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Nach (46) bekommt man also fir 0 < g <b—a
(340)  a="28(a, b) < (afq)*® -+ (1) + (tg) P58 a =4 - (aPftg)M - (tg/a)s .
Hierzu bemerken wir, daB wegen (49) und (50) die Ungleichung
(341) (a3fig)¥* < (afg)®  fir O<g<b—a

gilt.

Nun sei speziell

q = aA
Dann stimmen die beiden ersten Terme auf der rechten Seite von (340)
iiberein, Wenn also auBerdem ¢ < b —a ist, so folgt in Verbindung mit (341)
(342) a~128 (a4, b) < (at)P -+ (at)18m a4 (a-20pO)s
Dies gilt aber auch im Falle ¢ > b —a, da dann aus (49) und (50) mit
der trivialen Abschétzung
e 8(a, b) € q+L =a™ 41 < (a)”

folgt.

Damit ist (342) unter den Voraussetzungen (49) und (50) bewiesen.

Nun folgt aber aus (339) .
(mg)l/n & 1087,
Im Falle a > "7 jgt
(at_)lﬂ/ﬂ “——1/4 . t13I72 a-5/72 < 26187 y

und wegen o =>1 ist jedenfalls
(a—2/0t7/0)1/5 << 'l7/45 < tﬂ/ﬂ’l .

Die Abschitzung (336) folgt also im Falle a> 437 aus (342). Im Falle
a <07 jgt (336) trivial.
Wegen (48) ist damit unser Hauptsatz bewiesen.
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On the genera of quadratic and hermitian
forms over an algebraic number field

by
V. C. NANDA (Bombay)

§ 1. Introduction. Pursuing the study of the theory of genera of
quadratic forms initiated by Gauss, Minkowski [6] defined a genus of
rational inbtegral quadratic forms, in any number of variables, to con-
sist of all forms which are equivalent in the real number field and mod-
ulo all positive integers. He then showed that all forms in a genus have
the same signature, determinant s and class mod 8s3, and that these
finitely many invariants determine a genus completely. C. L. Siegel [7]
gave an alternative proof of this result, and also obtained a finite set
of genus invariants for forms with coefficients in an algebraic number
field [8].

The converse problem of proving the existence of a genus of rational
integral quadratic forms with prescribed invariants was also solved by
Minkowski. H. Braun [1] later gave another set of invariants and a solu-
tion of the corresponding converse problem. She [2] also extended the
results of Minkowski to hermitian forms over an imaginary quadratic
extension of the rational number field.

In this paper we consider quadratic and hermitian forms over an
arbitrary algebraic number field. We prove that a genus of hermitian
forms can be defined by means of a finite set of invariants. We also
prove the existence of genera of ¢uadratic and hermitian forms with

- prescribed invariants. We use the methods of H. Braun in the proof

of our results.

The main difficulty in this discussion is caused by the fact that,
unlike in the case of the ratiopal number field, the ring of integers in
an algebraic number field is not, in general, a principal ideal domain,
50 that it is also necessary to take into account singular matrices. For
this purpose, the reciprocity formula for Gauss sums (an important tool
in the proof), is generalized to cover the case of singular matrices
(Lemma B5). This formula appears to be of interest, independently of the
application that we make of it

20+
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Our results can be applied to simplify, and to generalize to arbitrary
quadratic or hermitian forms over any algebraic number field, a formula
originating in the work of Gauss, and proved for totally definite forms
over totally real fields by Siegel ([8], Lemmas 92, 93). This formula con-
stitutes an important step in the proof of Siegel’s main theorem, We hope
to give this generalization elsewhere. The author wishes to express his
sincere thanks to Professor K. G. Ramanathan for constant encourage-
ment and guidance throughout the preparation of this paper.

§ 2. Notation and definitions. Let I be an algebraic nwmnber field
with an automorphism v satisfying 72 -= 1 = the identity automorphism,
Let & be the fixed field of v. If 7 == 1, then k== K. If v £ 1, K is the
field of rational functions of the square root of a number d e %, and then
(a+0ydf = a—bY/d, where a,bck. Let o and O denote respectively,
the rings of integers in k and K. We choose d <o, not divisible by the
square of an integer, other than a unit. In case v =1, we always assume
that d =1.

Let: o denote the extension to K of an ideal in k briefly denoted
as a k-ideal. For an integral k-ideal a, denote by R(a), the residue class
ring O/a. It is easy to see that v gives rise in a natural way to an auto-
morphism of R(a). We denote this automorphism also by 7.

Let R denote any of the rings K, D, B(a). Let § = (sy) be a matrix
with s;; € B (we use the notation § ¢ R to express this fact, the number
of rows and columns being, in general, understood from the context).
If 87 = (sfj) = &', then § is defined to be a hermitian matrin (h-matrix),
and the expression S[X]= X"SX a hermitian form (h-form); heve
X' = (@, ...,2m) 18 & row varying over R (in particular, therefore,
8 has m; rows and columns). In the particular case when 7 = 1, 8 is
symmetric (s-matrix) and S[X] is a quadratic form (g¢-form). In the
following, the statements about h-forms will, in general, include state-
ments about ¢-forms.

Let TTY], where Y’ = (yy, ..., Ym,) be another i-form in R. We say
that § represents T' in R or that S[X] represents T[Y] in R (all state-
ments made about %-matrices are also assumed made about k-forms),
if there exists a matuix O'¢ R such that §[0]= 7. ¢ is called a repre-
sentation of T' by 8 in R. If T also represents § in R, then we gay that §
and T' are equivalent in B (S~T' in R). This is an equivalence relation
and a class in B is defined to be a complete set of equivalent matrices.

In R, all equivalent matrices have the same rank, called the rank
of the class. It may be shown as in [2], Lemma 5, that if fuarther, every
ideal in' B is a finite R-module, generated by clements, then in every
clags of rank m, there is a matrix of rm rows. If R is a field of char-
acteristic either zero, or coprime with 2d, then there is a diagonal matrix
of m rows in a class of rank m.
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For a matrix 4 ¢ B, a matrix B, O is called a right unit (r-unit)
if vank 7 (B4) of By =r(A) and AE, = 4. For a left unit (I-unit), similarly
defined, we use the notation EX. Siegel ([8], Lemma 9) has proved the
existence of these units. For an #-unit B4 and an I-unit B of 4 ¢ K,
the unique solution X, in K ([8], Lemma 12) of AX = B%, B4 X=X
is called the B, T inverse of 4. We denote this matrix X by 4™ if there
no danger of confusion. For 4 ¢ K of rank m, 6(4) = discriminant of A
is defined to be the ideal generated by all the m-rowed subdeterminants
of A. For an h-matrix 8§, 6(8) is a k-ideal.

