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Then F is unimodular and
10
(4.49) 8=, S*) .

Consider m* =m—1, uf =w—1 and of = for L=1,...,7, sf-=g,
st =5, and g* = q. Then uf o} = m* s§s§™ = €C and (€, q*) = O,
1ds§P | q* since P* = P, and sgn (s§) = {(—1)”7} since of = v;. (4.1) is
satisfied by the ‘xsystem’ in view of the fact that |.8] = |8%| (kee (4.49)).

Now let v = 1. By property (i) of the Gauss sums and (4.49), we have

(4.50) &% 8)-(G(e*, 1)) = G(p*, 8%

where ¢* = ¢ satisfies (4.3). Substituting, for G(¢* 8) from (4.2) and
for @(g* 1) from Lemma B, in (4.50), we see that the “«system’ satisfies
the Gauss sum condition.

Thus the ‘ssystem’ satisfies all the conditions of the theorem and
m* = m—1. Therefore by the induction assumption there exists an inte-
gral b -matrix 8§~8*mod q* such that r (8%) = m —1, sig (8F) = {(u; -1, 9)},
0(85) =50, K (8§) = (3>, Then

1 0
So= (0 o

can easily be seen to have all the requirved properties.

This completes the proof of the theorvem.
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On the diophantine equation 1% =0

by
W. LyuneeREN (Oslo)

1. Let k denote any rational integer. The problem of solving the
equation
(1) Py—k=a kF*0

in rational integers , ¥ has been the subject of many papers and has
attracted great interest for more than three centuries. However, no
general method is known for determining all solutions of a given equa-
tion of the form (1). A summary of earlier results is given in a paper
by T. Nagell [8] and in two papers by O. Hemer [3], [4]. Cf. L. J. Mor-
dell [6] for the history of this and allied problems.

It is well-known that the solution of (1) can be brought back to
the solution in rational integers u,v of a finite number of equations
of the type f(u,v) = 1, where f(u, v) is a binary cubic form with integral
coefficients. By virtue of a famous theorem due to A. Thue [15] the
equation (1) has only a finite number of solutions for a given .

These cubic forms have negative or positive diseriminants according
a8 k> 0 or &k < 0. In case k > 0 one has solved all equations with % < 100.
An essential tool in obtaining this result is the nse of the theorems due
to T. Nagell and B. Delaunay [8] concerning cubic forms with negative
diseriminant. In case %< 0 is the problem much more difficult since
there are not yet general theorems as to the representations of 1 by
binary cubic forms with positive discriminant. Cf. Ljunggren [5].

It was shown by Mordell [7] that the diophantine equation

(2) 1 = 4uP—gyu—gs,

where g, and g, are given rational integers, has at most a finite number
of rational integral solutions (u,v), when its right-hand side has no
squared factor in u. He proved that to every integral solution (u, v) of (2)
there corresponded a binary guartic with invariants g, and g, which
represented unity, and conversely.

In (1) we have g, =0, gy = —4k, and the problem is now to find
all representations of 1 by certain binary, biquadratic forms having
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these invariants. Since such a form fo(x, y) == aw® ++baty - | v y? -4 dry® -1 gy
has negative discriminant D = 2%(¢8 —27g3) = —2%. 3% 2%, the correspond-
ing equation fy(®, —1) = 0 will have two real roots 4 and % and two
complex roots %" and #”’. In consequence of the well-known theorem
due to Dirichlet concerning the units in algebraic number fields, the
field @(n), ¢ denoting the field of rational numbers, has two inde-
pendent units ¢ and ¢ of infinite order. It is easily shown that the only
roots of unity are 41 (cf. T\, Nagell [9], p. 356). Since it is sufficient to
treat forms with o =1, the equation f,(w,y) = 1 implies

3)

Wy == e

The equation (3) gives two exponential equations for determining
ny and n,. Therefore we can make use of the p-adie method developed.
by Th. Skolem in a series of papers [12], [13], [14].

In case & < 0 there are 22 unsolved equations with |k -2 100, nanely
—k =17, 15, 18, 23, 25, 26, 28, 39, 43, 47, 53, 55, 60, 61, 63, 71, 72, 79,
87, 89, 95, 100. In this paper I confine myself to give the complete solu-
tion for k = —7 and & = —18, since I have not yet really checked the
basic character of the occuring pair of independent units for all the
remaining values of k.

