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On primitive prime factors of Lehmer numbers I

by
A. ScHINZEL (Warszawa)

Lehmer numbers are called terms of the sequences
("= B")/(a—P),
(a"— B (a*—p%) ,

where « and B are roots of the trinomial 22—I12 2+ M, and L and M are
rational integers (cf. [4]). Without any essential lost of generality (cf. [9])
we can assume that

1)

n odd,

7 even,

Ppla, f) =

L>0, M#0, K=L—4M=0.

Lehmer numbers constitute a generalization of the numbers o"—b"
(@, b —rational integers). A prime p is called a primitive prime factor
of a number a"—b" if

a"—b"  bub ra*—b*  for k<nm.
p P

A proper (not merely automatical) generalization of this notion for
Lehmer numbers is the notion of a prime factor p such that

| Pn PptELPy... Py s
or, which is easily proved to be equivalent,
2| Pn

D. H. Lehmer [4] calls such primes p primitive extrinsic prime factors
of P,. In a postscript to my paper [7] I stated erroneously that Lehmer
calls them intrinsic divisors, the term which has been used in a different
sense by M. Ward [9]. To simplify the terminology, I adopt in the present
paper the following definition.

DEFINITION. A prime p is called a primitive prime factor of the number P,
if p|Py but prKLPg...Ppy.

but

but pinPs..Ppy.
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Assume that, besides the restrictions on L, M stated in (1),
(2) (Ly M) =1, <L, M) #<1,153, 2,15, 3,15
(i.e. fla is not a root of unity).

Then it follows from the results of papers [2], [7], [9] that for
n#1,2,3,4,6, P, has a primitive prime factor except

for K>0 ifn=5,<L M)=<1,—1>, n=10, (L, M) = 6,1,
n=12, <L, M> =<1, —-5>, <5,1>

for K <0 if n< n(L, M)

where n, can be computed effectively.

I proved in [6] a theorem about numbers " b™ with two primitive
prime factors. A. Rotkiewicz [5] generalized this theorem to so-called
Lucas numbers (which correspond to Lehmer numbers for I'2 being
a rational integer) under the assumptions M > 0, K > 0.

The main aim of the present paper is to generalize the above theorem
to Lehmer numbers. To state the generalization in a possibly concise
manner I introduce the following two sets I, MN:

M = KL, M>: (L, M) =1; <L, M> =12, — 25>, (112, 25> or
1< | M| <18, 2M+2|M|+1<L

<min(64+2M—2|M|,2M + 2| M|+ 4 | M2+ 1)},

NR=(L, M>»: (L, M)=1, <L, M)y ="{4,—1>, <8,1) or
1< | M| <15, L=2M+2|M|+1}.
As can easily be verified, set I consists of 184 and set N of 32 pairs
<Ly M.

For an integer n = 0, let k(n) denote the square-free kernel of g,

that is n divided by its greatest square factor. The following theorem
holds.

THEOREM 1. For L; M satisfying (1), (2), put x = k(Mma,x(K, L))

and
_{1 if  x =1 (mod4),
T2 i x=2,3(modd).
If m#1,2,3,4,6 and ninx is an odd integer, then Py, has ot least two
primitive prime factors ewcept
1. for K >0, if n=n|x|, <L, M) e MC M or n = 3n|x|,
Ly My e N C RN or m=15, <L, M) = 9,1y or
n =10, <L, M> =<b,—~1) or
n=20, <L, M>=<,—-2>,49,2);
2. for K <0, if 0 < ny(L, M).
Finite sets My, Ny and function ny(L, M) can be effectively computed.
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Let us observe that the sequences P, and P, corresponding to <L, M>
and <max (K, L), |M|>, respectively are connected by the relation

P _{Pn it M>0o0r m even,
" Py/P, if M <0 and n odd.

