icm[©]

ACTA ARITHMETICA VIII (1963)

[2] S. Knapowski, On sing-changes in the remainder-term in the prime-number formula, Journ. London Math. Soc. 36 (1961), pp. 451-460.

[3] — and W. Staś, A note on a theorem of Hardy and Littlewood, Acta Arith. 7 (1962), pp. 161-166.

[4] — and P. Turán, Comparative prime number theory I-VIII, Acta Math. Acad. Sc. Hungaricae (under press).

[5] P. Turán, Eine neue Methode in der Analysis und deren Anwendungen, Budapest 1953.

Recu par la Rédaction le 25. 6. 1962

On primitive prime factors of Lehmer numbers I

by

A. Schinzel (Warszawa)

Lehmer numbers are called terms of the sequences

$$P_n(lpha,eta) = \left\{ egin{aligned} (a^n - eta^n)/(lpha - eta) \;, & n \; \mathrm{odd} \;, \ (a^n - eta^n)/(lpha^2 - eta^2) \;, & n \; \mathrm{even} \;, \end{aligned}
ight.$$

where α and β are roots of the trinomial $z^2 - L^{1/2}z + M$, and L and M are rational integers (cf. [4]). Without any essential lost of generality (cf. [9]) we can assume that

(1)
$$L>0$$
, $M\neq 0$, $K=L-4M\neq 0$.

Lehmer numbers constitute a generalization of the numbers a^n-b^n (a,b-rational integers). A prime p is called a *primitive prime factor* of a number a^n-b^n if

$$p \mid a^n - b^n$$
 but $p \nmid a^k - b^k$ for $k < n$.

A proper (not merely automatical) generalization of this notion for Lehmer numbers is the notion of a prime factor p such that

$$p|P_n$$
 but $p \nmid KLP_3...P_{n-1}$

or, which is easily proved to be equivalent,

$$p|P_n$$
 but $p \nmid nP_3...P_{n-1}$.

D. H. Lehmer [4] calls such primes p primitive extrinsic prime factors of P_n . In a postscript to my paper [7] I stated erroneously that Lehmer calls them intrinsic divisors, the term which has been used in a different sense by M. Ward [9]. To simplify the terminology, I adopt in the present paper the following definition.

DEFINITION. A prime p is called a primitive prime factor of the number P_n if $p | P_n$ but $p \nmid KLP_3...P_{n-1}$.

Assume that, besides the restrictions on L, M stated in (1),

(2)
$$(L, M) = 1, \quad \langle L, M \rangle \neq \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 1 \rangle$$

(i.e. β/α is not a root of unity).

Then it follows from the results of papers [2], [7], [9] that for $n \neq 1, 2, 3, 4, 6, P_n$ has a primitive prime factor except

for
$$K>0$$
 if $n=5$, $\langle L,M\rangle=\langle 1,-1\rangle$, $n=10$, $\langle L,M\rangle=\langle 5,1\rangle$,
$$n=12$$
, $\langle L,M\rangle=\langle 1,-5\rangle$, $\langle 5,1\rangle$ for $K<0$ if $n\leqslant n_0(L,M)$

where n_0 can be computed effectively.

I proved in [6] a theorem about numbers $a^n - b^n$ with two primitive prime factors. A. Rotkiewicz [5] generalized this theorem to so-called Lucas numbers (which correspond to Lehmer numbers for $L^{1/2}$ being a rational integer) under the assumptions M > 0, K > 0.

The main aim of the present paper is to generalize the above theorem to Lehmer numbers. To state the generalization in a possibly concise manner I introduce the following two sets \mathfrak{M} , \mathfrak{R} :

$$\begin{split} \mathfrak{M} = & \{ \langle L,\, M \rangle \colon (L,\, M) = 1; \; \langle L,\, M \rangle = \langle 12\,,\, -25 \rangle \;, \; \langle 112\,,\, 25 \rangle \; \text{ or } \\ & 1 \leqslant |M| \leqslant 15 \;, \; 2M+2\,|M|+1 \leqslant L \\ & < \min(64+2M-2\,|M|\,,\, 2M+2\,|M|+4\,|M|^{1/2}+1) \} \;, \\ \mathfrak{R} = & \{ \langle L,\, M \rangle \colon (L,\, M) = 1 \;, \; \langle L,\, M \rangle = \langle 4\,,\, -1 \rangle \;, \; \langle 8\,,\, 1 \rangle \; \text{ or } \\ & 1 \leqslant |M| \leqslant 15 \;, \; L = 2M+2\,|M|+1 \} \;. \end{split}$$

As can easily be verified, set $\mathfrak M$ consists of 184 and set $\mathfrak N$ of 32 pairs $\langle L, M \rangle$.

For an integer $n \neq 0$, let k(n) denote the square-free kernel of n, that is n divided by its greatest square factor. The following theorem holds.

