I:Z arslyzr:l =0.
r=0 r=0

Therefore

n—1 A

1
[;arso?/ZT‘F bsn] [Z arslygr] _ f,&(yzn,_y)

]

for some & ¢ F' such that £ # 0. Applying Lemma 4, we have that all the
elements in the s;- column and all the elements in the s,-column are non-
zero. By a similar argument we have the same result for the rows of the
matrix [a,]. This is a contradiction unless n = 2. But for p =2 and
n = 2 Theorem 3 is obvious.

We have shown that the only element in the matrix [a,] which can
be nonzero is d,, . Therefore
(5.26) H@, y) = sty + b2™ -+ 0 y” + d,
where $ =5, and 7 = 7.

Now applying hypothesis (5.11) to formula (5.26) we have

P (arey? (@ —2)P* + bs(x—z)p') = AP (z—=2)
for all z,y,zeF. ‘Let‘ting z—2 = 1, this becomes
Vi (arsy? +bs) = A
for all y e F. If a, 5 0, then, for
y = — (bsfans)™ ™,
we have ¥,(0) = A. Therefore a,s = 0 and
flz,y) =ba" +oy” +d,
where ¥ (b) =1 and ¥,(¢) =pu.
6. Generalization to functions of m variables. We mnow want to

generalize Theorem 3 to functions of sm variables. Suppose we
have m arbitrary divisors of ¢—1, that is,

(6.1) dlg—1 (s=1,..,m).
Let
(62) Ts(m) —_ m(‘]—‘l)ld: (8 = 1, veey ’)nr)

for any « ¢ F. For each ¢ = 1, ..., m let A; be a fixed element of F' such that

(6.3) [RR L
We now formally state
10%
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THEOREM 4. Let f(&y, ..., Tn) be a polynomial in @, ..., &y, with coeffi-

cients in F. Then

(6.4) W f (@) erey Bs—15 Bsy Bot1y eey L) —
—F(@yry veey Bs—1y Ygy Bot1y very Em)]
= AWe(ws—ys) (8 =1,2,..,m)
‘for all m;, y; in F if and only if
m

(6.5) Httgy oy @) = D, @i +0 (0 <1y < m)

i=1
where

Yia) = Ay,  di|pn—1

for all i=1,2,..,m

The proof of the necessity of Theorem 4 is similar to that for The-
orem 1. Also, for any polynomial of the form (6.5) which satisfies (6.4),
we must have d;|pn—1 for all 4. Thus we need only show that any polyno-
mial satisfying (6.4) must be given by (6.5) with ¥i(a;) = 4; for all 4,

The proof goes by induction on m. Theorem 2 applies when m =1
and Theorem 3 applies when m = 2. Thus suppose the Theorem is true
for some m > 2 variables. For a fixed « = #p.1, hypothesis (6.4) and the
induction hypothesis imply

F(@1y ey

m

=2 aa)

i=1

17m(a))

(6.6)

Ly &

+b(w).
For a fixed x,,

F @y oeey ) @m) «

In a method similar to the one used in the proof of Theorem 3, we may
write (6.6) and (6.7) as

wey ¥, We have by Theorem 2,

(6.7) Tm s m) = a(By, ..., mm)mpr(m....,acm) _J‘_a(wl’

n—1 m
(6.8) f(@1y oeey Tmy ) = 2 Z (@ @),
j=0 t=1
(6.9) F@1y ooy By @ Z“ﬂ xl, 3 @) 207 +6(@1y ey W),

where ag(x), b(2), ai(#s, ...y @) and ¢(@y, ..., o) are polynomials in their
respective variables with coefficients in F. Comparison of (6.8) and (6.9)
yields
(6.10) y Bmy )

n—1 n—-1 m n—=1

—222%1:001 i +2b$p]+2 v%aﬂ) +d

k=0 j=0 i=1 J=0 'l—l

AP

where agy, b;, ¢, and d are elements of F.
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Applying hypothesis (6.4) to equation (6.10) results in

D @y + Zb(w 7] = tmia¥nisla—y)

for all a4, x, y in F. Thus for x, = ... = @, = 0, we have

n—1

m—H[ ? b 1‘ J J*‘lm-}—l!pm-i-l(m_y)

7

for all z, ¥ ¢ ¥. Hence the function

satisties the hypothesis of Theorem 2. Therefore all the b;’s are zero except
one, say b;,. Moreover ¥,,;(b;) = Ani1-

For any ¢ such that 1 <4< m, the application of hypothesis (6.4)
to equation (6.10) yields

n—1 n—1 n—-1
W[ 3 ) ale— g +  clwi—ya”| = 18— i) -
k=0 j=0 7=0

Setting # = 0, we have
[ X eylai—yo”| = 1ai— v
=0

for all z;, y; ¢ F. Therefore the function
n
E 0,‘7-.’1‘1?7
i=0

satisfies the hypothesis of Theorem 2 for each ¢ such that 1 <4< m.
Thus for each 4 the coefficients ¢;; are zero except for one, say ¢;;. More-
over ¥i(ey) = A for each 4. Therefore (6.10) reduces to

n—1 n—1 m

Z Z Z piy T2 1 ba ””—l— 2 a,m”"—{-d

k=0 j=0 i=1

(6.11)  f(wy, ...

s Tmy &

where b = b;, and ¢; = ¢y;.
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We must yet show that all the coefficients a;. are zero. Applying
hypothesis (6.4) to equation (6.11) results in the following identities:

n—-1 n—1 m .
i i
612) Pun| D D D apallw—y)" +b(z—y)"]
k=0 j=0 s=1
= }.m.‘qylm»i»l(m" /'/) )

ks i
(613) %] ana? (@i ya)” + edwi— )" |

k

[
=
<,

[l
>

= Z”[jl(.ll——y;) (’L == 1, vy ’M)
for any @, ¥i, %,y e F. For a fixed 4, we set ay = 0 in (6.12) when s #4
and obtain

n—-1 n—1

(614)  Tas[ D) ) aial(w—9)” +b(@—9)""] = hnir ¥ iala—1)

k=0 j=0

for all @y, x,y e F. Put

n—1 n—1 . y
vk, pl wl e
hi(z, x;) = 2 Za/iy'km xp +ba” ey
k=0 §=0

Then equations (6.13) and (6.14) show that hy(», a;) satisfies the hy-
pothesis of Theorem 3. Therefore

n—=1 n—1

ok !
D) 2w et = 0

k=0 j=0

for any # and z; in F. This is impossible unless a;; = 0 for all § and Z.
Since this is true for any ¢ such that 1 <7 < m, we have

m
i P
F(yy orey By ) = DP + 2 el +d,
i=1
where W¥y,41(d) = Aty and Wi(e) = 4;. This completes the inductive
proof.
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