Therefore the primitive prime factors of P, coincide with those of P, if
M >0 or n=0(modd), with those of Py, it M <0 and n =2 (mod4)
and with those of Py, if M <0 and # =1 (mod2). The remarks that
1 <L, M>eM or N if and only if (max(K,IL), | M|> e or N,
respectively,
2. sgnx = sgnM,
3. if » is even, n’s corresponding to » and — » are equal; if » is odd,
the product of these #’s is 2,
show that it suffices to prove the theorem for M >0, x = k(M max (K, L))
= k(LM).
Before proceeding further, we introduce some notation and recall
some ugeful results from paper [6]. For any integer » > 0 let

Qulm,y)= [] o~

(rr'51=1
where {, is & primitive nth root of unity. Put Qu(») = Qu(x,1) and simi-
larly for other polynomials later. Denote by ¢g(n) the greatest prime
factor of m. Further, for n satisfying the assumptions of Theorem 1, let 1
be the product of those prime factors of » which do not divide 7x, and
write » = nul, A = o™, B=f". To obtain. conformity of notation
with paper [6] one should make in the latter the following permutation
of letters: & —~Q, P—>R, Q8.
Then by Theorem 1 of [6] and remark that »> 2,

(3) . Qﬂ(mz) = w1,,,,(m)1p,,"(~m) ’
where (*)
) o @) = B (@) — #P08u,(a?) (7 >0),
[ e—tite) it »=1(mod4),
(raxl)=1
(5) = (p+itrl)ts) i  x =3 (modd),
(rxl)=1
I @z i % =2 (mod4)

(rand)=1
el =1

and R, 8 are polynomials with rational i.ntegréxl coefficients.

() (r|») is Jacobi’s symbol of quadratic character,
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Let us put, similarly as in [6], for & = &1,

6) Q(a, B) = v 4™, eB)

where arg AV% = }arg 4, arg BY? = Jarg B. Then, if a, g are real, a > >0,
we have for e = +1

(1) 10%(a, B)] > (max (4"~ B", G4+ {BYF),

8 10%a, B> RTA=B) 4O (13,5 =vja()

These inequalities were proved in [6] under the assumption that «,
are rational integers; however, the proof does not change if a, B are arbi-
trary real numbers.

Now we shall prove 3 lemmas

Lmvua 1. If w satisfies the assumptions of Theorem 1, M >0, P|Qn{a, B)
and p is not a primitive prime factor of Pn{a, 8), then p*+Q@Qu(a, B), and if
n 92 (r prime), then p = g(n) = ¢(1). If n = 2r= (r prime), r|Qule, f)
if and only 4f r|.L.

Proof. It follows from Theorems 3.3 and 3.4 of [4] that if the assump-
tions of the lemma are satisfied and n 7 12, then p?1@u(a, §) and p = g(n).
On the other hand, as can easily be verified,

Eom)
Qula, B) = D, aLt* M’
i=0
where @y =1 and 0g,m = 41, unless n = 2r (r prime). For n = 2r¢,
ayom = -£7, 80 that 7|Qn(a, )it and only if »|L. For n # 2r* we have,
in view of (L, M) =1, (p, LM) =1 5o (p, ») = 1. Since all prime factors
of n divide nxl, the lemma is thus proved for all n == 12.

I n =12, then Qu(a, ) = IL*—ALM +M? if p is an imprimitive
prime factor of Pu(a, f), then L = kM (modp) for some k < 4. Hence, if
P|@n(e, B), then in view of (L, M) =1, p =2 or 3. On the other hand,
it follows from 12 = #xl that x» is even, LM is even and p * 2. Thus
p=3=1 and p*+Qn(a, ), which completes the proof.

TEMMA 2. If n satisfies the assumptions of Theorem 1, M >0 and
8 = B(L)~®™, then the numbers 6Q%(a, f) and 65 (a, B) are coprime ra-
tional integers (1).

Proof. We show first that v,.(a) (v > 1) are reciprocal polynomials.
For instance, let » = 3 (mod4). We have by (b)

wule™) =[] @ +itrioes) =a7 [] ity [] (o—itlta)
(rod)=1 (rud)=1 (rpl)=1

— g ,‘:w(v)(__l)%w(v) ” (w—l‘%(—'r[x)c;z') — w—w(v)%m(%) .

(roxly=1

() [#] and {&} denote the integral and the fractional part of », respectively.
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Since in view of (4)
R#l,k(w) = % (WV,u(mljz) +'(Pv,u('“ wllg))

San@) = 2(%)112 (wvm(a;llﬁ)_wm(_ wl/z)) ,

it follows that polynomials R, § are reciprocal. We now prove that these
polynomials are of degrees }¢(») and fo(»)—1, respectively. In faet
(9) Qu(w) = B¥z)— »e8*(2) ,

whence degree 8§ < degree B = } degree @, = 4¢(»). On the other hand,
supposing that degree § < F¢(v)—1, :

R(@) = 2" + aat ? 7 1 pat 0y
we should find by comparing both sides of (9) that
270 — p (p) @~ 4 .. = 2P0 24281 4L,
whence u(») = —2a = 0 and, in view of the definition of v, » = 2 (mod 4).
Since @Q(x) = @3.a?), identity (9) gives again
v — p (39) o2 4= e - 2bar =2 L,
#(}») = —2b = 0, which is impossible, because 1v is square-free.

