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ON THE »-TH ORDER RICCATI BQUATION
OF THE SECOND KIND

BY

T. IWINSKI (WARSAW)

§1. In [1] a theory of a certain class of the n-th ordor non-linear
ditferential equations was given: they are called generalized Riccats equa-
tions (0¥, in short, R-equations) and are closely connected with linear
cquations of the (n-+1)-5t order L, aly] = 0. The definition of these
equations required the assumption of multiple differentiability of the
coefficients of the corresponding linear equation. In the present paper,
using weaker assumptions, namely assuming only continuity of the coeffi-
cients, we shall define another kind of non-linear equations of the n-th
order, with properties related to those of R-equations. To distinguish
them, we shall eall them Riccali equations of the second kind, or R-equa-
tions.

§ 2. Let us consider a funetion u(x) defined in the interval (a, b)
and belonging to the class ¢*. Under this assumptions, to every integer
w < k, we shall assign a non-linear differential operator I™ defined on
function «(x) by the following recursive relation (see [1], p. 6):

) 'lu] =u, I'[u]= %I"‘Tu]—kul”“‘[u].

Definition. The equation
M1

(2) .R‘,,‘ |-71«] = aw..|.l,n"" Z ay, )~I,1‘Ii—] ["’N’] =0
d==1

will be called n-th order Riccati equation of the second kind, or, briefly
R,,,—equation. We ghall assume that the coefficients a, 10 B=0,1,..
..y N--1) are defined and continuous in (a, b).

The simplest equation R, is of the forin
Upplt' == Ggp W% — (o U -~ Ggy

thus, it is the elassical equation of Riceati.
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§ 3. Having defined by (2) the R,-equation, we shall consider the .

following linear differential equation of the (n - 1)-st order, whose coeffi-
cients will be the functions a,,,;; (4 = 0, 1,..., n-+1) which appear in (2):

n+1
(3) Lnr|rl [7/] =y +1,0 Y ”‘“ Z @y +1,1 ."/m = 0.

=1

The relations between the equations (3) and (2) are given in the
following theorem:

THEOREM 1. Every R,-equation of the n-th order can be reduced o
the Uinear equation of the (n-+1)-st order by changing variables w = —y’[y.

Every homogeneous linear equation of the (n-+ 1)-st order can be reduced
to an R,-equation of the n-th order by putting

(4) iy = exp [— J u(lm].

Proof. It can be shown by induection, that from the definition (1)
of the operator I" follow the formulas:

(5) 'l—u] ="y (u= —y'y)
(6) Y™ = e~V [ —u],

where U= f w(w)dr (we shall keep this notation in further considera-
tions).
It follows at once that

. ) A o

(7) R, N L[y,
Y

(8> . Ln‘+l [6.- U] =€ I'rjﬂ,,“ [’M] .

Formulas (7) and (8) imply both assertions of our theorem.. Sub-
sequently we give some properties (I-V) of R,-equations dervived from
theorem. 1.

I. The solution of the non-linear R, -equation can be reduced to the so-
lution of linear equation (3) (and conversely).

This property iz well-known in the case of the clagsieal Riceati
equation.

If the function

41
(9) : y= 3 Cy (0= const)

=1
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is a solution of the linear homogeneous equation I, 21[y]1 =0 of the
(n+1)-st order, then the function

(10) "= -

is the gemeral solution of the corresponding R,-equation.
II. Suppose that we are given o system of n-+1 functions

(11) Uy gy weny Uy yy

from C™(a,b). We shall consider the following functional determinant:

1 1 1
ITu,] IP[us]  one Ilttgy]
(12) T('nl, cey Upy) = | IMu,]  IPwy] ... Ity 1]

7T I ] o IV [ty

) If the functions u;, (i =1,2,...,n-+1) are particular solutions of an
L,-equation of the n-th order, and if the fumctions (11) satisfy in (a, b)
the condition

(13) T( =gy —Ugy ooy —Upy) %0,

then the general solution of the corresponding linear equation of the (n+1)-st
order is the function

w41

(14) y = Z e,
Faa1

In fact, it follows from (8) that each of the functions y; = exp(— U,)
is a particular solution of equation (3). It remains to show that these
funetions arc linearly independent in (@, b), which, however, follows at
once from the assumption that they satisfy condition (13). In fact, if
funetions (11) satisfy condition (13), then from the easily verified relation