Papers of J. W. 8. Cassels [2] and B. 8. Selmer [11] concerning the
rational solutions of (1) contain much of interest also for our problem.

y
Cent,

2. The equation
(4) P T o gy
may be written

(@—0) (a" +-20 + %) = y* ,
where 6 = 7, 6 real. The common ideal factors of [z — 0] and [a*+ »0 -+ 02]
divide 21, since (24w 0?) (2 — 0)(x +20) = 30% From (4) we there-
fore conclude, using the fact that (y, 21) =1:
(5) [@~0] = a?,
" where a is an ideal in @(0). Since the classnumber of Q0) is 3, [2], it
follows that @ must be a principal ideal. The equation (5) ix then equi-
valent to
R/ APy LN

where ¢ is & unit and 1 is an integer, both in Q(0). We have to distinguish
between two cases

1° ©—0 = (a+ b+ c0?),

2° @0 == (4+20--0%) (a -+ b0+ cf*)?,
@, b and ¢ denoting rational integers. Here ig (2—0) (44204 07) == 1,
and 44204 6°> 1 iy a fundamental unit in Q(0). Of [2]. We find

(@ b8+ 0b)? = (g? +14be) + 0(2ab + To%) -+ 02 (b -+ 2a0) .

icm°
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1° then implies

2ab+T¢ = —1, bp24+2a¢=20.

Since (b, ¢) = 1, the second equation gives ¢ = +1. It may be supposed
without loss of generality that ¢ = 1. Hence

ab = —4, 2= —2q,
from which it follows that b= 2 and @ = —2, corresponding to
(6) 32—0=(-2+20+06%2.

In this case we have the only solutions (z,y) = (32, 4-181).
We now turn to the second possibility, giving

) (a2 --14be) + 2(2ab + T¢%) + 4 (b2 + 2a0) = 0,

(8) 2(a%-14be) + 4(2ab + Te?) +7(b% + 2a0) = —1 .
Combining these equations we get

(9) bi4-2ac =1

whence (b, ¢) =1 and (b+c,¢) =1.
Equation (7) may be written
(10) (& +9b+4¢)2 = 2¢(b +c) .

We must distinguish between two cases:
(i) ¢ even. Since & is odd, (10) implies

btc=ep?* a-+2b-+4c = 2¢,08 ,
where a2 0, $ 20, ¢ = +1, ¢, = +1 and «, 8 integers in Q. Hence
a = 2¢(—2ad’—-f2+eeaf), b=e(f2—2a%), ©¢=2ed".
Ingerting’ these values for a, b and ¢ in (9) we obtain

(Beey)t—12 (Bee,)? a® + 8 (Bee,) a®—12a* = 1.

¢ = 260, and

(11)
Putting

(12) P—12n2+8p—12 = 0,

we conclude that ee, +an must be a unit with norm +1 in the field

Q (7). The numbers

(13) o =47 and o= i(—27)
are integers in @(n), because
ol =3 —29+8 and s =6—4q+ 75 —no;.

Now it can be proved (see section 4) that
(14) g = [P~ 4P +39—2F, &= 1(r+4n*-2n+4)
®
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is a pair of fundamental units in the ring Z[1, 5, v, w,], Z denoting
the ring of rational integers. This yields
(15) Bee, +-an = + &t
(ii) ¢ odd. (10) now implies
0 = 2e(—at—2feo,af), b =e(2f—a?), o¢=ea’.

Inserting these values in (9) we find

(16) 4p1—12p%a? 4 466, fad — 3at = 1,
or
a7 (2feey)*~—12(2f¢e,)  a? - 8 (2f¢6,) ®—1201 = 4 ,
ie.
N(28ee, + an) = 4.
Noticing
(18) (n° —dn® + 31 —2) (=30 —109% -}-dn—8) = 4 ,

we get, after some caleulations,

2Be6; + o
W g e

= G+ Do -+ Co 1 - do® + 4 7 (@ -+ Peey) ,

where ay, by, ¢, and d, are integers in @. This proves that the left-hand
side of (19) is a unit in Z[#], because « and Pee, are both odd rational
integers, the last fact resulting from (16). Hence

(20) 20ee,+ an = (1’ — 4o +3y—2) et
Combining (15) and (20), we get in both cases

(21) Uy +0y7 = (7P — Ao + By —2)P (1 4o — 29 - 4)7

where u;, v, p and ¢ are rational integers.