It follows from the above that (m—l—y)’*"(")R (%, ¥), (m—}-y)l‘i“’(’)S (@, ¥)
are homogeneous symmetric functions of «, ¥ of dimension 0; so they are
rationally expressible in terms of (z+y)* and ay, and thus (4 —i—B)"%"”‘”)x
< R(A,B), (A+B) " g(4, B) are rationally expressible by (4 +B)*
and AB. In their turn (4 +B)?, AB and (A+B)/(a+ B) are rationally
expressible by (a+p)? and af. Therefore numbers

@) 14 4B\ 3ot
BR(A,B)=(a+ﬁ)2[*](—a-j_—ﬂ—) (4+B) R4, B),
S(44B) _
A+B
are rationally expressible by (a+p)* =1L and of = M and as such are

rational.
Since for ¢ = 41

jijf )i #)

a-+p

@(v)
8 el (4+B)H8(4, B)

! /2 A,B
8Q(a, B) = OR(4, B)+ 4—% (i"—f)l (x<a+ﬁ)ﬂaﬁ)"""6§¢(‘tif)
and numbers
AvB (AB_
at+pB’ ap o

29 2 1/2 1/
L, (et BB = (5000
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are rational, the numbers 6Q%(a, B) are also rational. If p(n) = 0 (mod4)
or k(L) =1 then é = 1, and it is immediately evident from (4) and (6)
that these numbers are algebraic integers, consequently they are then
rational integers.

Let @(n) £ 0 (mod4) and k(L) = 1. Since n # 1, 2, 4, we have

n=7r* or ¢=2%, ¢ prime=3 (mod4).

Since k(L)|x{n, k(L) is odd, we get k(L) =x=7r, n = 2. We have to
prove that the numbers »~** if)(a, B) are algebraic integers. First, since
% =72 it is clear from formula (4) that their difference is integral.
Now in view of the formula (3) and (6)

(10) Qnla, B) = @5 (a, B)QS (a, B);

their product is therefore = r-1Q,(a, ) and is integral by Lemma 1.
Thus the humbers r*@(a, §) are themselves integral. So we have proved
that the numbers 6Q§f’(a, B) (¢ = 41) are rational integers. It remains
to prove that they are coprime.

By identity (3) the resultant R of polynomials Vo) 5 P — )
divides the discriminant of @,(2?) and therefore also the discriminant
of #*—1, which is (2v)%. There exist polynomials y(z), 2-N2x) such that

X(l)(”) wv,x(m) + X(“l)(w) w»,n( — ) = R

identically in 2. The coefficients of y®, y-) are expressible integrally
in terms of the coefficients of y,.() and therefore are algebraic integers.
On making the above relation homogeneous in ¢,y and putting x = 412
¥ =B, we deduce that any common: prime factor of 6Q%(a, ) and
Qi (a, ) must divide 2vM. By Lemma 1 and (10) each prime factor
of 6Q:(a, f) (¢ = 1) is a primitive prime factor of P, except posgibly
for g(n), which then occurs to the first power only. Since no prime factor
of 2vM can be a primitive prime factor of P,, numbers 6@2}’(0:,}3),
8Q5(a, B) are relatively prime. The proof of the lemma is thus complete.

Levma 3. If x(r) is an orbitrary character modm, m>1 and || =1,
then

IT = n | —Cm| << exp (2mt2logim) .
2(r)=const#0
Proof (!). We can assume without the logt of generality that
arglm = 2n/m. Let ¢ be the least positive exponent such that 2o = g
If ¢ = 1 much stronger estimation for IT is known (cf. [1]), if e = gp(m)
the lemma is satisfied trivially, and thus we can assume p(m) >e>1.