Let 8, T'e B be two h-matrices. A representation B of T by S in R
is called an FgHr reduced represeniation if BEsBEy = B. From any rep-
resentation BB, one can construet a reduced representation B = EgB, Hyp.

A matrix UeD is called (a) unimodular if |U| #0, and U e D,
(b) primitive it 6(U) = DO and (¢) primitive modulo an integral k-ideal a
it (5(U),q) =9O.

We adopt the notation k™, ..., k" for the r, real and s
ey BT IR for the r, conjugate-complex pairs of conjugates of k.
Tor ack,a® denotes the conjugate of & belonging to k", In case 7+ 1,
we assume further, the notation so chosen that d® < 0 for 0 <1< 7, < 1y.
Define

(1 (r1+1) g(r1kratl)
), LU ’kl 2 .

T__[r, if 1,
Tl it r=1.

Tor a matrix A = (ay) ek, AP is defined to be (aF). )

Let 8 € K be an h-matrix. Let »(8) = m, so that 8~T' in K, where
A = [t ... tm] = the diagonal mairiz with t, ..., on the diagonal, |T| = 0
and ;e k. If r > 0, then for I < r, let u;, v; denote respectively the number
of positive and negative elements of T®. We define sig(8) = the system
of signatures of the h-matriz 8§ by

sig(8) = {(ur, W) her,r,  Ov briefly  {(ws, w)}.
For a number a ek, sgn(a) is defined by

alb ) a®
sgn(a) = {W}lnl,m,r’ or briefly {W)—’} .

Let 8 ¢ K be an h-matrix of rank m. Let T be a non-singular matrix

guch that § = (f :))) [4], 4 ¢ K. Let B denote the matrix of the first m

rows of A. Then § = T[B]. It can be shown as in [8], Lemma 31, that
the class of the ideal 8(B) is uniquely fixed by §. We call it the ideal
class of 8. Also fixed uniquely, therefore, is the set {|T}-ae*|, e € K} or
briefly <|7|>, called the kernel of 8, denoted by K(8). :
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h-matrices S, T € K axe said to belong to the same genus if and only
if §~T modulo all integral k-ideals and sig(S) = sig(T).

Capital Roman letters will, in general, be reserved for matrices,
small Roman for numbers, capital Gothic for ideals in K, and smal]
Gothic for %k -ideals. For a square matrix X, |X| denotes ity determinant,
For a number e K, (a) denotes the principal ideal generated by g,
and |e| the absolute value of a. Na denotes, the norm of the ideal o C
over the rational number field I'. o(a) denotes the trace of a number
a ¢k over I. The letter d is reserved for the different of the field .
F will denote the identity matrix and 0 the zero matrix of ovder clear
from the context.

§ 3. Some preliminary results. In this section we prove several
lemmas, which we use later in the proof of the main theorem in § 4.

LuymA 1. Let 8, 1' € O be h-matrices of rank m. Let 3(S) == (1) = ,.
Let q be a k-ideal such that 4ds, | q. Let p be the ewtension to K of a prime
ideal in & (briefly called a k- prime ideal), and let p*||q (4.6. po|q and p*+irq
with rational integral a >0). Then S~T modypt=>S~1 modp*h for
L =0 provided 1> a--1.

Proof. Let us suppose ¢ is an integral matrix satisfying

(31) S[Ot] = ' mod pl, ES Cl.ET a2 01, B

Let 87" denote the HsEY inverse of §, 07" the HyEy inverse of ¢, and
8, = 8[C}]—T. From (3.1), 8, ep’ and Hu8, Fy == 8. Define

Crr = 03— 3872078,

Then S8[0;:] = Tmod p**! and Cpy is EgEp rveduced. Also, since
1> a+1, the denominators of elements of Op.q are coprime with p.
By repeating the procedure 7, times we see that § represents 7' mod pth,

Interchanging the roles of § and T, we get the lemma.

LemmA 2. Let 8, T, s, be as in Lemma 1. Let p be a k-prime ideal
such that p t 2ds,. In case v = 1, lot us asswme further that K (8) = K (T').
Then 8~T mod p.

Proof. Case I: v = 1. The result follows trivially from [8], Lemma 56.

Oage IT: v 5 1. We may, without loss of generality, assume §, 1' to
be diagonal matrices. So that let 8= [8;..8n], Z' = [t ... ta] Where
8, i 0. Further (p, 50) = O. Thus to prove Lemma 2, it suffices to show
that for @ prime ideal p + (2d), every element of o, which 8 coprime with p
is congruent mod p to the relative norm of an element in O. This is shown
exactly as in 8], § 47.

This completes the proof of Lemma 2.
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Lryma 8. Let 8, T'e«O be h-matrices. Then S8, T are in the same
genus, if and only if sig(8) = sig(T), 6(8) = o(T)=s5,, S~Tmod g,
where 4ds,PB | q, with

(3.2) P=pE)= [] »,

p | 2dso
p=k1@l~ime ideal

and, in addition, in case v =1, K(8) =K (T).

Proof. Let 8, T’ be in the same genus. Then sig(§) = sig(T). Next,
from S[A]= T modst where s=4(8) and t=46(T), 4D, it follows
that s [t Similarly t|s. And therefore, s =t =g, (say). Trivially
8~T mod q and it is proved in [8], Lemma 63, that they have the same
kernel in cagse 7 =1.

Conversely S~T mod p for p + q in view of Lemma 2, and we are
given that §~T mod q. In view of Lemma 1, therefore, §~T mod p? for
every k-prime idealp and positive integer I. Our result would be proved,
if we show that S8~Z'moda, and S~7 mod o, together imply §~T'
mod a,a, provided that (a;, ;) =O. And this follows easily form the
Chinese remainder theorem.