Theorem 1. For L, M satisfying (1), (2), put $\varkappa = k (M \max(K, L))$ and

$$\eta = \begin{cases} 1 & if & \varkappa \equiv 1 \pmod{4}, \\ 2 & if & \varkappa \equiv 2, 3 \pmod{4}. \end{cases}$$

If $n \neq 1, 2, 3, 4, 6$ and $n/\eta \kappa$ is an odd integer, then P_n has at least two primitive prime factors except

1. for
$$K > 0$$
, if $n = \eta |\varkappa|$, $\langle L, M \rangle \in \mathfrak{M}_0 \subset \mathfrak{M}$ or $n = 3\eta |\varkappa|$, $\langle L, M \rangle \in \mathfrak{N}_0 \subset \mathfrak{M}$ or $n = 5$, $\langle L, M \rangle = \langle 9, 1 \rangle$ or $n = 10$, $\langle L, M \rangle = \langle 5, -1 \rangle$ or $n = 20$, $\langle L, M \rangle = \langle 1, -2 \rangle$, $\langle 9, 2 \rangle$;

2. for K < 0, if $n \leq n_1(L, M)$.

Finite sets \mathfrak{M}_0 , \mathfrak{N}_0 and function $n_1(L, M)$ can be effectively computed.

Let us observe that the sequences P_n and \overline{P}_n corresponding to $\langle L, M \rangle$ and $\langle \max(K, L), |M| \rangle$, respectively are connected by the relation

$$P_n = \left\{ egin{array}{ll} \overline{P}_n & ext{if} \ \ M>0 \ ext{or} & n \ ext{even} \ , \ \overline{P}_{2n}/\overline{P}_n & ext{if} \ \ M<0 \ ext{and} \ \ n \ ext{odd} \ . \end{array}
ight.$$

Therefore the primitive prime factors of P_n coincide with those of \overline{P}_n if M>0 or $n\equiv 0\ (\text{mod}\ 4)$, with those of $\overline{P}_{\frac{1}{2}n}$ if M<0 and $n\equiv 2\ (\text{mod}\ 4)$ and with those of \overline{P}_{2n} if M<0 and $n\equiv 1\ (\text{mod}\ 2)$. The remarks that

- 1. $\langle L, M \rangle \in \mathfrak{M}$ or \mathfrak{N} if and only if $\langle \max(K, L), |M| \rangle \in \mathfrak{M}$ or \mathfrak{N} , respectively,
- 2. $\operatorname{sgn} \varkappa = \operatorname{sgn} M$,
- 3. if \varkappa is even, η 's corresponding to \varkappa and $-\varkappa$ are equal; if \varkappa is odd, the product of these η 's is 2,

show that it suffices to prove the theorem for M > 0, $\kappa = k(M \max(K, L))$ = k(LM).

Before proceeding further, we introduce some notation and recall some useful results from paper [6]. For any integer n > 0 let

$$Q_n(x, y) = \prod_{\substack{r=1 \ (r,n)=1}}^n (x - \zeta_n^r y),$$

where ζ_n is a primitive *n*th root of unity. Put $Q_n(x) = Q_n(x, 1)$ and similarly for other polynomials later. Denote by q(n) the greatest prime factor of *n*. Further, for *n* satisfying the assumptions of Theorem 1, let *l* be the product of those prime factors of *n* which do not divide ηz , and write $\nu = \eta z l$, $A = a^{n/r}$, $B = \beta^{n/r}$. To obtain conformity of notation with paper [6] one should make in the latter the following permutation of letters: $\Phi \to Q$, $P \to R$, $Q \to S$.

Then by Theorem 1 of [6] and remark that $\nu > 2$,

(3)
$$Q_{\nu}(x^2) = \psi_{\nu,\varkappa}(x)\psi_{\nu,\varkappa}(-x)$$
,

where (1)

and R, S are polynomials with rational integral coefficients.

^{(1) (}r|x) is Jacobi's symbol of quadratic character.

Let us put, similarly as in [6], for $\varepsilon = \pm 1$,

(6)
$$Q_n^{(s)}(\alpha,\beta) = \psi_{\nu,\varkappa}(A^{1/2},\,\varepsilon B^{1/2}),$$

where $\arg A^{1/2}=\frac{1}{2}\arg A$, $\arg B^{1/2}=\frac{1}{2}\arg B$. Then, if α , β are real, $\alpha>\beta>0$, we have for $\varepsilon=\pm 1$

$$|Q_n^{(e)}(\alpha,\beta)| > \left(\max\left(A^{1/2} - B^{1/2}, \left(\frac{1}{8}A + \frac{1}{8}B\right)^{1/2}\right)\right)^{\varphi(\nu)},$$

(8)
$$|Q_n^{(e)}(\alpha,\beta)| > (2^{-1/2}(A-B)A^{\frac{1}{2}q(l)-\frac{3}{2})^{\varphi(\nu')}} \quad (l \geqslant 3, \nu' = \nu/q(l)).$$

These inequalities were proved in [6] under the assumption that α , β are rational integers; however, the proof does not change if α , β are arbitrary real numbers.

