192 R. SIKORSKI

Tor any subset ¥ of X we shall assume the notation

+1: Y=Y, —1'¥=-Y=X-Y.

(ix) If for some elements A;e© and numbers &; = 1 the intersection

(5) 1 h(Ay) ~ees ooy h(Ay)

is @ non-empty set, then there emists an element C<@ such that h(C) is

« subset of (5).
Since the set (B) is not empty, there exists a function f,<X such

that
folds) =& for i=1,...,n.
By (2),
ey Al A e A egdy £ 0,
i.e. there exists an element Ce® such that ¢ < g4, for ¢ =1,..., %
If f<h(0), i e. f(C) =1, then f(4;) = & by (v), ie. f belongs to (5).
This proves that A(0) is a subset of (5).

To prove theorem (B'), let as assume that 2 is the field (of subsets .

of X) generated by all the sets h(4), 4«S. Thus (¢) follows directly from
the definition of 2. The field 2{ is the class of all finite unions of intersections
of the form (5). This, by (ix), proves (a). Property (b) follows directly
from (vi) and (viii).

Note that in the case where © is a dense subset of a given Boolean
algebra, the above proof yields the Stone representation theorem. Inei-
dentally it shows also thabt the Stone space X is a subset of the Cantor
space H®.
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AXIOMS AND SOME PROPERTIES OF POST ALGEBRAS
BY
T. TRACZYK (WARSAW)

Introduction. The notion of n-valued logic was introduced first
by E. L. Post, [5], in 1921. A special case of this notion, the 3-valued
logic, was formulated earlier by J. Lukasiewiez, [3], in 1920.

It is well known that there is a Boolean algebra corresponding to the
two-valued logic (see, e.g. 8. Mazurkiewicz [4], p. 53). P. C. Rosen-
bloom [6] published in 1942 the first system of axioms of the algebra
corresponding to the n-valued logic of E. L. Post. He has called this
algebra Post algebra. However, Rosenbloom’s system of axioms was
a very difficult one.

G. Epstein [1] was the first who simplified this theory by making
use of the existence of a Boolean algebra underlying a given Post algebra.

P. C. Rosenbloom has already noticed that the theory of the Post
algebra may be applied in other branches of mathematics, not only in
logie.

The purpose of the present paper is to give a few simple systems of
axioms of the Post algebra and to formulate some of its properties, simi-
lar to those of a Boolean algebra.

In section 1 a distributive lattice called P,-lattice is examined, some
properties of which give us a good position to formulate in section 3 a few
simple systems of axioms of the Post algebra. Section 2 contains Ep-
stein’s difinition of a Post algebra and some lemmas rewritten from Epstein
paper [1]. Section 4 contains some simple lemmas on the extension of
Boolean homomorphisms to Post homomorphisms and some properties
of m-valued Post homomorphisms. In section 5 a normed measure on
a given Post algebra is defined. Section 6 contains a set-theoretical
representation of a Post algebra. In section 7 a congruence relation is
defined which makes it possible to obtain a Post algebra from a Pg-
lattice.

The most essential results of the present paper were published ear-
lier, [8], without proofs.

I should like to remark, finally, that the paper is almost self-con-
tained; I have only used one or two results of other authors.
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Notation. If {#:teT} is an indexed subset of a lattice L then,
as usually, the symbols (o, and (") 2, will denote, respectively, the join
tel’ 1T

and meet of all 4, in L. In particular cases the join of z and y will be deno-
ted by ooy and the meet of # and y by z~y. Sometimes, however, it is
convenient in Post algebras to write xy instead of #~y. The complement
of , if it exists in L, will be denoted by —a. For a partially ordering rela-
tion in lattices the symbol < is provided; for the set-inclusion the sym-
bol < is used, as usually. Instead of z~—y we shall write z—y.

1. P,lattices. Definition 1.1. Tet us consider a distributive lat-
tice L with zero-element 0, and unit-element 1. Let a sublattice B < L
be a Boolean algebra of eomplemented elements of L. If there exists an
ascending sequence

(1) 0=1¢; <6 <...<6,_;=1, where n is an integer =2,

of elements of I such that every zeL can be written in the form
n—1
T = blelubzezun.ubn,l = U biei,
=1

where by, ..., b,_;eB, then L will be called a Py-lattice.
The Pylattice I being determined by the sequence ey, €y ...; 61
and the Boolean algebra B, it iy convenient to write

L = {€yy €1, -+vy 13 B

From definition 1.1 it follows immediately that every element z
of the Pg-lattice L can be written also in the form

(%) €x = d@l\/[1262u‘.-udn__1

where dieB, i =1,...,n—1, and d; >d, = ...
n—1

>d,_;. {(This can be
proved by putting &, = \J b;, i =1,...,n—1). '
=i

Every representation such as () will be called a monotonie repre-
sentation of x.