(*) The idea of this proof is due to P. Erdss. An earlier proof of the writer led
to a weaker estimation for IT.
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Tet the product IT be taken over r such thatl 4(r) = ¢lo. Order these
. r
integers r according to the magnitude of {M— z—na,rgw} so that

n_ 1. L) (k-2
{w_:—ﬁ?:algw}<"'<{m_ G- MET -
Denote by N; and N,;; (1<i<k,0<j<e) the numbler of all non-neg-
r 1 7 |
ative integers » < m such that {fr—n,ﬁ Z—Wargw} Q{E——ﬁmgm} and  x(7)

=0 or x(r) =&, respectively. We have

1 +(m) 12
(11) ‘(mﬂtp(m)) {%~2—nargm}—Nt <2 sm
(1<i<k)
e—1 1
. ri
a2 | 3 wemfE g | <1
j=0

On the other hand, from a well-known theorem of Schur [8] (for im-
primitive characters see [3]), which we apply successively to characters

2(7)y 22r); ory 207H(r), We geb
e—1

@) et Y Nt
j=0

Adding inequalities (11), (12), (13), we find

1<h<e, 1<i<k).

< m*™logm

<emlogm (1<i<k).

Ty 1
N5 —@(m) {ﬁ— 5 ATET

: rp 1 v, et for
Since N;;, = i, putting for brevity n{—m— o argm}—-wk 0 We g

each 1 <k
loi] < nkimtlogm .

Now, if argly = 2=/k, we find

k—1 k-1
[z =]]

i=1 =1

k-1
Il
Thi2) ) 1

k ¥ -—

< r] (1 + (nktmi2logm) ;@—) < exp (2m‘/210g m 2 i)

i=1

il
sinT =

i

. (1
sin (—2— agLr—m m)

—1

o ﬁ(ICOSQ{l‘l"lsti‘

i=1

%

cotm %

)

L
ST
k

sin (n;—c -+ Qi)

[k/2]

i=1

. b
< exp (Zmlﬂlogm (1 +log g)) -
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k-1
Since, on the other hand, [J[1—Cil =% and & = p(m)fe<m/2, we get
i=1

E-1 k-1
o<e[[z—cin—g™ [ ] n—dl
i=1 1=1
m
< mexp (2m1/210gm (1+ log Z)) < exp (2m2log2m) .

This proves the lemma.

Proof of the theorem. As we already know, we can assume
that M >0. Then, in view of formula (8) and Lemmas 1 and 2, in order
to prove Theorem 1 for a given index n, it is enough to establish that

1, it g(l) < g(n) and n # 2r% ¢ as below,
(14) 10%a, )| =] 2, # n= 2re, 7 = k(L) prime = 3 (mod4),
q), it q(I) = gq(n) and n 5 2re, r as above .

The proof of this inequality is different if a, 8 are real (K > 0) and if
they are complex (K < 0); consequently the proof is divided into 2 parts.

1. K> 0. If >y = nxl, thus n > 3», we apply (7) and find
@%@, B)] > (4" — B > (o — g%y

== (KLW 4B M _ 9 _M—llﬁ))al-w(ﬂnJm(l) > KLllﬂ)%w(ﬂn)¢(l) .
Now, as can easily be verified, (KL}t~ 2 for all L, M, so that
19(a, )l > 270 > 21071 > ¢(1)

and inequality (14) holds. Thus we can assume that n = v, 4 = a, B = .
We shall consider successively 1=1, I =3 and 1> 5.
If 1=1, we have to prove

(15) 1Q%a, B) >1 if m s 2r, ¢ as below,

1Q%(a, )l >® it n=2r, r = k(L) prime = 3 (mod4) .
Now, if [@(a, f)| <1, we have by inequality (7)
1> ot — gl = (LI/Z_AQM'IIZ)I/Z , 1>}ta+§f =L,

s0 that L < 4 M -4 41, L < 64. Since 4M < L, we get M < 15 and
(L, M> € . It remains to consider the case n = 27, r prime == 3 (mod4),
r 27 (since w #6), k(L) =7, k(M) =1. By (7) we have

IQg)(a, ﬂ)l > (ma’X(Llli_le/Z’ g‘ LI/E))%‘P(N) .
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Since @(») = r—1, it suffices to establish the inequality
(16) max (L2 —2 MY | $TH2) > plltr=D) |