Now we shall prove 3 lemmas

LEMMA 1. If n satisfies the assumptions of Theorem 1, M > 0, $p|Q_n(\alpha, \beta)$ and p is not a primitive prime factor of $P_n(\alpha, \beta)$, then $p^2 + Q_n(\alpha, \beta)$, and if $n \neq 2r^a$ (r prime), then p = q(n) = q(l). If $n = 2r^a$ (r prime), $r|Q_n(\alpha, \beta)$ if and only if r|L.

Proof. It follows from Theorems 3.3 and 3.4 of [4] that if the assumptions of the lemma are satisfied and $n \neq 12$, then $p^2 \nmid Q_n(\alpha, \beta)$ and p = q(n). On the other hand, as can easily be verified,

$$Q_n(\alpha, \beta) = \sum_{i=0}^{\frac{1}{2}\varphi(n)} a_i L^{\frac{1}{2}\varphi(n)-i} M^i$$

where $a_0=1$ and $a_{\frac{1}{2}\varphi(n)}=\pm 1$, unless $n=2r^a$ (r prime). For $n=2r^a$, $a_{\frac{1}{2}\varphi(n)}=\pm r$, so that $r|Q_n(\alpha,\beta)$ if and only if r|L. For $n\neq 2r^a$ we have, in view of (L,M)=1, (p,LM)=1 so $(p,\varkappa)=1$. Since all prime factors of n divide $\eta \varkappa l$, the lemma is thus proved for all $n\neq 12$.

If n=12, then $Q_n(\alpha,\beta)=L^2-4LM+M^2$; if p is an imprimitive prime factor of $P_n(\alpha,\beta)$, then $L\equiv kM\pmod p$ for some $k\leqslant 4$. Hence, if $p|Q_n(\alpha,\beta)$, then in view of $(L,M)=1,\ p=2$ or 3. On the other hand, it follows from $12=\eta \varkappa l$ that \varkappa is even, LM is even and $p\neq 2$. Thus p=3=l and $p^2 \nmid Q_n(\alpha,\beta)$, which completes the proof.

LEMMA 2. If n satisfies the assumptions of Theorem 1, M > 0 and $\delta = k(L)^{-(p(n)/4)}$, then the numbers $\delta Q_n^{(1)}(\alpha, \beta)$ and $\delta Q_n^{(-1)}(\alpha, \beta)$ are coprime rational integers (1).

Proof. We show first that $\psi_{\nu,\kappa}(x)$ $(\nu>1)$ are reciprocal polynomials. For instance, let $\kappa\equiv 3\ (\text{mod}\ 4)$. We have by (5)

$$\begin{split} \psi_{\mathbf{r},\mathbf{s}}(x^{-1}) &= \prod_{(\mathbf{r},\mathbf{s}l)=1} \left(x^{-1} + i \, (r|\mathbf{s}) \zeta_{\mathbf{s}l}^{\mathbf{r}} \right) = x^{-\varphi(\mathbf{r})} \prod_{(\mathbf{r},\mathbf{s}l)=1} \left(i \, (r\,|\,\mathbf{s}) \zeta_{\mathbf{s}l}^{\mathbf{r}} \right) \prod_{(\mathbf{r},\mathbf{s}l)=1} \left(x - i \, (r\,|\,\mathbf{s}) \zeta_{\mathbf{s}l}^{-\mathbf{r}} \right) \\ &= x^{-\varphi(\mathbf{r})} \, i^{\varphi(\mathbf{r})} (-1)^{\frac{1}{2} \, \varphi(\mathbf{r})} \prod_{(\mathbf{r},\mathbf{s}l)=1} \left(x + i (-r\,|\,\mathbf{s}) \zeta_{\mathbf{s}l}^{-\mathbf{r}} \right) = x^{-\varphi(\mathbf{r})} \psi_{\mathbf{r},\mathbf{s}}(x) \; . \end{split}$$

Since in view of (4)

$$\begin{split} R_{\text{xl,x}}(x) &= \tfrac{1}{2} \left(\psi_{\text{v,x}}(x^{1/2}) + \psi_{\text{v,x}}(-x^{1/2}) \right) \\ S_{\text{xl,x}}(x) &= \frac{1}{2 \left(\times x^{0} \right)^{1/2}} \left(\psi_{\text{v,x}}(x^{1/2}) - \psi_{\text{v,x}}(-x^{1/2}) \right) \,, \end{split}$$

it follows that polynomials R, S are reciprocal. We now prove that these polynomials are of degrees $\frac{1}{2}\varphi(\nu)$ and $\frac{1}{2}\varphi(\nu)-1$, respectively. In fact