Lemma 3 is thus proved.

We next generalize a result of Siegel ([8], Lemma 33), to h-forms.

LeMMA 4. Let 8 €O be an h-mairiz, and let b be an integral ideal
in the ideal class of 8. Then there exists o matriz BeO with 6(B) =b,
and a non-singular h-mairiz T = (1) such that 8 = T[B] and ;56" C DO
for all i,7j.

Proof. Let § be m,-rowed, and let 7(8) = m. For m = m,, the
assertion is trivial. Let us assume therefore that m < m,.

We already know that § = T,[B;], where T; is non-singular and
8(B,) = by belongs to the ideal class of §. By [8], Lemma 8, there exists
a non-singular matrix ¥, and a unimodular matrix U, such that

E 0 )

FBU = (0 B,
where X is the (m—1)-rowed identity matrix, and B, = (by... buyemi1).
Clearly the gic.d. (byy vy bugemi1) = 6 (FBy) = |F| - b, = ub where 0+ p e K.

We can actually asswme =1 (for, by multiplying the last row of F
by u~?, we can achieve the same). Define

T=1T,[F", B=FB,.

Then we have § = I'[B], B integral, 6(B)=0>0 and 7T non-gingular.
We still have to show that all i; 55" are integral. For this purpose, we
consider all the m-rowed submatrices A4, ..., 4; of B. Let ay, ..., ax be
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their respective determinants. Then (ay, .., @) == b. Since § = 1B,
the matrices T'[4;] are all integral, and therefore afm7 are all integral.
The result follows from the fact that 6L = (..., afay, ...).

This finishes the proof of Lemma 4.

In the remainder of this section, we restrict ourselves to the cage
7 =1. We prove here a reciprocity formula for generalized Gauss sums,
defined below; deriving it from a general ‘0-transformation formuly’,

Let 8 = (s4) e k be an s-matrix. Let a be an integral ideal satisfying
1) sya and 2sya are integral for all 4, § and 2) if for an integral ideal b,
8;b and 25,5 arve all integral then a|Db. The ideal a is then called the
denominator of the s-matriz S |den(s)].

Let g e k be sueh that ob = ab™, a, b coprime integral ideals and b
the different of k/I. For an s-matrix § such that den(8)|a, we define
the Qauss sum (see [8]) G(o,S) by

Go,8) = D exp (2nic(o8[X])

Xmodb

gX=Xx
where the sum is over a complete set of incongruent modb columns X,
satisfying By X = X, g being an r-unit of §. This is a generalization
of the Gauss sum for non-singular 8. It is independent of the choice
of the representative X of the residue class modb and the r-unit Hg.
It has the following properties, which are simple to prove.

(i) Let the matrix T be either primitive modb satisfying EgU = U,
or unimodular. Then &(g, S[U]) = G(g, §).

(ii) Let b be an odd integral ideal (i.e. (b, 2) = p). Then G(o, af)
a

= [%]-G‘(g, 8) provided that den(S) |aq; [ﬁ] being the generalized Jacobi
symbol (see [3]). '

(iii) Let b|B,. Then G(g, 8) =N (6,0 3 exp (2nic(@S[.X]).
TradaR

(iv) Let b = byb, with (b, by) =0 and seo. Let ¢, c, be integral .

ideals such thabt be;= (), @; €% and (c10a, B) == 0. Define f == paya,.
Then G(o, 5) = G(fas"az™, s) = G (a7 ayB, 8)- G(ai™ @y B, 8). For the proot
see [3].

We now derive the reciprocity formula for the Gausy sums from
the general 6-transformation formula. The denominator of an ideal ¢
{den(c)) is defined to be an ideal ¢ such that cc, is integral and prime
0 ¢y, The system of indices of an s-matriz 8 lind(8)|, is defined to he
the set {fi} where f;=w—uv; if sig(d) = {(w, v;)}. We notice here that
#'7(8) =m, fi+m is always an even number,

iom®
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LemMA 5. Let Seo be an s-matriz of rank m. Let 8™ denote its
By By inverse (and therefore symmetric). Then

NG (o, 8)
— exp (lffo,e,> ¥ (200" sh > exp (%m(l‘@“%'%ﬂ))

Xmoda;
EgX=X
where sgn(o) = {ar}, ind(8) = {f}, 6(8) =5, q = den (ﬁs) and ek is

such that wbd is integral and prime to q.
Proof. Oorresponding to 8%, 1=1,..,1 47, we define PP as

follows. Let

(3.3) 8=1T[4], Aeco, ABg—4A, |T|+0.

For 1<r, define Q¥ to be a real positive symmetric solution of

QPIYTQW — ™ and for 1 <1< r+m, define Q¥ to be a positive

hermitian solution of QPTPQ® = T® rhese solutions are known

to exist. Now define P® —= A% QVAY =B (A%) for 1=1,...,0tr,.

Clearly PY$P" PP = 5§ and PPTgn — PP = By PY. For t> 0; g an
n

integral ideal; Y ek a column satisfying Zg¥ = Y; £ = D &a; where
=1

@, ey an I8 & basis of o/I" and &, ..., & are arbitrary real numbers; define

(8.4} 0=06(8,Pg,¢7¥) .
= ) exp (~mt 7o (P(X +Y)) + 2mio (88X + Y1)
Eﬁz‘ﬁx
where o now denotes the trace in the obvious general sense. Define
' (3.5) X, =AX, ¥Y,=AY

where A is defined in (3.3). Let N (5(4)) = (a). Then the set of all X,

containg all m-rowed coluxoms in ag, and is contained in the set of inte-

gral m-rowed columns Z. This proves i) the set of all X, form a lattice I

of dimension mn over I" and ii) the sum (3.4) converges absolutely, since
2> exp (—na(Q (Z))) converges for @ >0 (see [3]). Thus -

Z integral

(868) 0= 3 exp(~mto(Q(X,+T,)) +2wic(ET[X, +¥])).