Similarly: every representation
2 = €16 Clp. .0y 1,
where ¢;eB, i =1,...,n—1, and ¢;~¢ =0 for i s j, will be called
a disjoint representation of xeP.

From now on in this section I = {6, €1, ..
P-lattice.

Lmvma 1.2. If the elements ¢ and y of L have monotonic representations

., 6y_1; B) denotes a fixed

(1) @ = a6;005630...00,_1,
(I'g) Yy = blelubgezu...u bn«l,

icm

POST ALGEBRAS 195

then

(@30by) ero (aguby)egu . oo (@ _1oby 1)
is a ‘monotonic representation of xwy, and
NN N RURRROT. Y S

is a monotonic representation of w~Y.

Proof. It follows from (1) and from the distributivity of L.

Leata 1.3. If I is a prime ideal of L, then the set I, = InB is a prime
ideal of the Boolean algebra B.

Proof. If a,bel,, then obviously aubel,. If a < bel, and aeB,
then ael. Thus ael,. Therefore I, is an ideal of B. If anbd el,and @, beB,
then ael or bel, I being a prime ideal of L. This implies ael, or bely,
q. e. d.

Tagorsy 1.4. If I, is an ideal of the Boolean algebra B, then the
set I; = L, defined by the equivalence

) there exists a monotonic representation
rel; o>
2 = dyeypldylyu ... oly_1 SUuch that d;ely,

is an ideal of L for ¢ = 1,2, ..
Proof. If @,yel; and (1), (r,) are their respective monotonic re-
presentations, such that e;eI, and byel,, then apubiel,. Thus auyel;,
by 1.2.
Now, if # and y have monotonic representations (r;) and (1) respec-
tively, = <y, and b;el,, then

L, h—1.

T = BAY = G116, l2bgb0 . Ul 1By

is & monotonic representation of z such that a;b;el,. This proves that
zel;, q. €. d. )

TusoreM 1.5. If the ideal I, is a prime ideal of the Boolean algebra
B, then the ideal I; defined in 1.4 is o prime ideal of L.

Proof. We have only to prove that the relation z~yel; implies
zel; or yel;.

For this purpose let us assume that there is a monotonic represen-
tation

XAY = €161\ 080 ...Cp 1

such that e;el,. Further, let (r,) and (r,) be arbitrary monotonie represen-
tations of z and vy, respectively.
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Now let us put

-1 n

(ry) &= (H (@j—bs)uey) 6,0 (};z (@—by)wey) o .. o(@y_y — by1Cu_y),

n—1 n—-1
(re) 9= (Ul (b;— “y‘)ucl) (23] (U2 (b;— “j)uez)ezu coo(bpr =y e, y).
= i=
It is evident that (r;) and (r,) are momnotonie representations.
Further

a;6; = (4= b)) eyua;bie; < Bowmy =&, j=1,...,n—1,
whence # < . Since the contrary inequality is obvious, it follows that
z = . In the same way y = ¥.

We also see at once that (a;—b;)~ (b;—a;) = 0 for i, =1, ey n—1

’
the representations (r,) and (r,) being monotonic. Hence

n—1

(1L_._:J1; ((J/j— bj)uci)ﬁ (jU (b, — d]-)uci) =0 EIO.

=i
Consequently

n—1 n—1

(U (a;—bj)ue)el, or (U (bj— a5)oey) eIy,

=1 =1
I, being prime.

This implies that #eI; or yI;, which completes the proof of the the-
orem.

TreorEM 1.6. If there ewists a properly ascending chain I, = I, < ...

- Iy of prime ideals of Py-lattice L, then e, ,eI; and e;¢L; for i =1,
cerym—1,

Proof. Suppose the theorem is not true. Then there exists an inte-
ger 4, such that one of two next conditions holds:

1° e 1 ¢l  2° igelsy.

In the case 1° let us suppose that 4, is the least integer such that 1°
holds. Evidently ¢, > 2 and 65 sel; ;. Let z, be an element of I which
?)elongs to I;) and does not belong to If0_1 (such an element exists, as the
ideals Iy,...,1I, , are different and form an ascending sequence). We
consider an arbitrary monotonie representation of z,:

Ty = dyeyodybo . ..udy_;.