3. In this section we study the equation (21). We put p = 8w-r
and ¢ = 8y +s, wherer = 0 or 1 and § = 0 or =+1. Purther we caleculate
(F —do? 39 —20 =1 —BrP+ 94 =1+88, & =—nP+34,
(22) (P 4n® =29+ 4)° = 1+ 8+ 87?4+ 31P + 9B = 1+ 34,
s = n~+9* -1 --3B,

denoting by 4 and B algebraic numbers belonging to Z[y].

‘ Treating the equation (21) as a congruence mod3 we obtain the
‘necessary. condition

(28) Vr, 8) = (n*—op? -iﬁl)r(n*’-H?*’+77~f-1g8 =1 (mod 3) .

e ©
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An eagy calculation shows that

v
v

VL0 =1ogita, V(1,00 =14q-7
(24 V0,1) =1+n+n+nt, V(0,-1) =1—n—p—p,
1, 1) =1—n+n—r, V(1,1)=1+49—1m,
) )

(—1,1) =1—g+p,  V(-1,—1) =1+ (mod3),

such that the condition (23) ig only fulfilled for 7 = s = 0.
Here use is made of (18) and the equality

(25) (n*+ 492 — 2+ 4) (° — 2072 —14y +32) = —16 .
The equation (21) may now be written

Uy +vm = (1 +3£1)m(1 '}‘352)” )
or
Uy F 0 = 14 3(wé; +y&s) +32( ) +3%( ) +...
Inserting the values of & and & from (22), we obtain
00 =1+3(—on®+y (477 + 7)) +32( ) +3( )+,
yielding the following 3-adic developments:

0 = 3y-+32( )+3%( )+,
0= —80+3y+3( ) +35( ) +...,

0=y +3()+3( )+,
0=—w+y+3()+32( )+

According to a theorem of Th. Skolem ([13], p. 180), the equations (26)
have at most one solution x,y, because

'01

(26)

-1t

Obviously this solution is # =y = 0, corresponding to ¢ even, with
My ==y =0 and a=0, Bee, = +1. Hence a = —2¢, b=¢, ¢=0 and

2—0 = (4+20-+0%)(2—0).

The only solutions of 2° is then » =2, y = £1.

Then it is proved:

TamorEM 1. The diophantine equation o*—T =1y* has exactly two
solutions in positive, rational integers ®,y, namely z=2, y=1 and
@ =32, y == 181,
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4, We are now going to prove that the units ¢ and & in (14) con-
stitute a pair of fundamental units in the ring Z[1, 9, o, w,]. The equa-
tions (18) and (25) show that & and e, are really units. That these units
are independent can be shown by computation of the regulator, but
this fact is easier proved in the following way: A relation of the form
& 3 = 1 implies an equation of the type (21) with », = 0. However,
in section 3 we proved this to be impossible unless #, = ny = 0. By the
usual method of golving the quartic equation (12) we find #> 0 and
7' <0 as the real roots of

P2 Y2 =0 = 2420 - - i—ba

and %", "' as the complex roots in the equation
2

Let (—1)°D; denote the determinant of the matrix formed from
the matrix below by removing its ith column, ¢ =1, 2,3, 4:
11 1 1
,'7 n/ nl( 77III
ng nrg ”112 n///g
Some computations give the following inequalities:
3.2673 < 1 < 3.2674, —3.86 <y’ < —3.85, |y =|%""|<0.98,
|Dy| < 85.6, |Dy<<19.11, |Dg| = |D,] <96.974.
At firgt we want to prove that &, is no power of another unit in
Z[1, 7, oy, 0. Assuming
(28) e=(Ha+by-tefp+dp)', n>1,

& denoting any unit in the ring mentioned above, we obtain from (28)
and the corresponding expressions for the conjugates of e:

5 4
(29) a= ;75“ (Dye" 4-Dye™® 4 Dy - Dy
(29,) 0___'7__(1) nsl/t }1) W’Ellm'i f) '7,, 111 + D 17:/, mlm)
(29" b=t
VD

XDy —12) 8" + Dy —12) 6™ - Dy —12) 6§ -1- Dy ~12) e’ ™ .