(9)
$$Q_{\nu}(x) = R^{2}(x) - \kappa x S^{2}(x) ,$$

whence degree S < degree $R = \frac{1}{2}$ degree $Q_r = \frac{1}{2}\varphi(r)$. On the other hand, supposing that degree $S < \frac{1}{2}\varphi(r) - 1$,

$$R(x) = x^{\frac{1}{2}\varphi(v)} + ax^{\frac{1}{2}\varphi(v)-1} + bx^{\frac{1}{2}\varphi(v)-2} + \dots$$

we should find by comparing both sides of (9) that

$$x^{\varphi(v)} - \mu(v)x^{\varphi(v)-1} + \dots = x^{\varphi(v)} + 2ax^{\varphi(v)-1} + \dots,$$

whence $\mu(\nu) = -2a = 0$ and, in view of the definition of ν , $\kappa \equiv 2 \pmod{4}$. Since $Q_{\nu}(x) = Q_{\frac{1}{2}\nu}(x^2)$, identity (9) gives again

$$x^{\varphi(v)} - \mu(\frac{1}{2}v) x^{\varphi(v)-2} + ... = x^{\varphi(v)} + 2b x^{\varphi(v)-2} + ...$$

 $\mu(\frac{1}{2}v) = -2b = 0$, which is impossible, because $\frac{1}{2}v$ is square-free.

It follows from the above that $(x+y)^{-\frac{1}{2}\varphi(r)}R(x,y), (x+y)^{1-\frac{1}{2}\varphi(r)}S(x,y)$ are homogeneous symmetric functions of x,y of dimension 0; so they are rationally expressible in terms of $(x+y)^2$ and xy, and thus $(A+B)^{-\frac{1}{2}\varphi(r)}\times \times R(A,B), (A+B)^{-1-\frac{1}{2}\varphi(r)}S(A,B)$ are rationally expressible by $(A+B)^2$ and AB. In their turn $(A+B)^2$, AB and $(A+B)/(a+\beta)$ are rationally expressible by $(a+\beta)^2$ and $a\beta$. Therefore numbers

$$\begin{split} \delta R(A\,,B) &= \left(\alpha+\beta\right)^{2\left\lceil\frac{\varphi(\nu)}{4}\right\rceil} \left(\frac{A+B}{\alpha+\beta}\right)^{\frac{1}{2}\varphi(\nu)} (A+B)^{-\frac{1}{2}\varphi(\nu)} R(A\,,B)\;,\\ \delta \frac{S(A+B)}{A+B} &= \left(\alpha+\beta\right)^{2\left\lceil\frac{\varphi(\nu)}{4}\right\rceil} \left(\frac{A+B}{\alpha+\beta}\right)^{\frac{1}{2}\varphi(\nu)} (A+B)^{-1-\frac{1}{2}\varphi(\nu)} S(A\,,B) \end{split}$$

are rationally expressible by $(\alpha+\beta)^2=L$ and $\alpha\beta=M$ and as such are rational.

Since for $\varepsilon = \pm 1$

$$\delta Q_n^{(e)}(\alpha,\,eta) = \delta R(A,\,B) \pm rac{A+B}{a+eta} \left(rac{AB}{aeta}
ight)^{1/2} \left(arkappa(a+eta)^2 aeta
ight)^{1/2} \delta rac{S(A,\,B)}{A+B}$$

and numbers

$$rac{A+B}{a+eta}, \quad \left(rac{AB}{aeta}
ight)^{1/2} = \pm (aeta)^{(n-r)/2r}, \quad \left(arkappa(a+eta)^2aeta
ight)^{1/2} = arkappa\left(rac{LM}{k(LM)}
ight)^{1/2}$$

^{(1) [}x] and {x} denote the integral and the fractional part of x, respectively.

icm[©]

are rational, the numbers $\delta Q_n^{(e)}(\alpha,\beta)$ are also rational. If $\varphi(n)\equiv 0\ (\mathrm{mod}\ 4)$ or k(L)=1 then $\delta=1$, and it is immediately evident from (4) and (6) that these numbers are algebraic integers, consequently they are then rational integers.

A. Schinzel

Let $\varphi(n) \not\equiv 0 \pmod{4}$ and $k(L) \neq 1$. Since $n \neq 1, 2, 4$, we have

$$n = r^a$$
 or $n = 2r^a$, $r \text{ prime} \equiv 3 \pmod{4}$.

Since $k(L)|\varkappa|n$, k(L) is odd, we get $k(L)=\varkappa=r$, $n=2r^\alpha$. We have to prove that the numbers $r^{-1/2}Q_n^{(n)}(\alpha,\beta)$ are algebraic integers. First, since $\varkappa=r^{1/2}$, it is clear from formula (4) that their difference is integral. Now in view of the formula (3) and (6)

(10)
$$Q_n(\alpha, \beta) = Q_n^{(1)}(\alpha, \beta)Q_n^{(-1)}(\alpha, \beta);$$

their product is therefore $=r^{-1}Q_n(\alpha,\beta)$ and is integral by Lemma 1. Thus the numbers $r^{-1/2}Q_n^{(a)}(\alpha,\beta)$ are themselves integral. So we have proved that the numbers $\delta Q_n^{(a)}(\alpha,\beta)$ $(\varepsilon=\pm 1)$ are rational integers. It remains to prove that they are coprime.