XieL
Applying the well known 6-transformation formula for non-singular
matrices, we get
8.7)  0=0, &) NT|Ho@m) ™ x

X -ig ET 2 -
% Zexp(—na(t 9 (tzjz):{lji‘jg L 1]—~2'»21].71))

ZieL
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where
7y ity
B, £) =n(t—l__2i£(l))—w/2(t—-l+2,L-E(l))-m/2 n @2+ 4|02 )~ miz
=1 I=ryt1

where the signs of the square roots are chosen so as to be positive when
the quantities are real and positive, 6(L) = the discriminant of the lattice
L = a""N(g%d) %, and I is the lattice complementary to L. Now if
P = A7'QT7A™" where A7 iy the HyHy inverse of A, using (3.5) we
have the general 6-transformation formula

(3.8) 6(8,P, 0,6 Y)=N(s"g""0™ b, £ x
—175~1 2 oyl
X E exp(-—-na(t P7(Z)+ 2158 [ZJ——Z'I;Z’Y)).

AR
LgZ=2

—~mnf2

Now congider ¢ 6(8, P, o, ¢, 0). Taking the limit a8 t—>oco and
using (3.8), we get in the usual way (see [1]), the result of Lemma 5.
By an argument similar to that in [1], formula 8, D. 37 we get

CororrARY 1. Let 8[C] = T, Geo, By OBy = C, 6(0) =¢. Let ¢ be
as in Lemma 8. If (den(4™"o s )y ) =0, then

G(e, 1) =N(c) &g, 8).

§ 4. The Genus theorem. In this section, we prove our main result,
concerning the existence of a genus of h-forms with given invariants.

TEBOREM. Suppose that we are given the following:

i) @ natwral number m,

i) @ set of pairs of non-negative rational integers {(u1, V1) Y,
or equivalently {fifims,., where fy = w—v; and -+ vy = m,

iii) integral k-ideals s, and q satisfying 4ds,B | q, where P is defined
in (3.2),

iv) a set <{8pp> = {s cpp|* T Hoawrmod g, (@, q) =
§ =8y if v =1

the representative s, satisfies sgn.(so) = {(—1)"}, 8,85 = CC* with (€, q) = DO,
and

whore

D o rx;él}

v) @ class 8(q) of h-matrices modulo q of rank m, where the repre-
semtative 8 is chosen m-rowed, integral.

Then there ewists an mtegml h-matrio Sye8(q), such that
7(8) = m, K (8,) = (80>
if and only if ,
(4.1) |8] = 8,227 mod q,

(80) = 80, 8ig(86) = {(ur, o)},

veK, (2,9)=0D
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and, in addition, if v =1,

. 1 \ 1 m m = —w? m
12 6o 8) =exp (T ha)¥ersimg i [2](a(351))",
where
(4.3) ek, od=gq7

{(g,Cq) =0, sgn(e) = {e},

ek is such that wd is integral and prime to g, and [?] i8 the generalized

Jacobi symbol.

Remark. As a result of this theorem, the invariants uniguely de-
termine a genus, namely the genus containing §,. The uniqueness follows
from the fact that if Sf e §(q) has rank m system of signatures {(u;, m)},
diseriminant s,, and kernel (s,), then §, and 8§ are in the same genus,
in view of Lemma 3.

For the proof of the theorem, we need

Levma 6. Let 8, {32, q have the same meaning as in the theorem.
Let m > 2, let a o be representable primitively by 8 mod q and let | 8|
= sox2* mod q with (%, q) =O. Let (a) = a,a, where ay, a, are k-ideals
satisfying (0., q) =0 and oy is divisible only by such prime ideals as
already divide q. In case m = 2,7 = 1, we further assume that a, is a k-prime
ideal and -8, = y2mod q,.

Then there exists Sy = 8 mod q, such that S, represents a primitively
mod qal for amy natural number b and

18y = symaimod qal, (ay, q) = 9.

0
Proof of Lemma 6. As in [1], define D = (0 E) where F is the
(m —1)-rowed identity matrix. Let A, u ¢ 0 satisfy

| Omoda?, | Omod g,
(44) :{lmodq, Lm{lmodai’.
Define :
(4.5) 8y = A8 +uD .

We will show that this is the requirved S;.
In view of the definition of A, g, we have, trivially, 8, = 8 mod g and

sowarmod q, (v, q) =

(4.6) 18] = { somod al .

Let @, = Aw+u. From (4.6) we have |8] = g, mod qas, also
(@1, qay) = O. To complete the proof of the lemma, we have only fo show
that 8, represents a primitively mod qal
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Let us assume for a moment that D[¥]= g mod a® , with ¥ pri-
mitive mod a;. Further, by hypothesis, 8[X]=amod g, with X pri-
mitive mod g. It i3 easy to see that with 4, u as defined in (4.4), 8,[1X +
+u¥]=amod qa} and AX+uY¥ is primitive mod qal. Thus to prove
that 8, represents a primitively mod qal, we have only to show that D
represents o primitively mod af.

Next let us assume that

(4.7) SoUn ¥t +yeys =amoda?, (¥, ¥, 0) =O.
Y

) ; Y2
Then D[ Y] = e mod a; has a primitive solution ¥ = | 0

Thus in order to prove Lemma 6, we have only to prove that (4.7)
has a solution. We prove this by induction on b.
Let b =1. We have to show, since @ =0moda,, that

(4.8) Sy ¥i+Yeyi=0moday, (Y, Yo, ) = O.

Now s, in {{s,>> may be chosen coprime with a;, and then (4.8) will have
a solution if —s, = 22 mod a, has a solution. In case 7 = 1, this is a part

of our hypothesis; whereas, in case 7 5 1, it may be proved exactly ag in
[31, § 47.

Now let b > 1 and let

(4.9) Sodi+ et =amodal™, (2, 2,0)=0.

Let acq be an integer satistying (¢, aoi*) = O = (a0i?, a,). Substituting
2+ aP7t; (where #; ¢ D), for #; in (4.9), we have

ol 070 (1 + &) o (2o 0 ) (20 o)
= $o212] + 225 + 0”7 (8ot + 22 85) -+ 0¥~ (805 1y -+ 2ta) mod o
50 that our result would be proved if we cam choose ty, &y to satisfy

A4 T
(430)  (so2y 85+ 2585) + (508t +2hty) = :‘i‘fiﬂ{w mod a, .

Since (2,,) =D, there exists Sev, such that (soael--aef—a)a™"
=2 mod ;. Consider now the congruence

So Tl + 2515 = dmod g, .