On the diophantine equation y*—T = z* 457

From the inequalities
(30) 18.66 < e, < 18.80, 3.45 < <3.49, &' =|a"| <t

we then derive, putting & = &,

4. —
d| < ~————-=(35.6/18.80 +19.11 /3. 974
\d| 3.7.&“/3( V1880 +19.111/3.49 -+ 96.974. 2) ,
4 1548 )
0] < gag7 (157436 +104) = 55z <1, ie d=0,
4(157.3.27 436 3.864194-0.98) _

le] < 3557 <2, ie ¢=0,

bhecause ¢ iy even in Z[1, %, oy, w,]. From the values ¢ =0, d =0 if
follows that a =) =0 (mod4). However, an equation (a;+bn)" = &
would give a contradiction because e, ¢ Z[7].

Consequenily e is no power of another unit in Z[1, 7, vy, 0.

In the following reasonings we need three lemmas:

LemMA 1. The units &, ey6 and e e are neither squares, nor cubes
in Z[1, 7, w1, 0.

Proof. It ig easily shown that

(;L(a—%bn—:»cvy'*-—:—dn%) =+ b+t +d? (mod3),

by, ¢, and ¢, denoting rational integers. Since
(31 & = —1—n-+nt (mod3), ge=—1+n—7 (mod3),
) g 60 = —1—"+% (mod3)
it follows that a? = —1 (mod 3), which is impossible.

Further we find

($(a+by+on? +dp)) = a+(b+o+d)7P (mod3),

which contradicts the values of e, & & and e e * jn (31). Thus our lemma
is proved.
TEMMA 2. There are no units in Z[1, 1, oy, ws] of the form p +4qn+ w,,
=0 or 1.
Proof. Some caleulations give the following values of the norm
of p+qn+ oy
N(p+n+ o) =pt+12p*+30p* +12p 145,
N(p—n-+ o) =p*+12p°+6p*—20p +21,
N{(p+ay) = p*+12p*+30p* —28p 49,

NP+ qy-+ o) = +1 implies p even, and hence it is obvious that all
cases can be excluded mod 16.



GUEST


458 W. Ljunggren

Lemma 3. There are no units in Z[1,1, vy, w,] of the form D0 o,
¢g=0, £1, 2 or 3.
Proof. Some further calculations give
N(p+qn+ ws) = p*—06p*+4(9)p*-+B(g)p +Clq) ,

where the values of the coefficients 4(q), B(g) and O(g) are given by
the following table:

P 0 —1 1 | -2 ‘ 2 | 3
a(q) | -84 | —24 | —168 12 | —216 | —a08
B(g) 56 28 12 | —24 | —152 | —dss
O | —4 | —90 | —18 | —18 | —450 | —2088

N(p+gn+w) = &1 implies p odd, and mod 8 we conclude that the
norm —1 must be excluded. Since C(g) = 0 (mod 3), we deduce pEO
(mod 3). Mod 3 we then obtain 1+4B(¢)p =1 (mod 3), a contradiction
unless ¢ =1 or ¢ = —2. However, in these cases we get the equations
p*—6p°—168p* +12p—~19 = 0 and p*—6p?-+12p* —24p —19 = 0 respecti-
vely. Both imply p = +1 or p = £19, which is easily seen to be im-
possible. Hence our lemma is proved.

A finite procedure of finding a pair of fundamental units when there
are only two units, has been developed by W. B. H. Berwick [1]. How-
ever, in order to prove our statement concerning the units e, and P
we prefer to make use of a method previously employed by the author [8]-

Let 7, and 7, denote a pair of fundamental units in the ring
Z[1, 9, w1, ]. Then we have

(32) & =77, (4,0)=1.

Now it is possible to determine two rational integers m, n, such
that wm—wvn = 1. Ingerting this in (32) we obtain
o (e )" = (efmy)”

M1 »
) et =ou and  epTy s ay,
Le,

m, . —v -
TL == B My and 7y =g u.