By identity (3) the resultant R of polynomials $\psi_{\nu,\varkappa}(x)$, $\psi_{\nu,\varkappa}(-x)$ divides the discriminant of $Q_{\nu}(x^2)$ and therefore also the discriminant of $x^{2\nu}-1$, which is $(2\nu)^{2\nu}$. There exist polynomials $\chi^{(1)}(x)$, $\chi^{(-1)}(x)$ such that

$$\chi^{(1)}(x) \psi_{v,x}(x) + \chi^{(-1)}(x) \psi_{v,x}(-x) = R$$

identically in x. The coefficients of $\chi^{(1)}$, $\chi^{(-1)}$ are expressible integrally in terms of the coefficients of $\psi_{\nu,s}(x)$ and therefore are algebraic integers. On making the above relation homogeneous in x, y and putting $x=A^{1/2}$, $y=B^{1/2}$, we deduce that any common prime factor of $\delta Q_n^{(1)}(\alpha,\beta)$ and $\delta Q_n^{(-1)}(\alpha,\beta)$ must divide $2\nu M$. By Lemma 1 and (10) each prime factor of $\delta Q_n^{(6)}(\alpha,\beta)$ ($\varepsilon=\pm 1$) is a primitive prime factor of P_n except possibly for q(n), which then occurs to the first power only. Since no prime factor of $2\nu M$ can be a primitive prime factor of P_n , numbers $\delta Q_n^{(1)}(\alpha,\beta)$, $\delta Q_n^{(-1)}(\alpha,\beta)$ are relatively prime. The proof of the lemma is thus complete.

LEMMA 3. If $\chi(r)$ is an arbitrary character mod m, m > 1 and |x| = 1, then

$$\Pi = \prod_{\mathbf{z}(r) = \text{const} \neq 0} |x - \zeta_m^r| < \exp(2m^{1/2}\log^2 m) .$$

Proof (1). We can assume without the lost of generality that $\arg \zeta_m = 2\pi/m$. Let e be the least positive exponent such that $\chi^{e+1} = \chi$. If e = 1 much stronger estimation for Π is known (cf. [1]), if $e = \varphi(m)$ the lemma is satisfied trivially, and thus we can assume $\varphi(m) > e > 1$.

Let the product Π be taken over r such that $\chi(r)=\zeta_e^{j_0}$. Order these integers r according to the magnitude of $\left\{\frac{r}{m}-\frac{1}{2\pi}\arg x\right\}$ so that

$$\left\{\frac{r_1}{m} - \frac{1}{2\pi}\arg x\right\} < \ldots < \left\{\frac{r_k}{m} - \frac{1}{2\pi}\arg x\right\} \quad \left(k = \frac{\varphi(m)}{e}\right).$$

Denote by N_i and $N_{i,j}$ $(1 \leqslant i \leqslant k, 0 \leqslant j < e)$ the number of all non-negative integers r < m such that $\left\{\frac{r}{m} - \frac{1}{2\pi}\arg x\right\} \leqslant \left\{\frac{r_i}{m} - \frac{1}{2\pi}\arg x\right\}$ and $\chi(r) = 0$ or $\chi(r) = \zeta_e^j$, respectively. We have

(11)
$$\left| (m - \varphi(m)) \left\{ \frac{r_i}{m} - \frac{1}{2\pi} \arg x \right\} - N_i \right| < 2^{r(m)} \le m^{1/2}$$
(12)
$$\left| \sum_{i=0}^{c-1} N_{i,j} - m \left\{ \frac{r_i}{m} - \frac{1}{2\pi} \arg x \right\} + N_i \right| < 1 .$$

On the other hand, from a well-known theorem of Schur [8] (for imprimitive characters see [3]), which we apply successively to characters $\chi(r), \chi^2(r), \dots, \chi^{e-1}(r)$, we get

$$\left| \zeta_e^{-hj_0} \sum_{j=0}^{e-1} N_{i,j} \zeta_e^{hj} \right| < m^{1/2} \log m \qquad (1 \leqslant h < e \;,\; 1 \leqslant i \leqslant k) \;.$$

Adding inequalities (11), (12), (13), we find

$$\left|\,eN_{i,j_0} - \varphi(m) \left\{ \! \frac{r_i}{m} \! - \frac{1}{2\pi} {\rm arg}\, x \! \right\} \right| < em^{1/2} \log m \quad \ (1 \leqslant i \leqslant k) \; .$$

Since $N_{i,j_0}=i$, putting for brevity $\pi\Big\{\frac{r_i}{m}-\frac{1}{2\pi}\arg x\Big\}-\pi\frac{i}{k}=\varrho_i$ we get for each $i\leqslant k$ $|\varrho_i|\leqslant \pi k^{-1}m^{1/2}\log m\;.$