This i§ li.nea,? congruence in ¥, &, with (8,8, 25, a,) = O, and thevefore
has a solution in O. Passing to the conjugates, the same #i, % give a so-

e ©
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lution of s(,zftl-}-z;\tg = d mod a,. Together, then the congruences give
us (4.10).

This completes the proof of Lemma 6.

Proof of the theorem.

Remark. For the proof of the theorem, we may, whenever necessary,
choose § suitably in its equivalence elass mod q or its residue class mod q.

To prove that the conditions (4.1) and (4.2) are necessary, let 8y e O
satisfy r(8) = m, 8(8o) = %, sig(8y) = {{mz, v)}, K (8y) = {s,» and
(4.11) So[F] =8 modg, (8(F),q =9, EsF=F.
By Lemma 4, there exists a matrix €;e¢D such that
(412) 8y = 8[04], [84] # 0, (‘5(01)7 Q) =90, 0OFEs=0.
From (4.11) and (4.12),
(4.13) 8 = 8,[C,F]mod g .
Now CpF is non-singular and (|0 F|) = 8(Cy) 8(F) is coprime with ¢,
Further, in view of Lemma 4, |8,[-6(C,)-8(C1) is integral. Let ¢ e 6(0y)
satisfy (c (o)) q) = 0. Putting s, =18y|- ¢¢", # = |C,F]- ¢ in (4.13),
we get

[8] = spxzrmod q, (2,9)=0.

Algo from (4.12) it follows that s,s5” = |Sylec”- 6(CT) ™ - 6(Cy) " +|8y ™"
= 68(0y) ™" (66(0)™Y)" and (e8(0)7 q) = O. Finally sgn (s;) = sgn (|8:])
= {(—1)"}. This proves the necessity of condition (4.1).

Now let v=1. In this case, we have also to prove the necessity
of condition (4.2). Let o be as defined in (4.3), then in view of (4.11),

G0, 8) = G(e, 8) -
Applying Lemma 5 to G(g, 8,), we have, in view of the above equation
and properties of S,
(4.14) G, 8)
! —md \ L[~
= @xp (%Zflez)lv(zmso q"g ’")‘3 Z exp (Zma( T Sol[X]»,

Xmodg
EgX=X

where w €% is such that b is integral and prime to g. Now S D

(diagonal) mod g, since (2, g) = p; so that the Gauss sum on the right
—?

of (4.14) equals + G|~ B). Nextsince (g, €q) =0, |D|= &y* mod g

with (y, g) =0, we see that [‘gﬂ] = [%“] Substituting in (4.14), we see

that (4.2) is satisfied.
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We now show that conditions (4.1) and (4.2) ave sufficient for the
existence of the matrix 8, with given properties. The proof proceeds
in several steps.

Step I. We show that it suffices to prove the theorem for the case
w>0forl=1,..7

'OL%t |8] = spza*+ g where ge gk (in view of (4.1)). Let 8 = 8§ 4
+ (0 ql) where ¢, %0, ;e qnk. Then |8 = So@2" +q-+¢1dy, where
dy i8 the leading (m —1)-subdeterminant of 8; and we may, without loss
of generality, assume d, s 0, since § iz determined only modulo q. Also
dyek. Let a eo be chosen coprime with ad; g, g€, then there exists beo

such that ¢+ bg dy = 0 mod (a). Define
P (0 0 )
2 =N+ 0 by,

then

By =8mod q, [8]=semrmod(a), G(g,8) = G(g,8).
Thus we may start with § such that
(4.15) |8] =syoarmod (@), (#,a) =D

where a eo satisties (a,wd;qg€) = O. This ‘a’ may be chosen in such
a way that it has any system of signatures, prescribed in advance.
We may assume that w, =0 for [ = L,...,p, 0<p<r (there is
nothing to prove if » = 0). Choose ‘@’ above satisfying a® < 0, ..., a® < ¢
and a®th >0, ..., a® > 0. Write sgn(a) = {9:}.
Consider now the system m* =m, ff =fe so that

mkzmn'ﬁ‘f:{m it w>0,
2 n if Uy =0

is positive, ;%)‘* = af, s§ = am™s,, 5§ = a5y, q* = a° q where ¢ = m--1 or
?11+2 according as m is odd or even (80 that ¢ is always even). If P* = p(s})
is the product of all k- prime ideal divisors of 2dsy, then 4ds§P*| ¥, sfsy™"
= €T is coprime with ¢* and 58N (8,) == (w—l)""*}. (4.2) and (4.15) to-
gether imply

8] = someafmod aq,  (w,, aq) =0,

3 M e 7 +1
l.e @ !S] =" S22 mod ™ g, and therefore by Lemma 1 (using the
result in case of one variable)

8%} = a™8| = s} wywi mod ¥,  (wy, q) = O

so that condition (4.1) is satisfied by the ‘xsystem’.

©
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Let now T = 1. Define o* = a=°p with o as in (4.3), so that (since
¢ is even), sgn (¢*) = {¢f'} = {&}. Using property (iii) of Gauss sums (§3),
we get
(4.16) G(e* 8% =|N(a)|™ G(ag*, 8).

From (4.2) (since q|a*tq)
(417)  G(ap*, S)
\ 1 7% 4 X — i | S — o m
= exp (Z T e{‘ji’)N(2’"soa ™ g ’)é‘[-g"] (G (4—9* s 1)) .
From (4.16), (4.17) we see that the ‘xsystem’ satisfies condition (4.2).
Thus the ‘sxsystem’ satisfies the condition of the theorem, and has
further the property that uf >0 for 1=1,..,7.
Suppose now that the theorem is proved for the ‘ssystem’, i.e. there

exists an integral h-matrix 8§~8* mod ¢* satisfying 7(83) = m, ind (S3)
= {1}, 6(8%) =s{ and K (8) = <(st>. Define

(4.18) 8y =a~*8¢
then r(8y) = m, ind(8,) = {fi}, 6(8) = 3so, K (8y) = {8¢> and
(4.19) Sy~8 mod a—* g*.

(4.19) implies S;~8 mod g, since q | a~'q* We have only to show that
8, is integral. In view of (4.18) and the assumption that 8% is integral, S,
can have only prime ideal divisor of (@) in the denominator; on the other
hand, in view of (4.19), since § is integral and a | a~* g*, §, cannot have
any prime ideal divisors of (a) in the denominator. Thus 8§, is integral.