Consequently the units &, and », form a pair of fundamental unils,
This implies

(33) 5152 = ny ’

and there 'is no loss of generality in assuming y > 0. We want to show

that (33) is impossible unless y=1

e ©
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Putting
o=Ty+r, Il<hy
(33) can be written
(34) gy =,
where y =5 on account of Lemma 1.
We must distinguish between two cases:
1° 7 = 0. In (29), (29') and (29”) we put
8:%:&“’6?”, %>r/y>0, y=5.
By means of (27), (30) and the inequalities
0.00016 < & < 0.0002, 8438.3 <& < 8540.1, |a'|=lel"| <0.75,
Inf—12| < 1.325, [|92-12]<2.9, |y"*—12|=|y"*—12| <12.97

we get the following upper bounds for the coefficients d, ¢ and b
18] < ygbyr (35.6/18.80+19.11 /8540.1.1/3.49 +96.974- 2) < 1,
le]<3 and |b<6.

Hence d =0, ¢=0 or +2 and b =0 or 44, because a = 0 (mod 4),
¢ =0 (mod 2) and b+2d =0 (mod 4). We then conclude

tr=p+ento, ¢= 1, =0
but this contradicts Lemma 2.
2° r = —ry, 7, > 0. Replacing & by & ' we get

@] < yetyr (35.6 +19.11/8540.1 +96.974 //18.80- 3.49- 2) < 2,
lo] < gty (35.6- 3.27 +-19.11 [/8540.1 - 3.86 +96.974 /18.80-8.29-2) < 2,
B] < 4 ¢tr (35.6-1.33 +118.5- 2.9 ++552.7-12.97) < 13,
ie., either d =0, ¢=0 or d= +1, ¢=10, b= £2, +6 or £10, re-
membering that b--2d = 0 (mod 4). The first possibility is already ex-
clused and the second one contradicts Lemma 3.
Then our statement concerning the units & and e is proved.
5, Tn this and the following section we are going to consider the
diophantine equation 9?15 =a®. As in case k=7 we find
(35) [0—6]=a? 6°=15, .
where a is an ideal in Q(6). The classnumber of @(0) is 2, and as repre-
gentatives of the classes of ideals in @(6) may be chosen [1] and ps,
where i
pepi=2 and ps=[-11+420+ 64.

See B. S. Selmer [10]. If @ is a principal ideal, the equation (:35) i§ equi-
valent either to @—6 = A% or to & — 6 = &A?, where ¢ is a basic unit and

i
1
%
i
1
!
i
{
!
]
|
%
x
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4 an integer, both in @(6). As in section 2, case 1° it is easily shown
that the first possibility must be excluded. Taking into consideration
the formula

140 = (—11+26-+ )21, 5 =1-—-300-+1262,
corresponding to the solutions (,y) = (1, £4) of y*—15 = 4°, the second
possibility gives us

(8—0)(1+0) = o+ (2—1)0—0* = (a +b0 - 00?)*,
from which we conclude

b*+2ac= —1 and (a*+ 30bc) —(2ab+15¢%) = 1.

Since the first equation implies that a, b, ¢ are all odd rational integers,
the second equation is impossible mod 4.
If a~p,, the equation (35) is equivalent either to

(36) 4(x—0) = (—11+204 6% 22,
or to
4(@—0) = (=11 +204 0%)s22.

Utilizing the knowledge of the solutions (¢, y) = (109, +-1138) of the
equation y*—15 = 2% we find

10940 = (—11+ 20+ 62) e~1(14 4- 26 362)2.
In the second case this implies

4(m—0) (109 +0) = (a+bO-+o0%)¢

bi+2a6 = —4 and  (a®+30be)—109 (2ab +15¢%) = 4109,

from which we deduce that a, b, ¢ are all even rational integers. Putting
@ =2a;, b =2b; and o = 2¢,, the equations may be written

bi+2ae = —1 and (af+30b,0,)—109(2a,b, +156;) = 109°.
However, this last equation is impossible mod 4 for odd integers ay, by, 6.

We now turn to the remaining case (36). From (36) it follows, putting
=¢-4bl406? and a, = a? +30bo, by = 2ab+15¢% ¢, = b®-+2ac

(37" ay+2b,—11¢, = 0,
(37 2a,—11b, 4186y = —4 .
The equation (87') may be written

(8b~13¢)(8b —Te) = (a +2b—11c)2 .
Hence
. Bb—13¢ = dec?,

3b—Tc =dep® and . a-+2b—1lo = desaf,

icm
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where a>0, >0, d>1, e= +1, ¢, = +1 and «,f integers in @.
These equations yield the following values of @, b and ¢

(38) 4a = de (290 1942 + 4aPee;), 4b = de(13p2—Ta?),
do = de(Bf—3a2) .