. n+1
(18)  W(e=Tr, e, ., ¢mUa) =exp[— ) Ui]T(—-u“ Ugy vovy =),y

=1

where W denotes the Vronsky determinant, follows the linear indepen-
dence of the functions y; = exp(—U;), which was to be shown.
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IIL. If the function w(z, Cq, ..., Cy) 48 a general solution of the equa-
tion R,[u] =0, then the (:m"mspond'mg linear equation L, ,[y] =0 has
the solution

(16) Y= Cpyqro” T C O

(C; = const).
In faet, it follows from the formula w = —y'[y that y satisfies the
differential equation of the first order:

Y4, Cy, 02’ cey Cu)y =05

hence we have (16).

IV. An R, -equation with coefficients defined and continuous in the
wnterval (@, b) has a solution in the domain of real functions in the whole
interval (a, b), except at most a countadle number of points. In the domain
of complex functions of real variable, an Ry-equation has, under the same
assumptions, a solution in the whole interval (a,b).

In fact, to every equation (2) we can assign a linear equation (3).
Thus the property IV follows from formula (10) and from the correspond-
ing properties of the solution of linear equation (3), whose coefficients
are continuous in (a, b).

To show the second part it is sufficient to use the following

THEOREM of G. MAMMANA (see [2], theorem 1). For the most general
linear differential equation of the n-th order there exists an arbitrary number
of pairs of particular solutions which do not vanish simultaneously at any
PoInt.

In this theorem the usual continuity in the whole interval under
congideration, is assumed.

V. If we know n solutions u,; of the equation R,[u] = 0 such that
the functions —un; (i = 1,2,...,n) form a system of essentially different
functions, 4. e. they satisfy the condition T(—tuu;, —ips, ey U g) # 0.
then the general solution of this equation can be obtwined by quadratures,

Indeed, under the assumptions of this theorem we know o sysbeim
of linearly independent solutions of the form y = exp(—1U7,;) of the
linear equation IL,,,[y] = 0, which corresponds to the given equation
R,[u] = 0 (property II, folmula. (15)). But, as we know, in this case the
last linearly 1ndependent solution y,,; ean be found by quadratures;
thus the general solution of an R,-equation is defined by (10), which
was to be ghown.

We can formulate analogous properties in the case when we know
n-41 particular solutions u,; (i =1,2,...,n+1) of an R, -equation.
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§4. We can obtain further properties of R,-equations using the
considerations coneerning the dccomposition of the differential expression
L,.1[y] into operator factors (this idea is due to Floquet (see [3], p. 267).

It has been shown in [1] on Riceati equations of the first kind, that
one can conneet with these equations the decomposition of differential
expression L, [y] into operator factors of the form

d
(17) Ln«fl[]/} = (Fl}l’_l‘an,i)l_’n [Z/]~

In the case of the Riccati equation of the second kmd i. e, in the
case of an R,-equation (2), one can connect with these equations a de-
composition of linear expression into the. following operator factors:

(18) 1L+1[7/] = Ln[ +I”n7/j|

where
i

dx’”

n

Lw. = Gy + Za’ni "(Z

=1
We assume that the function u,(z) belongs to the class C™(a, b),
and that the functions a,; (¢ = 0,1, ..., ) are continuous. In order to
obtain the decomposition (18) we have to define the functions a,; (1 = 0,
1,...,n) and #, in such a way that the relation (18) may hold. If such
functions exist, we shall call them coefficients of the decomposition, and
equation (3) will be called decomposable in the interval (a, b). The coeffi-

cient u,, will be calléd ‘distinguished coefficient of the decomposition.

THEOREM 2. The function u, is a distinguished coefficient of the de-
composition (18) if and only if this function is a particular solution of the
R, -equation (2) corresponding to the linear differential equation (3).

Proof. The first part’ of the theorem is obvious: if the linear equa-
tion. (3) is decomposable, and w, is a distinguished coefficient of the
decomposition, then the funetion y = exp(—7U,) satisfies equation (3),
and hence, the function w, is a solution of the Rn—equation (2).