Thus for m > 2, 4t is enough to prove the theorem for the case
w>0,1=1,..,r. We make this assumption in the sequel.

Step IL. Let m = 2, r =1. We show that it suffices to prove the
theorem for the case (s, q) = (cont 8, q), where cont§ = content of §
= the ideal generated by all the elements of S.

We first show that § may be chosen in its class mod q to satisfy
(s, q) = (cont 8, q)- b where b | (2).

We can take sy, # 0, by choosing 8 properly in its congruence class
mod q. Let py, ..., p; be all the distinet prime ideals that divide (sy, q).
Let (contd, q) = a = p{*...p{", where a;>0. Let pi*[(2), ¢.=>0
(6= 1,..,1). We may assume that for ¢i=1,..,j—1, PEYHT (84);
50 that pf* || (sy) If (ps, 2) =p for i =1,..,j~1. Let j =1 refer to the
case when pft ot | (s,) for 4=1,..,¢ If j—1 =1, there is nothing to
prove. Let, therefore, j—1 < t. We prove our result by induction on j.
The unimodular transformation

(4.20) W@y, Bymrbry by, P Pi-il(B), (P b) =0
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changes the first coefficient to 83 + b¥sy - 20855, Consider the followin,
g g
two cases:

First case: pf™*" 1 (s). Choose b in (4.20) in such a way that
PP p (28194 Dsza). Then pe ™y (s + D5y + 2b85) for @ = 1.9

Second case: pf ™ | (sy). Then pf’| (s,) and therefore pf+ott,

1 (831 V8gp + 2D8yy) for 4 =1, ..., 7.
Thus we have proved that § may be chosen in its dlass mod g fo
 salisfy (su, q) = (contS, q)- b where b | (2).

Remark 1. This transformation holds for any m, though we prove

it here only for m = 2.

Remark 2. If § is chosen to satisfy the above condition, then it
follows in view of (4.1) that for any prime ideal p | q and for a natural
number b, p®|(sy) implies p?| q.

10

Nowlet D = (0 2)' Let m* =m =2, ff =fi(l=1,...,7), 8* = S[D],
S8 = 45y, 55 = 48, q*= 4q. Olearly P* = p(s}) = B, 4dsiP* | ¥, stsi~! = G
is coprime with q* and sgn (s§) = {(~1)™ %), Also from (4.1),
{4.21) |8* = s§a?mod q*, (%, q*) =0».
So that ‘ssystem’ satisties condition (4.1). Next let ¢* = 1o with o as
in (4.3), then since den(}o*'8*7) | den(}o* ™" |8*|™") and |8*| = s§at-+¢*,
4% € q* (from (4.21)), we have (den(}e* '8*™"), 2) = o. Therefore, by Co-
rollary 1 of Lemma 5, we have
(4.22) G(e*, 8*) = N|D|- G(e4 8) .

Substituting ¢* for o in (4.2), observing that o* satisties the conditions
(4.3), and comparing with (4.22), we see that the % system’ satisfies the
Gauss sum condition. Further (cont 8%, q*) = (81, 2639, 4849, 4q) = {811, ),
28413, 48) in view of Remark 2 above. Therefore, since (8, q) = (contd, q)b
and b [(2), we have

(cont§*, q*) = ((cont 8, q)- b, 28sq, 485)
= b(cont 8, g, 28,3577, dgyyb™*)
= b(cont s, q) = (8, q) .
Now since s, = sh, we have (cont§*, q*) = (sl, q). Finally in view
of Remark 2, (cont§* q*) = (sh, q*).
Thus the ‘ssystem’ satisfies the conditions of the theorem, and
we have the additional property (s, q*) = (cont §*, g*).
Suppose now that the theorem is proved for the ‘ssystem’; so that
*ch?re' exists an integral s-matrix S = 8% U] mod q* U reduced and
primitive mod q* and such that »(8§) = 2, ind(8¥) = {ff}, 6(S%) = sk,

iom®
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K(S§) = <{s&>. Now (B(UD), a*) = (2) and (4)] q*. Therefore by [8],
Lemma 26, there exists an integral matrix D, whieh is left equivalent
with DU mod q*, i.e. DU = U, D, mod q*, U, primitive modq*, Ey, D, B
= D; and such that 6(D,) = (2). Define

(4.23) ' 8y = S3[Dr]
where Di* is the B3 By, inverse of D,. Then
(4.24) Sy = 8[U,] mod }q*.

From (4.23) and (4.24), it follows ag in step I that S, is integral. Further

since Hgp 18 an T-unit of D, §(8y) = 6(8%5)8(Dy) ™" = s,. Tt is easy to see
that this 8, satisfies all other requirements.

As a result of steps I, IT, we have shown that in case m > 2, it suj-
fices to prove the theorem for w>0 (1=1,...,7) and furiher that n case
T=1, m =2, we may assume (s, q) = (contS,q). We make these
assumptions in all further discussion.

Step IIT. Once again let =1, m = 2. We show that we may
choose S in its clags mod q in such a way that i) s;>0 (ie s¥>0
for 1=1,..,n), i) (sy) = ap where a = (contS, q) and p is an odd
prime ideal satisfying (s,, p) = o, iii) § is diagonal, iv) p|] (sx) (therefore
in particular (8,1, q) = (conts, q)) and v) [—_p—s—"] = +1.

Let (81, q) = (cont S, q) = a. Let b be an integral ideal prime to g
such that ba~! = (a) is a principal ideal with a&0. In view of step II
and Remark 2 made there, (asy, q) = 0. There exists therefore, b ¢,
b&0, (b, q) =0 with @s;b=1mod q. Then by the Dirichlet-Hecke-
Landaun theorem ([4], [5]), there is a prime ideal p (we choose it to satisfy
(89, p) = o) such that bbp = (¢) is a principal ideal, cep, ¢&0 and
¢=1mod q. Now (ca™'™") = ap is an integral ideal, so that ca™b™" is
an integer; further ca™'b™* &0, since a,b,¢ are all &0. Finally ca™"b™"
= (ca”'b™Y) (spab) = syu¢ = sy mod q and (ca™'b7, q) =a. -

Thus we have proved that § may be chosen in its class mod g to
satisfy conditions i) and ii) of step III.