The ideal I, being prime, it follows that 4

1€ly, in view of 1°.
On the other hand, @o¢ ;. and

-

AoV Iy 08 <6 ,el; .
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Hence d;,_, does not belong to I;1, on aceount of the inequality

die; <dgyy  for 4 =i,
Consequently
diy ¢l and  dy_gel;.
Therefore
i1 ;’Iio“lr\B and dio—l sI,;or\B‘

This leads, however, to a contradiction, because, by 1.3, the sets
I;1nB, I; ~B are prime ideals of the Boolean algebra B; besides Ligrm
~B < I; vB, and every prime ideal in a Boolean algebra is maximal.

The case 2° leads to a contradiction in a similar way if we suppose
that i, is the greatest integer for which 2° holds.

Definition 1.7. An ideal I of Py-lattice L, which contains ¢;_, and
does not contain e¢;, will be called of order 4.

The theorem 1.6 can be now formulated as follows:

If I, cl,c... < I,y 18 a properly ascending chain of prime ideals
of L, then I; is an ideal of order i, i =1,...,n—1.

TEEOREM 1.8. If every prime ideal in L is a member of a chain of n—1
properly ascending prime ideals, then for every aeB and every + =1, ...,
n—1 the inequality ae; < e;_; implies a = 0.

Proof. If, on the contrary, for some a 5= 0, aeB, and some ¢ the
inequality ae; < e;_; holds, then the meet ae; belongs to every prime ideal
of order ¢, and thus a belongs to every prime ideal of order .

There exists a prime ideal of the Boolean algebra B, say I,, such
that a¢I,. Let I; be the prime ideal of L defined in theorem 1.4.

By assumption there exists a chain

Neclic..cI)
of properly ascending prime ideals such that I; is & member of this chain,
and Ij is of order j,j =1,...,n—1, by 1.6.

Since the set Ij~B is a prime ideal of B (see 1.3) and every prime
ideal of a Boolean algebra is maximal, it follows that

BAB=DIAB=...=I ~nB=I~B=1I,.
Consequently both: a belongs to I, and it does not, a contradiction.

2. Epstein’s definition. The following definition is due to G. Ep-
stein [1]:

Definition 2.1. Let #» be a fixed integer > 2. A Post algebra is
4 distributive lattice P with zero and unit, in which the following two
axioms are satisfied:
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I. There exist in P n fixed elements ey, e, ..., 6, ; such that

(a) 0=e, <& <...<€_; =1,
(b) if #eP and we, = 0, then o = 0,
(c) if 2eP and xueé;.; = ¢; for some ¢, then z = e;.

II. For every <P there exists a sequence (Cy(w), €1 (@), ..., Cp_1(®)) =
= P such that

(d) Ci(x)~Ci(2) =0 for 47,
n-1

(e) H, Cilw) =1,

(f) 2 = Oi(@)e;wCa(@)egw ... w0y (@) €ys.

Now we re-write from Epstein’s paper the following properties of
the Post algebra P:

2.2. The elements eq, €y, ..., €y, are distinct and unigue.

2.3. For every xcP there ewists only one sequence Cy(z), Cy(z),...,
eery Oy (@) satisfying IL.

24. If i 4, then Ci(e;)) =0, Ci(e;) =1.

2.5. For any weP,Cy(x) (i =1,...,n—1) belongs to the Boolean
agebra of complemented elements of P.

3. Some equivalent definitions. TEmorEM 3.1. A distributive lai-
tice P with zero and unit is a Post algebra if and only if there exists a sublat-
tice B « P which is a Boolean algebra, and a sequence (€q, €1, ..., €,_31) < P
such that

(1) 0=1¢ <6, <... K1 =15

(2) for any weP there exists a sequence (by, ..
= blelubgegu . .ub,,,,_l;
(3) if aeB and ae; < e;_; for some 4, then a = 0.
In other words: A lattice P is a Post algebra if and only if it is a Py
lattice satisfying (3).
Proof of necessity. Conditions (1) and (2) are satisfied in P on
account of 2.1 and 2.5.
To prove (3) let us suppose that

oy b1} = B such that z =

(*) ae; < 6, for some 4,

where a belongs to the Boolean algebra of complemented elements of P.
Since —ae; <6 and —ae;oae; = ¢; it follows, by (x) and (1), that
—ae; o6y = ¢;. Hence —ae; = ¢; in view of I (e).
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This, however, implies, by 2.3 and 2.4, that —a = 1. Consequently
a=0.