Now, if $\arg \zeta_k = 2\pi/k$, we find

$$\begin{split} &\prod_{i=1}^{k-1}|x-\zeta_m^{i_i}|1-\zeta_k^i|^{-1} = \prod_{i=1}^{k-1}\left|\sin\left(\frac{1}{2}\arg x - \pi\frac{r_i}{m}\right)\right|\left|\sin\pi\frac{i}{k}\right|^{-1} \\ &= \prod_{i=1}^{k-1}\left|\sin\left(\pi\frac{i}{k} + \varrho_i\right)\right|\left|\sin\pi\frac{i}{k}\right|^{-1} = \prod_{i=1}^{k-1}\left(|\cos\varrho_i| + |\sin\varrho_i|\left|\cot\pi\frac{i}{k}\right|\right) \\ &\leqslant \prod_{i=1}^{\lfloor k/2\rfloor}\left(1 + (\pi k^{-1}m^{1/2}\log m)\frac{k}{\pi i}\right)^2 \leqslant \exp\left(2m^{1/2}\log m\sum_{i=1}^{\lfloor k/2\rfloor}\frac{1}{i}\right) \\ &\leqslant \exp\left(2m^{1/2}\log m\left(1 + \log\frac{k}{2}\right)\right). \end{split}$$

⁽¹⁾ The idea of this proof is due to P. Erdös. An earlier proof of the writer led to a weaker estimation for H.

221

A. Schinzel

Since, on the other hand, $\prod_{i=1}^{k-1} |1-\zeta_k^i| = k$ and $k = \varphi(m)/e < m/2$, we get

$$\begin{split} & \varPi \leqslant 2 \prod_{i=1}^{k-1} (|x-\zeta_m^{r_i}||1-\zeta_k^i|^{-1}) \prod_{i=1}^{k-1} |1-\zeta_k^i| \\ & \leqslant m \exp\left(2m^{1/2} {\log m} \left(1+\log \frac{m}{4}\right)\right) \leqslant \exp\left(2m^{1/2} {\log^2 m}\right). \end{split}$$

This proves the lemma.

Proof of the theorem. As we already know, we can assume that M>0. Then, in view of formula (8) and Lemmas 1 and 2, in order to prove Theorem 1 for a given index n, it is enough to establish that

$$|Q_n^{(s)}(lpha,eta)| > \left\{ egin{array}{ll} 1 \;, & ext{if} & q(l) < q(n) \; ext{and} \; n
eq 2r^a, \; r \; ext{as below} \;, \ r^{1/2} \;, & ext{if} & n = 2r^a, \; r = k(L) \; ext{prime} \equiv 3 \; (ext{mod} \, 4) \;, \ q(l) \;, & ext{if} & q(l) = q(n) \; ext{and} \; n
eq 2r^a, \; r \; ext{as above} \;. \end{array}
ight.$$

The proof of this inequality is different if α, β are real (K > 0) and if they are complex (K < 0); consequently the proof is divided into 2 parts.

1.
$$K > 0$$
. If $n > \nu = \eta \kappa l$, thus $n \ge 3\nu$, we apply (7) and find

$$\begin{split} |Q_n^{(e)}(\alpha,\,\beta)| &> (A^{1/2}\!-\!B^{1/2})^{\varphi(r)} \geqslant (a^{3/2}\!-\!\beta^{3/2})^{\varphi(r)} \\ &= (K\!L^{1/2}\!+\!M(L^{1/2}\!-\!2M^{1/2}))^{\frac{1}{2}\,\varphi(\eta\kappa)\varphi(l)} > (K\!L^{1/2})^{\frac{1}{2}\,\varphi(\eta\kappa)\varphi(l)} \end{split}$$

Now, as can easily be verified, $(KL^{1/2})^{\frac{1}{2}\varphi(\eta \varkappa)} > 2$ for all L, M, so that

$$|Q_n^{(s)}(\alpha, \beta)| > 2^{\varphi(l)} \geqslant 2^{q(l)-1} \geqslant q(l)$$

and inequality (14) holds. Thus we can assume that n = v, $A = \alpha$, $B = \beta$. We shall consider successively l=1, l=3 and $l \ge 5$.

If l=1, we have to prove

(15)
$$|Q_n^{(e)}(\alpha, \beta)| > 1$$
 if $n \neq 2r$, r as below, $|Q_n^{(e)}(\alpha, \beta)| > r^{1/2}$ if $n = 2r$, $r = k(L)$ prime $\equiv 3 \pmod{4}$.