Sinee 7 > 7, rifr=1 < 748 < 212, inequality (16) holds certainly if L > 128.
By an easy enumeration of cases we verify that it holds for each pair
(T, M5, with k(L) =r, k(M)=1, unless <L, M>eM or <L, M)=
= (112, 25>,
Suppose now that I = 3. If ¢(n) >3 it is again sufficient to prove
(18). By (8) we have
19%(a, ) > 27 (a—p) =1
unless 1> 27 %(a—p) = 27 *K'?, ie. K = 1. Since, as we already know,
109(a, B)| > 1 unless <L, M « M, we find that, if ¢(n) > 3, inequality (14)
holds unless
Ly, MY e .
We have yet to consider the case g(n) =1 = 3,1.e.n =12, E(LM) = 2.
We find directly
a, B) = L— 2 LM — U
and since M <} L,
19, Bl > G —27")L.
Thus |Q(a, §)] >3 unless L < 12(3—2%%" < 75. By an enumeration
of cases we find that [Q%(a, f)] > 3 unless <L, M> e Nor <L, M) = <8, 1).
Tt remains to consider ! > 5. Here we notice first that for all <&, M
in question
9 M2E 20 > 5 or x 22 or (L, M> ={9;1>,
91220 > 5 or x> 5 or <L, M) =<9,2),
9 2Ry > 5 or (L, M) =<5,1), <9,2>.
It follows that, if <L, M> # 8,1, <9, 15, <9, 2)1

(2—1I2K112a)9’(?7%) > 5;
hence also for all 1> 5
(17) (2—1/2K112a(d(1)—5)/2)¢(w%) > q(l) ,
and inequality (14) follows by (8).
¢ (L, My = 5,1, <9, 1>, 9,2, we find directly
(27HR M > 7;

hence (17) holds if ¢(l) = 7. It remains to consider th‘e c:?,ses &L, M>
=¢5,1>,49,1),¢9,2), I=5 or 15. Their direct exa,mmatlf)n leads to
the exceptions stated in the theorem. The proof for K > 0 is complete.
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2. K < 0. By the fundamental lemma of [7]
(18) (@, B > [ TE for > Na, f) .

On the other hand, by (5) and (6), Q%(a, f) can easily be represented
ag the products of B and 2 or 1 expressions of the form

{o—Cml, where = — AR R
#r)=const=0 .

and y{r) is a real character modm = x or dx, respectively. Since |4 B~"?|
=1, m < 2n, we got by Lemma 3

(19) 1QW(a, B)| < la/t*™ exp (4(2n)" (log2n)’) .
It follows from (10), (18) and (19), that for n > N(a, f)
1021, B)] > [alt =" exp (— 4 (2m)'(log 2n)’) -

Since, however, if K <0, |a > 212 and for n > 10%
log2 " o o
Tg (3p(n)—2™log*n) — 4 (2n)"*(log2n)* > logn ,

we find for n > max(N(a, §), 10%)

1Qa, Bl >,

which completes the proof.

Let us remark that Theorem 1 implies the following

CoROLLARY. If k(LM) =1, K >0, n is odd > 3, then P, has at least
two primitive prime factors, except for m = 8, (L, M> = <9, 1>.

It follows that all terms from the fifth onwards of the above se-
quences P, are composite.

THEOREM 2. If k(M max (K, L)) = 41, +2, then Qx_@—q—(%—) > 2.

W

The theorem follows at once from two lemmas.

LemMMmA 4. If Py, is an arbitrary Lehmer sequence and n runs through
all numbers =40 (mod4), then

limg(P’”) >2.
N

The proof is analogous to the proof of Lemms 2 of [6].

Lemma 6. If P, is an arbitrary Lehmer sequence and n runs through
all numbers = 0 (modx), » = k(M max (K, L)), then

lim q(Pa)

" =>2.
n

e ©
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Proof. By Lemma 4 we can suppose #=0 (mod4). If » is odd, then
P, has at least one primitive prime factor ¢ for n large enough, by the
theorem quoted in the introduction. ¢ is of the form nk -+ (KL|g) and
so g = (KL{q) mod4x. Hence (LM |g) =1, which in view of the formula

(20) (a/p)Ee YLl () ¢)modgq

implies that Pj,-j&Lip is divisible by ¢. Since q is a primitive prime .
factor of P,, we cannot have ¢—(KL]|q)= n, whence ¢ >2n—1.

The same argument applies if » is even and n/2x is even. If the latter
ratio is 0odd, then by Theorem 1 for » large enough P, has at least two
primitive prime factors. One at least of these is > 2n—1, which com-
pletes the proof.
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