Proof of sufficiency. Now let us consider an arbitrary element
z of a lattice P satistying (1), (2), (3). Then we can write

(*+) z =d, E’ludzl?gu...udn_“

where d;eB, ¢=1,...,n—1,
P being a P,lattice.

From the monotonic representation (++) we easily obtain, by (1),
the following one:

and d, >dy >... > d,_,, the lattice

2 = (d,—dy) ey (dy—dg)egu ooty 1,

in which the Boolean coefficients are disjoint.
Let us put now
Cp(z) = —dy, Ci(®) =d;—d;iy, for
Cp1 (o) = dpp_;.

It is easily seen that conditions (d), (e), (f), are sabisfied.
To prove axiom I (b) let us suppose that

n—1

z = Ci(z)e; 0.
i=0
Then for some i, we have the inequality C; (#) # 0. Therefore the in-
quality C; (z)e; < e is false for every ¢ > 0. In particular
Oin(m)31 #0.

This, however, implies Gy ()e,e; 7 0 (in view of (1)) and consequently
ze; #= 0.

Now we are going to prove axiom I(c¢). For this purpose let us sup-
pose that

xr = blﬁlubgezu...u bn—ly
where b;eB, i =1,...,n—1, and
Tol_ = 6
for some 4 > 0. Of course
(21) xr < 6.

In view of (1), (z,) and of the distributivity of P, the representation
of ¢ ean be written as follows:

R '
(2,) 2 = byeypbyesu .. .Ubi_16;_1ubge,
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n—1
where b; = {_J b;. Therefore
Pt

6, = Dby = e; b,
Hence
6; == 6,;_.1ub£€7;.

On the other hand, ¢; = — bje;ubie;. Then —bje; < e;_;.
from (3) that b; = 1, and from (z,) that ¢; < &

Oombining the last inequality with (z;) we ha,ve the equation z = ¢;,
q.e. d.

Lenvma 3.2. If ae; = be; for some 4 in « Post algebra P = (ey, ey, ..
ceybn_1; B and a,beB, then a = b.

Proof. By assumption, —bae; = —bbe; =0. Hence -ba =0,
on account of (3). In the same way —ab = 0. Consequently a = b.

Now we are in a good position to give a simple proof of the following
theorem of Epstein (c¢f. [1], p. 303, th. 7):

TmmOoREM 3.3. For every element © of a Post algebra P = {e,, 6y, vy
-y 6n_1j B) there ewists exactly one monotonic representation.

Proof. Let

Now it follows

tr

(ty) L= AUl oty = b6 ubyeu ..o Lby_

be two monotonic representations of #. Then, by (1), ze; = a6, = bye,.
Hence g, = b, in view of 3.2.

Now we assume that a; =b; for 0 < i<k <n—1 and we take
meets of e; and of each of the two sides of the 1dent1ty (t1). We obtain

W81 00 Ol = byeyu . Ubgey.

Hence

—bpager < —brbieru. ..o —bpbpy 6o —brbre, < Gk—\ .
It follows from (3) that — b,a; = 0.

In the same way we obtain — azb, = 0. Consequently a; = b
for ¥ =1,...,n—1, by induction.

Definition 8.4. The uniquely determined (by 3.3) Boolean coef-
flclents of the monotonic representation of z will be denoted by Dl(w),

D,,_,(x), respectively.

It is easy to see that the operations D, (i =1,...,n—1) are homo-
morphisms of the Post algebra P into the Boolean a.lgebra B such that
D;(x) =2 for zeB.

TEEOREM 3.5. Let L = (e, 6, .

<oy bn_1; B> be a Py-lattice.
the following conditions are equwalent

Then
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(a) L ts a Post algebra;

(B) if ae; < e;_; for some aeB and some i >0, then a = 0;

(v) every prime ideal of L is a member of a chain of n—1 properly
ascending prime ideals of L;

(3) for every meL there emists ewactly one monotonic representation;

(c) for every meL there exists exactly one disjoint representation, i. e.
& TEPTESENIALiON T = €16, Cea .. SCpy SUCh That ¢;eB, i =1,...,n—1,
and e;~o; = 0 for 4 % j.

Proof. The equivalence (o) <=> (8) has been already proved (see 3.1).
The equivalence (3) ¢:> () is obvious. We have proved the implication
{#)=>(3) in 3.4 and (y) > (B) in 1.8.