Thus, it remains to show that cach solution' u, of equa.tion (2) de-
termines a certain system of coefficients a,; (¢ =0,1,..., %), which,
together with u,, form a gystem. of funections satistying (18) in the interval
under consideration.

To do that we shall-derive a system of equations for the coefficients
of the decomposition of the linear differential -equation into operator
factors. -
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We shall use the followﬁlg auxiliary formula (which ean be easily
proved by induetion):

n
(19) L[yl = D Buy" ™",
i=0
where
i
; n+k—1i\ & ,
20  Bu=)Y anw_i( N C T
=0
The symbols u,(x) and y(w) denote functions from the class (" (a, b),
0
and (0) = 1.

Let us re-write identity (18) in an equivalent form

Ln ['““n ’t/] + L'n, [:1/’] = -Ln-irl [’l] .
Using formula (20) we find

w41
ZB J(n L)’{‘Zanm 17/(”+’ R 2“::»{17“1 z/l/(“” D=1

or

n
.1 N P
(a’n,n - a’n-t-lm.+1)y(qH )+ 2 [Brn.,i~1 + an,n—i_ “n-i-l N 1h'i]?/m H=1) ‘l‘

i=1
+ (Bn,n— “qt |»1,0>?/ =0.
For this identity to be satisfied it is necessary and sufficient that
the coefficients of the decomposition satisty the following system of
equations:
Bn,i—l+“1L,n—i_a’n+l,n+1-—1ﬁ =0 (t=1,2,...,n)
(21)
Bn,n_a’n-\'—l,o =0,
where @, 5.1 = a, e

Thus, the problem of decomposition of linear expression L, [y]
is reduced to the solution of system (21), consisting of -1 equatmns,
where the unknowns are the decomposition coefficients a,, (i = 0, 1,
n—1) and u,.

Ag for this problem, it may be reduced to the solution of only one
equation. We obtain this equation by eliminating the funections a,;
(1=0,1,...,n—1) from system (21), leaving only the unknown w,.

icm®
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Sinee all unknowns a,; appear linearly, the result of elimination will
have the form of the following equation of (n- 1)-st order:

Ay 1nsl ( ) Uy — Qpy1n 1 0 ves 0

n -1
Cny1msl (1) Up— Bni1n 1 ( Un 1 e 0

L=

'u(’ D ("— )u“ L0

) = (;;: 2 e (Jfun

We shall show that equation (22) is an j?n-equa.tion (2), correspond-
ing to equation (3).
To show this let us consider the following functional determinant:

1) n—
Busrngt | ;) Un —lnpim—i \;_

71-—

Ay RES ( ) n T a’n+1 0

? (g) e 1 0 .0

(';) Uy, (";1) u, 1 ... 0

n+1} ..
L iy [(n—1 f— n—2 i—
() (7)) () 0
n n—1 - n—2 —9 0
e (e (o (o

Let us remark that this determinant may be expanded in the follow-
ing way:

(28) Ii[—m] = (

n—1

) Bl = = 3 (Pt -l (7)o

i=0

On the other hand, the differential expression (3) can be represented
in an analogous way:

n—1

(25) Pl-wl= = 3 (1r- i) (1)

i=0

The proof goes easily by induetion, using formula (1).
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Conoruston.” The differential equations Iy[—u,] ond I"[—u,] are
identical,

(26) Lil—u,) = I"[—w],

for every u,eC™(a, b).

For the proof we use induction and formulas (24) and (25).

Expanding the determinant (22) with respect to the first column
and using (26), we reduce equation (22) to the form (2), which was to
be shown.

Sinee the R,-equation is a result of eliminating the unknowns from
system (21), this system is equivalent to the system formed from (21)
Iiy dropping one equation (for instance the last one) and adding the
R,-equation:

EB,[u] =0,

27
Boi1t a1~y =0 (i=1,2, sy W),

Reduction of system (21) to the form (27) completes the proof.
Indeed, to perform the effective decomposition, it is sufficient to take
any one of the solutions of equation fa,l[u] = 0, and then determine
@y from the first equation, Onm—s from the second equation, and so on,
determining in such a way all the coefficients of the decomposition.