Now, if $|Q_n^{(s)}(\alpha, \beta)| \leq 1$, we have by inequality (7)

$$1>lpha^{1/2}-eta^{1/2}=(L^{1/2}-2M^{1/2})^{1/2}\ , \qquad 1>rac{1}{8}\,lpha+rac{1}{8}\,eta=rac{1}{8}L^{1/2}\ ,$$

so that $L < 4M + 4M^{1/2} + 1$, L < 64. Since 4M < L, we get $M \le 15$ and $\langle L, M \rangle \in \mathfrak{M}$. It remains to consider the case n = 2r, r prime $\equiv 3 \pmod{4}$, $r \geqslant 7$ (since $n \neq 6$), k(L) = r, k(M) = 1. By (7) we have

$$|Q_n^{(e)}(\alpha,\beta)| > \left(\max(L^{1/2} - 2M^{1/2}, \frac{1}{8}L^{1/2}) \right)^{\frac{1}{2}\varphi(\nu)}.$$

Since $\varphi(v) = r - 1$, it suffices to establish the inequality

(16)
$$\max (L^{1/2} - 2M^{1/2}, \frac{1}{8}L^{1/2}) > r^{1/(r-1)}.$$

Since $r \geqslant 7$, $r^{1/(r-1)} \leqslant 7^{1/6} < 2^{1/2}$, inequality (16) holds certainly if L > 128. By an easy enumeration of cases we verify that it holds for each pair $\langle L, M \rangle$, with k(L) = r, k(M) = 1, unless $\langle L, M \rangle \in \mathfrak{M}$ or $\langle L, M \rangle =$ $= \langle 112, 25 \rangle$.

Suppose now that l=3. If q(n)>3 it is again sufficient to prove (15). By (8) we have

$$|Q_n^{(e)}(\alpha,\beta)| > 2^{-1/2}(\alpha-\beta) \geqslant 1$$

unless $1 > 2^{-1/2}(\alpha - \beta) = 2^{-1/2}K^{1/2}$, i.e. K = 1. Since, as we already know, $|Q_n^{(\epsilon)}(\alpha,\beta)| > 1$ unless $\langle L,M \rangle \in \mathfrak{M}$, we find that, if q(n) > 3, inequality (14) holds unless

$$\langle L, M \rangle \in \mathfrak{N}$$
.

We have yet to consider the case q(n) = l = 3, i.e. n = 12, k(LM) = 2. We find directly

$$Q_{12}^{(\epsilon)}(\alpha,\,\beta) = L - \epsilon 2^{1/2} L^{1/2} M^{1/2} - M$$

and since $M < \frac{1}{4}L$,

$$|Q_n^{(\epsilon)}(\alpha,\,\beta)| > (\frac{3}{4} - 2^{-1/2})L$$
.

Thus $|Q_n^{(e)}(\alpha,\beta)|>3$ unless $L\leqslant 12(3-2^{3/2})^{-1}<75$. By an enumeration of cases we find that $|Q_n^{(\epsilon)}(\alpha,\,\beta)|>3$ unless $\,\langle L,\,M\rangle\,\epsilon\,\mathfrak{N}\,\,\mathrm{or}\,\,\langle L,\,M\rangle=\langle 8\,,\,1\rangle.$

It remains to consider $l \geqslant 5$. Here we notice first that for all $\langle L, M \rangle$ in question

$$2^{-1/2}K^{1/2}a\geqslant 5 \ ext{or} \ \varkappa\geqslant 2 \ ext{or} \ \langle L,\,M
angle = \langle 9,\,1
angle \ , \ 2^{-1/2}K^{1/2}a\geqslant 5^{1/2} \ ext{or} \ \varkappa\geqslant 5 \ ext{or} \ \langle L,\,M
angle = \langle 9,\,2
angle \ , \ 2^{-1/2}K^{1/2}a\geqslant 5^{1/4} \ ext{or} \ \langle L,\,M
angle = \langle 5,\,1
angle \ , \ \langle 9,\,2
angle \ .$$

It follows that, if $\langle L, M \rangle \neq \langle 5, 1 \rangle, \langle 9, 1 \rangle, \langle 9, 2 \rangle$,

$$(2^{-1/2}K^{1/2}a)^{\varphi(\eta \kappa)} > 5;$$

hence also for all $l \ge 5$

$$(17) (2^{-1/2}K^{1/2}\alpha^{(q(l)-3)/2})^{\varphi(\eta \varkappa)} > q(l) ,$$

and inequality (14) follows by (8).

If $\langle L, M \rangle = \langle 5, 1 \rangle, \langle 9, 1 \rangle, \langle 9, 2 \rangle$, we find directly

$$(2^{-1/2}K^{1/2}a^2)^{\varphi(\eta\kappa)} > 7;$$

hence (17) holds if $q(l) \ge 7$. It remains to consider the cases $\langle L, M \rangle$ $=\langle 5,1\rangle,\langle 9,1\rangle,\langle 9,2\rangle,\ l=5$ or 15. Their direct examination leads to the exceptions stated in the theorem. The proof for K>0 is complete. 2. K < 0. By the fundamental lemma of [7]

$$(18) |Q_n(\alpha,\beta)| > |a|^{\varphi(n) - 2^{\nu(n)} \log^3 n} \text{for} n > N(\alpha,\beta).$$