It remains to prove (8) = (). Let I be any prime ideal of I and let
us assume the condition (3) to be satistied in L. Let 4, denote the order
of I, i.e. 4y = min{i: ¢;¢I}. Pub

I, =1I~B.

Evidently I, # 0 and it is a prime ideal of the Boolean algebra B (see
1.3). By assumption, for an arbitrary element e there exists exactly
one representation

X = dl 61Ud262\J .. .udn__l

such that d; > ds > ... = dy_1.

The monotonic representation of z being unique, it is convenient to
denote its Boolean coefficients by D,(z), ..., Dn_1(2), respectively, as
in Post algebras. It is easy to see that D;(e;) =1 and D;(e;.) = 0.

Now let us congider the sets

I —~{$EIJ _D EIO},

By 1.5, the set I; (§ =1, ..., #—1) is a prime ideal of the lattice L. Since
Dy(e;) =1 and Dy(e;_1) =0, it follows immediately that the 1dea.1 I;
ig of order 1.

Now we shall have to prove that I = I, . Since the ideal I is prime
and of order i,, the relation weI implies D; (%)eI~B = I,. Hence wel; .

On the other hand, if z<I; , then Dy () € I,, thus D;,(z) eI and finally
zel, T being of order 4,. This completes the proof of the theorem.

Let us remark that the implications (a) => (y) and («) = (8) were first
proved by G. Epstein [1].

COROLLARY 3.6. A subset I of a Post algebra P = {6y, €1y ..., tn_1; B>
is a prime ideal of order 4 of P if and only if there exisis a prime ideal I,
of the Boolean algebra B such that the conditions

Di(x)el,

i=1,..,0—1.

wel and
are equivalent.
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CoROLLARY 3.7. If I and J are two prime ideals of the same order of
a Post algebra, and I < J, then I = J.

4. Post homomerphisms. ILct P = <ey, ey, ...,6,_1; By and P’ =
= (g €1y --+5 €m—1; B'> be two Post algebras.

Definition 4.1. A lattice homomorphism & of P into P’ ig called
Post homomorphism provided
(h,) &|B is a Boolean homomorphism of B into B’,
(hy)  h(es)e(€oy €1y +.-s tm_y) for every ¢ =1,2,...,n—1.

A one-to-one Post homomorphism will be called Post isomorphism.

TEEOREM 4.2. FEvery Boolean homomorphism of B into B' ean be
extended to a Post homomorphism of P into P'.

Proof. Let us choose of integers 0,1,...,m—1 2 non-descending
sequence ky, kg, ..., ky_o, and let &, be a Boolean homomorphism of B

into B’. Put
(31) h(e;) :31,:,,;7 t=1,..,n-2,
(82) 1(@) = ho(Dy (@) ey - o Dos(@)) 04,y ().

Since P is a distributive lattice, and since D; is a homomorphism of P
into B (see 3.4), it follows that

h(zoy) = h(z)oh(y) and  h(z~y) = h(z)~h(y),

which proves that h is a lattice homomorphism of P into P’. Evidently
h|B = h,. Consequently the mapping 4 is a Post homomorphism.

CorROLLARY 4.3. If m > n and h, is an isomorphism of B inio B,
then it may be ewtended to a Post isomorphism of P into P’.

Proof. Let h, be a Boolean isomorphism of B into B’. We choose
a properly ascending sequence k,, ..., k,_; of integers 0,1, ..., m—1 such
that k,_, = m—1, and we make use of formulas (5,) and (s,).

‘We obtain, by 4.2, a homomorphism % of P into P’. It remains to
prove that #  y implies h(x) # h(y).

If # #y, then there exists an index i, such that D; () # Digy).
Hence h(Dy(w)) # h(D;,(v)), h|B being a Boolean isomorphism. But

1(Dy(z) = D;(h(w)),
in view of (s,). Consequently
Dkio(h(“’)) #* 'Dkio(h(y))7

which implies inequality Z(z) # h(y), q.e. d.
If h|B is a two-valued homomorphism, then e, e,
the only values of the Post homomorphism h.

1 =1,2,...,n—1,

viey Oy TDAY be
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Definition 4.4. If a Post homomorphism % has exactly m values
€0y Ciy ~.vy €1, then it will be called an m-valued Post homomorphism.

THEOREM 4.5. If h is an m-valued Post homomorphism then the set
I = {zeP: h(z) = 0} 18 a prime ideal of P.