Eliminating @, between (37’) and (37") we get

15b, —37¢, = 4 .
Making use of (38) the last equation may be written
—af+3a*fee, —3a2 B+ Saflee, —3p4 = % N
or, putting a—pfee; = h, Pee, =k:
—4
4 37, 3 Jd o
hE- ek —4hE b
The possibility d =1 is easily excluded mod 2. For d =2 we obtain
(39) M4+ wBEk—4bkr—F = —1.

Setting
7—nf+dn—-1=0,
we conclude that & +%n must be a unit with norm —1 in the field @ (n).
Now it can be proved that % and 2—»? is a pair of fundamental units
in Z[n]. It is obvious that # is a unit, and 2—9? is a unit in virtue of
the relation -
2~ (2—Tn+5yf—277) =1.

This yields .
(40) btk = £o™(2— 7)™ my odd.

6. Here we want to show that the only solution of (40) in rational
integers my, ny i8 ny =1, Ny =0.

We find

w8 =143& and (2—7%)?=143&,
where
L= —n—y*—pP and & =4—Tyn—3n—3¢°.

Putting n, = 6u+r and n, = 3v-+s, we have to study the equation
(41) L(+Tn) =1 (2—7)° (1+36)"(1+34)°,
for r= 41 or 3 and 8 =0 or 41. . .

Regarding (41) as a congruence mod 3, it is easily found that the
only possibility which may occur is r =1, s = 0. Now (41) gives

H(h+Fn) =n+3(ubig+obyn) +32( ) +3() o
Acta Arithmetica VIIT 31
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or
FhH(~1E)y = 3(u(—L 45—+ 0% + v (y — o)) +82( )4 3% ) ...
This yields the following 3-adic developments
0 =—u—v-+3()+384 )+..,
=u+3()+3% )+..
According to a theorem of Th. Skolem ([13], p. 180), the equmnons
(42) have at most one solution «, o, becmse
-1 -1
0

Obviously this solution is # = v == 0, corresponding to #; =1, n, = 0,

which was to be proved. This implies k=0, k = -1 and further on

a=fee; = +1 and a =176, b =3¢, ¢ = 6. The flna.l result is then
4(4—0) = (~11+20+ 6%)(7+30 -+ 67)2,

i.e. # =4. Then it is proved:

(42)

-

THEOREM 2. The diophantine equation #°--15 = y* has exactly one
solution in positive rational integers m, y, namely Y o=d4 y=17,

7. At last we give gome interesting remarks in connection with the
solution of our problem for & = —7 and % = —15. The corresponding
equations are easily shown to be impossible if 4 is even. In cage y i3 odd,
we deduce

T Vk _1+vVE (a+b|/k)
2 2 /)

from which it iollows
a*+ 307 b -+ 3kab? + kb® = 26-~k)4
This equation may be written
_ (@ +0)*—3(L—F) (a-+b) b2+ 2 (1 —Fk)b? = 26~)s )
i.e. . )
(@+b)*—24(a+b)b2 166 =8, k= -7,
(@+b)*—~48(a +b)b?+32b* =32, k= —15.

Pu’uting in the first case a-+b = 2u, b =v and in the second one a4b
=4u,'b =0, we obtain

(43) o v Ut Bupt 4208 = 1
and

(44) . 2607+ 203 =1,
respectively.,

Hence, by the way we. have got the complete solution of (43) and
of (44), where-‘the cubic forms op ‘the left-hand side have positive dis-

icm

©

On the diophantine equation y*—k = x® 463

criminants. The equation (43) has the two solutions (¢, v) = (1, 0) and
(u, v) = (1, 3), while the equation (44) has the only solution (u, v) == (0, 1).

In the introduction we mentioned that in case k > 0 the equation (1) .
could be investigated by working in a cubic field with one fundamental
unit only. This implies that the problem of finding all representations
of 1 by certain quartics could be dealt with in an easier way, obviating
the difficulties arising from the fact that the corresponding biquadratic
fields have two fundamental units. Sinece y*-15 = 2® hag exactly the
golutions mentioned in section 5 we conclude (cf. [8], p. 37):

The equation
ot — 6ty 4+ 32my* — 3yt = 1

has mo solution in integers x,y with y 0.
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