By § 3, property IV, and formulas (27), the decomposition of the
expression L, ., [y] into factors is, under the agsumption of continuity
of coefficients a,.;; in the interval (a, b) assured in the whole interval
(@, b) in the domain of complex functions of a real variable.

Now we shall show some consequences of theorem 2.

I.'If we know any particular solution of the ﬁn-equation (2) cor-
responing to the non-homogeneous linear equation

(28) Ln+1 [?/] = bnuy

t}mn the integration of this linear equation can be reduced to the integra-
tion of a system congisting of two linear equations, of the n-th and of
the first order:

By 0" ”'n,n_.l'vm_l) Fo Gt = bny1s

(29)
Yty = o,

where the coefficients a,; (i = 0,1,...,n) are defined by recursive for-
mulas (21). We assume that the funection bny1 s continuous in (a, b).

This result may be of practical use in cases when we eannot find
any Apartieula.r solution of the linear equation and we have one integral
of R,-equation (2). :

iom®
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In the case when we know a particular solution of the linear equa-
tion, our theorem becomes a version of the theorem on the lowering of
the order of equation when we know one of its particular solutions (which
follows from the formula u, = —y’/y). From the point of view of applica-
tions, the advantage of such formulation of the theorem on lowering
the order of equation lies in the fact of explieit formulas (21) for the
coefficients of the linear equation of the lower order.

II. It follows from the assumptions concerning the coefficients of
equation (3) and from formulas (21) that the coefficients of the system (29)
are continuous in the interval (a, b). Hence, we may apply the procedure
formulated above to the linear equation (29), replacing it by the equi-
valent system of two equations, one of the (n—1)-st order, and the other
of the first order.

Repeating the above reasonings we get the following conclusion:

For every linear equation (3) of the (n-+1)-st order with continuous
coefficients, there exists an equivalent system of linear equations of the
first order; each of these equations contains only one unknown:

’
01+ G100 = by,

(30) vidu_ v =0, (I=1,2,...,0n),
l ?/’"i"’ll“:l/ =Ty
The functions u; (¢ = n,n—1,...,1) are particular solutions of

equations R;[u;] = 0 corresponding to equation (3) and next linear

equations, respectively, obtained successively by the process of lower-

ing the order of equation by decomposition into operator factors.
The function a@,, is defined by the formula

3

(31) G = Gpi1n— Cpi1n—1 2“€~

=1

Solving suecessively the non-homogeneous linear equations (30)
we come to the conclusion that there exist particular solutions of linear
homogeneous differential equation (with continuous coefficients) of the
form ‘

(82)  yi= o Unf et Un [ [ eUmtamimTniinigytt

(4 =1,2,...,n+1; U, = Ay),
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and the following particular solution of the corresponding non-homo-
geneous equation (28): )

(U, ' U, - ; dyg g mil
17”+1 = ¢ [njgln l:hl] fe ] mfbn{-la 1oy ! ,

where the capital letters denote the indefinite integrals.

III. Formulas (32) and (33) constitute a convenient tool for prov-
ing some theorems in the theory of equations (in spite of the fact that
we do not know, in general, the functions w; (4 =1,2,...,n); their
exigtence, as we have shown, is assured). We shall illustrate it by a simple
example. If we consider a linear equation with constant coefficients and
the Euler’s equation, then the formulas (32) and (33) lead dirvectly to
the well-known formulas for the solutions of these equations, since in
this ease, as can be easily scen, R,-equation (2) becomes an algebraic
(characteristic) equation, whose roots determine in a certain way all
numbers ;.- . :

The methodological simplification here consists in -avoiding the
separate treatment of the case of multiple roots, and the homogeneous
and non-homogeneous equation. The method of variation of constants
becomes here unnecessary (see also [1], p. 25).

The idea of reducing linear equations to the non-linear R,L-equations
presented in this paper has also certain advantages from the point of
view of methods of solving equations. The example given above is not
very convineing, since it concerns the equations whose complete solution
is known; hence it gives only a new method, without leading to new
results. One can, however, show, that there exists a certain class of linear
equations with more general funetional coefficients, for which the theory
of E-equations presented here does actually lead to the. solution, while
other methods of solving fail. This problem, however, requires a separate
treatment. :

(83)
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