Now let si; = asyj (%, =1,2). Then s; are integers, so that the

s
matrix U == (0 f i8 primitive mod g. And
w11
S[U] = (S“ )mod q
o ‘5'11“?1(311322'"3%) !

i.e. § may be chosen in the diagonal form. This proves iii).
From (4.1), we get

“2311(311-922”3‘1"2) = (a311)2' 811’ 8" mod q, (z,q)=o.

Aocta Arithmetica VIIT 30



GUEST


446 V. . Nanda

Let asys = dy, then in view of the foregoing, s,s7i'dj is an integer. Thus
we have shown that we may assume that we started with an 8 satisfying

5 811 0) jea b 0o )
w8 {0 = (0 ety

Also (d,) = pby, (by, pg) = 0 (since p | (#) implies p | q in view of (4.1)).
Finally since (p, s,) =0, we see that p || (ss).

Thus we have shown that § may be chosen in its equivalence clags
mod ¢ to satisfy conditions i), ii), iii) and iv) of step IIL

We now show that [%Si’] = -+1. Let o satisfy (4.3) and (g, pby) =o.
In view of (4.25), ’

(4.26) Goy 8) = G0, 51) G(e,8) -
Now (sy) = pbi E’s,0™" and sgn(sy,) = sgn(s,). Define
(4.27) = (b, E)°.

Then by Lemma 5 (in view of (4.25)),
X
(4.28)  G(g, sm) = exp (fff’ D elfi— 1)) N (2890 05 x

wln?
X mm%;ﬂmexp (21:%0( Tom ))

where wd is integral and prime to pgb,. And with the same w,

(129)  @le sm) = exp (3 Xer) ¥ (2n g

\1 . (—w?p?
X Z exp(z-rcw(4 5 ))
@ mod pg 051

From (4.2), (4.26), (4.28) and (4.29), noticing that o in (4.2) may be
chosen to be the same as in (4.28), we have

8 —o? z
[ ] (G( 4o’ )) -
where L and M stand for the Gauss sums on the right of (4.29) and (4.28)

respectively. Now (pb,, g) = 0. Let gh = (a), pbaly’ = (a'), (B, pgbs) = o,
B = wPaa'(4p8,9)"1. _Then by property (iv) of the Gauss sums (§ 3),

@) a={ Y exp(m'a(-";—"‘f*wz))}L%gexp(zm(”iﬂw))}

 zmod pby

(4.30) Noet) LM

icm
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similarly with g, = 4~ g 12q,

(4.32) I ={ Mexwp (..ma(—él m))}l E exp <2ﬂia(:9%&m2)>}.

- zmodp zmodg
ow
—\J exp (27:@'-0(“811‘8»1 :cz)> = [-SE] G( v; 1)
(J: 33) xmod g o g 49
exp {2miol —a,ﬂ“mz)=[%]G( —ot 1)
W%J:g p( ( a ) g 40’

so that since (in view of (4.25)), sy;8x = 8,5, (4.30)-(4.33) give,

(4.34) { _\J exp (zmcr(aﬂzx?))}{ ‘}: ex] (2nia(%%m2))} =pr§ .

& mod pby zmod p
Now (p,By)=0. Let Byb = (), (b, pba) =0, o= afysuona™
:—-»’L—Q 2

S22 @ @ 805. Then by property (iv) of Gauss sums (§ 3),

E exp(Zma( s o ))

« mod pby

1IN . . (0 da} p }{ \ 0”8 }
-—{ 2 D 271:@0(——493m m) Z exp Zma(————4Q822 w“) .

zmodp zmod by

(4.35)

Now b, = b;6” is the square of an odd ideal, so that

) % 0 dsh 3
(4.36) exp 211:10'( —wz) = (Voy)t,
2 mod b, 49822
¢l
2 9 2 2 9 2 —12 22 2 2
wan o 8 S1d. 5 —m O
1 @ 38 Su 2=—30 (snaldol)
4085, 408 4081

= —30—1(5'11 5% d;1)2 ( —31—11 a-,Bl)

! is integral. From (4.34), (4.35) and (4.36), therefore,

2 9 2

and. s a,dy

‘ \Y . 512}{ \1 wa,alg)}=
(4.37) {_J exp 2ma(snw) exp .nzw( Torn w) Np
Bmod.p
and from property (i) of Gauss sums (§ 3), and s, 8y = 8odz, it follows

therefore that the left side of (4.37) is [?]-Np. .This implies that

5=
Thus we have shown as a vesult of steps I, II and ITL that in case
m = 2, it is enough to prove the theorem for wy > 0 (1 =1, ...,7) and further
30*
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in case =1, m = 2 that we may take 8, ¢ &0, (831) = ap where a -
p s a prime ideal satisfying (p,280) = 0,

(cont 8, q),

sy 0 . oy
8§ = ( 011 Sm) v pl(8)  and [——59 41

Step IV. Let m 3= 2. We show thab it suffices to prove the theorem
for the case u;>0 (I=1,..,7) and s == 1.

In case either m > 2 or m =2 and v # 1, we may choose s, in ity
congruence class mod g to satisfy

(4.38) sy 0  and (8, €) = DL

This can be achieved by adding to s, « suitable positive vational integer
¢ q, noticing the fact that (€, q) = O. In case v = 1 and m = 2, (1.38)

- g 0
may be assumed satisfied as a result of step TIL Define 1) - (,” )

0
and 8* by

(4.39) S*[D] == 8,8,

and congider m* =m, uf = and of = v, for T-=1,..,r, q*=si''q,
5§ =1 0505 8 == 5})11"“30

Then uf -+ o = m; ddsiP* | q*, where P* = p(s); sgn (s)) = sgn (s,)
= {(—1)"}, since s3>0 and of =0y sisi ,susoxn"’so = GEF und
(€, q*) = D, in view of (4.38) and assumption iv) of the ﬂmorem. We
show that (4.1) is satisfied.