On the other hand, by (5) and (6), $Q_n^{(e)}(\alpha, \beta)$ can easily be represented as the products of $B^{\frac{1}{2}\pi^{(e)}}$ and 2 or 1 expressions of the form

$$\prod_{\mathbf{z}(r)=\text{const}\neq 0} |x-\zeta_m^r| \;, \quad \text{ where } \quad x=-\,A^{1/2}B^{-1/2} \;, \; \pm \,iA^{1/2}B^{-1/2} \;,$$

and $\chi(r)$ is a real character mod $m = \kappa$ or 4κ , respectively. Since $|A^{1/2}B^{-1/2}| = 1$, $m \leq 2n$, we get by Lemma 3

$$|Q_n^{(s)}(\alpha,\beta)| < |\alpha|^{\frac{1}{2}q(n)} \exp\left(4(2n)^{1/2}(\log 2n)^2\right).$$

It follows from (10), (18) and (19), that for $n > N(\alpha, \beta)$

$$|Q_n^{(e)}(\alpha,\,eta)| > |a|^{rac{1}{2}\,arphi(n) - 2^{r(n)}\log^3 n} \exp\left(-4\left(2n
ight)^{1/2} (\log 2n)^2
ight)\,.$$

Since, however, if K < 0, $|\alpha| \ge 2^{1/2}$ and for $n > 10^{40}$

$$\frac{\log 2}{2} \left(\frac{1}{2} \varphi(n) - 2^{\nu(n)} \log^3 n \right) - 4 \left(2n \right)^{1/2} (\log 2n)^2 > \log n \ ,$$

we find for $n > \max(N(\alpha, \beta), 10^{40})$

$$|Q_n^{(\varepsilon)}(\alpha,\beta)| > n$$
,

which completes the proof.

Let us remark that Theorem 1 implies the following

COROLLARY. If k(LM) = 1, K > 0, n is odd > 3, then P_n has at least two primitive prime factors, except for n = 5, $\langle L, M \rangle = \langle 9, 1 \rangle$.

It follows that all terms from the fifth onwards of the above sequences P_n are composite.

THEOREM 2. If
$$k(M \max(K, L)) = \pm 1, \pm 2$$
, then $\lim_{n \to \infty} \frac{q(P_n)}{n} \geqslant 2$.

The theorem follows at once from two lemmas.

Lemma 4. If P_n is an arbitrary Lehmer sequence and n runs through all numbers $\not\equiv 0 \pmod{4}$, then

$$\underline{\lim_{n}} \frac{q(P_n)}{n} \geqslant 2.$$

The proof is analogous to the proof of Lemma 2 of [6].

LEMMA 5. If P_n is an arbitrary Lehmer sequence and n runs through all numbers $\equiv 0 \pmod{\varkappa}$, $\varkappa = k(M\max(K, L))$, then

$$\underline{\lim_{n}} \frac{q(P_n)}{n} \geqslant 2.$$

Proof. By Lemma 4 we can suppose $n \equiv 0 \pmod{4}$. If \varkappa is odd, then P_n has at least one primitive prime factor q for n large enough, by the theorem quoted in the introduction. q is of the form $nk + (KL \mid q)$ and so $q \equiv (KL \mid q) \mod 4\varkappa$. Hence $(LM \mid q) = 1$, which in view of the formula

(20)
$$(a/\beta)^{\frac{1}{2}q - \frac{1}{2}(KL|q)} \equiv (LM|q) \bmod q$$

implies that $P_{\frac{1}{2}q-\frac{1}{2}(KL|q)}$ is divisible by q. Since q is a primitive prime factor of P_n , we cannot have q-(KL|q)=n, whence $q\geqslant 2n-1$.

The same argument applies if \varkappa is even and $n/2\varkappa$ is even. If the latter ratio is odd, then by Theorem 1 for n large enough P_n has at least two primitive prime factors. One at least of these is $\geqslant 2n-1$, which completes the proof.

References

[1] P. T. Bateman, Note on the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 55 (1949), pp. 1180-1181.

[2] L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), pp. 437-441.

[3] E. Landau, Absohätzungen von Charakter summen, Einheiten und Klassenzahlen, Nachr. Gottingen (1918), pp. 79-97.

[4] D. H. Lehmer, An extended theory of Lucas functions. Ann. of Math. (2) 31 (1930), pp. 419-448.

[5] A. Rotkiewicz, On Lucas numbers with two intrinsic divisors, Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys. 10 (1962), pp. 229-232.

[6] A. Schinzel, On primitive prime factors of a^n-b^n , Proc. Cambridge Philos. Soc. 58 (1962), pp. 555-562.

[7] — The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4 (1962), pp. 413-416.

[8] I. Schur, Einige Bemerkungen zu der vorstehenden Arbeit des Herrn G. Polya: Ueber die Verteilung der quadratichen Reste und Nichtreste, Nachr. Gottingen (1918), pp. 30.36

[9] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), pp. 230-236.

Recu par la Rédaction le 30. 6. 1962