Let (8y) = 0,0 where o, and b ave k-ideals satisfying (b, q) =D
and a, is divisible only by such k-prime ideals as already divide q.
In cage m=2 and v=1, we fm'bher have a; = q == (cont S, q) and

= 1. Thusg by Lemma 6, in view

of (4.1) and the fact that & represents s, primitively mod g, there cor-
regponds, to & natural number b, an h-matrix 8 == § mod q such that
8, represents sy, primitively mod qb®, so that 8, is equivalent mod qb to
a matrix with s,; ag the first element, and

(4.40) 18| (@, qb) ==

Thus we may already assume § to satisfy (4.40), Then by Lemma 1
(using the result in case of one variable),

(441) |9¥] (@, 9%) =D.

Thus the “«system’ satisfies the congruence condition (4.1).

Now ‘let v=1. Define ¢*=s5" "9, where ¢ sabisfies (4.3) and
(8117 g)=0. By Covollary 1 of Lemma 5 and (4.39),

(4-4’2) Gle*, 8, 8) = G(e*, S*[D]) = N(s,) G (e*, 8% .

b = k-prime ideal p satisfying |—2

= §o@2" mod qbt,

= s§ aw® mod. q*,

icm
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The condition in the corollary viz. [den(f1 1587, 8 ) = p is satis-
fied in view of (4.41), exactly as in step II. On the other hand
(4.43) G (0% sul) = N(sh)- G(sn0% §) .
From (4.2), (4.42) and (4.43), it follows that the Gauss sum condition
is satisfied by the ‘ssystem’.

Thus the ‘xyystem’ satisfies the conditions of the theorem and we
have the additional properties that «f >0 for I=1,...,r and s} = 1.

Suppose now that the theorem is proved for the ‘* gystem’, i.e, there
existy an integral h-matrix 8§ satisfying
(4.14) (U] = 8S*mod q*, EgU="U, U primitive mod g*,

7(88) = m*, sig(8F) = {(uf, o)}, S(8Y) = sF, K(88) = s3>

Then (4.44) and (4.39) give
(4.45) S§[UD] = ¢; S mod q*.
Now (§(UD), ¢* = (s) and §3 | q*. Thus in view of [8], Lemma 26,
there exists an integral matrix D, satisfying

(4.46) Egt D, = Dy, 6(Dy) = (s1)

and

(4.47) UD =D, U,, U, primitive mod ¢* and Ep U, ="U,.
Define

(1.48) S = 81 SF[Dy] .

8, is integral in view of (4.45), (4.47) and (4.48) exactly as in step I.
It is easy to see that 8, satisfies all other requirements.

We have thus proved that for m =2, it 18 enough to prove the theo-
rem for the case u;>0 (I=1,...,7) and sy =1.

Step V. Completion of the proof by induection.

Let m = 1. If 5, and © are as defined as in the theorem and if ¢
= (a, b), then

(soaa’ soa,’b)
0% \goab® sybb°

can easily be seen to satisfy 7(So) = 1, 6(8o) = 50, K(8S,) = {8¢>, SEN (8p)
= {(~1)"}; also 8y i integral. Finally §y~s, mod q and (4.1) together
imply S,~8mod q.

Now let m > 2, and let us assume the theorem proved for m—l
We will show that it holds for m, with s;; =1 and 4> 0forl=1,

Define
<1 S1p oee slm)
F = 0 B .
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Then F is unimodular and
10
= v .
(4.49) =, S*) 7]
Consider m* =m—1, uf =w—1 and of = for L=1,...,7, sf-=g,

st =so, and g* = q. Then uf-tof = m* s§sf™" = €C" and (€, q*) =9,
*

1dsyP | q* since P* =P, and sgn (s¥) = {(=1)"} since of = v;. (4.1) is

satistied by the ‘s«system’ in view of the fact that |S| == |8% (see (4.49)).

Now let v = 1. By property (i) of the Gauss sums and (4.49), we have

(4.50) &% 8)-(G(e*, 1)) = G(p*, 8%

where ¢* = ¢ satisfies (4.3). Substituting, for G(¢* 8) from (4.2) and
for @(g* 1) from Lemma B, in (4.50), we see that the “«system’ satisfies
the Gauss sum condition.

Thus the ‘ssystem’ satisfies all the conditions of the theorem and
m* = m—1. Therefore by the induction assumption there exists an inte-
gral b -matrix 8§~8*mod q* such that r (8%) = m —1, sig (8F) = {(u; -1, 9)},
0(85) =50, K (8§) = (3>, Then

1 0
&=(OSQ

can easily be seen to have all the requirved properties.

This completes the proof of the theorvem.
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On the diophantine equation 1% =0

by
W. LyuneeREN (Oslo)

1. Let k denote any rational integer. The problem of solving the
equation

1) P-h=a% Ek£0

in rational integers , ¥ has been the subject of many papers and has
attracted great interest for more than three centuries. However, no
general method is known for determining all solutions of a given equa-
tion of the form (1). A summary of earlier results is given in a paper
by T. Nagell [8] and in two papers by O. Hemer [3], [4]. Cf. L. J. Mor-
dell [6] for the history of this and allied problems.

It is well-known that the solution of (1) can be brought back to
the solution in rational integers u,v of a finite number of equations
of the type f(u,v) = 1, where f(u, v) is a binary cubic form with integral
coefficients. By virtue of a famous theorem due to A. Thue [15] the
equation (1) has only a finite number of solutions for a given .

These cubic forms have negative or positive diseriminants according
a8 k> 0 or &k < 0. In case k > 0 one has solved all equations with % < 100.
An essential tool in obtaining this result is the nse of the theorems due
to T. Nagell and B. Delaunay [8] concerning cubic forms with negative
diseriminant. In case %< 0 is the problem much more difficult since
there are not yet general theorems as to the representations of 1 by
binary cubic forms with positive discriminant. Cf. Ljunggren [5].

It was shown by Mordell [7] that the diophantine equation

(2) V= AU — U —(s ,

where g, and g, are given rational integers, has at most a finite number
of rational integral solutions (u,v), when its right-hand side has no
squared factor in u. He proved that to every integral solution (u, v) of (2)
there corresponded a binary guartic with invariants g, and g, which
represented unity, and conversely.

In (1) we have g, =0, gy = —4k, and the problem is now to find
all representations of 1 by certain binary, biquadratic forms having
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