Proof. Obviously it is an ideal. We are going to prove that it is
prime.

From h(z~y) = 0 it follows that
(p1) b (Dy(xny))~h(e) =0
Now let i, be the least index such that i(e;) # 0. From (3) and (p,) we
obtain
(o) k(D (wry)) = 0.

But

for every 1.

Dyy(wny) = Dy (@)~ Dig(y) < B.

0
Since the set
{xeB: h(x) =0} < I

is a prime ideal of the Boolean algebra B, the homomorphism h|B being
two-valued, it follows from (p,) that

B(Dy(@) =0 or h{D;(y) = 0.

This means, however, by the definition of ¢,, that h(z) = 0 or h(y) = 0,
and this completes the proof.

THEOREM 4.6. The set of all prime ideals of order 1 of a Post algebra
P =<6y, 61y ..., 6n_1; By and the set of all n-valued Post homomorphisms
of P into P' = (e, €1y ...,6,_1; B> have the same cardinal.

Proof. If & is an n-valued Post homomorphism of P into P’, then
the set
(8) I = {zeP: h(x) = 0}

is a prime ideal of P of order 1. On the other hand, if I is a prime
ideal of order 1, then the set I, = I~B is a prime ideal of the Boolean
algebra B.

Let us put

e if
en_y if

wely,

ho () =
(@) zeB but z¢l,.

It is well known that h, is a two-valued homomorphism of B into B’
Now, using 4.2, we extend %, to a Post homomorphism %, putting
kv=1, k=2, ..., kpn_y =n—2.
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In view of 3.6, h(z) = 0 for every z¢I. It is easy to see that % is the
only Post homomorphism having this property. Thus we have just estab-
lished the one-to-one mapping of the set of all prime ideals of P of order
1 onto the set of all n-valued homomorphism of P into P’.

5. Measures om Post algebras. Let P = {6y, ¢;,...,6,_1; B> be
a fixed Post algebra with & normed measure m, defined on the Boolean
algebra B, and let ay, ¢y, ..., a,_; be fixed real numbers such that

0=a, <0, <... <Gy =1.
Definition 5.1. Let m be a real function defined on P ag follows:
m(z) = m, (01(w))“1+ mo(Oz(w)) @a+-‘~’|‘mo(0 —1(“/‘))-

‘We shall prove that m is a measure.

Levva 5.2. If o,yeP and s~y =0,
every 1,§ =1,...,n—1.

Proof. Suppose on the contrary that

then Dy(x)oD;(y) = 0 for

b = Di(@)~Dy(y) + 0.
Then be; = 0, by (3). Hence

0 #be, < Dy(w)e, <

and
0 #bey < Di(y)e <

Contradiction, as z~y = 0.
Sinee D;(z) < D,(z) and D;(y) <
Di(0)~Dy(y) =0 for i,j=1,...,n—1.
Levma 5.3. For every sequencé {z;: k =1,2, ..
of P, whose join is also in P, we have

D,(y) for ¢ >1, it follows that

.} of disjoint elemenis

o

k=1,2,

oo
=kU10i(90k), t=1,...,n—1,

and C;(zy), .y are disjoint for every d.
Proof. G. Epstein has proved (see [1], p. 313) that D, (U wk) =
= U D (mk)r 1= 1

tmns 0; and D;, we have the following equations:

., #—1. Therefore, and by the definitions of opera-

Oi(kgl ) = Dt(kQ ) — m+1(U o = UD () — U i1 (%) -
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Hence, by the infinite distributivity in Post algebras (see [1], p. 313),

U e = U (Ditaw - Q Dy (),

But, on account of 5.2,

Dy()— Q Dy (@) = Dyl) —Diya (1)

In consequence
Oi(U wk) =U (Di(mk)*l)wl(mk)) = U C;(2z).
k=1 k=1 k=1

Finally it is easy to see, in view of 5.2, that the assumption Ty = 0

implies C;(@x)~Ci(ze) =0 for ¢=1,...,n—1 and % #k'.
THEOREM 5.4. The function m defined in 5.1 is a normed measure.
Proof. Since C;(z)~C;(z) = 0 for i = j, it follows that

n-1

Zmo((}'i(m)) <1 for every meP,
=1
n-~1 .
the measure m, being normed. Thus 2 me(Cs(®)) 4; <1, too. So the

inequality
0 < mx) <1

has been proved for every zeP.
Now let {m: k£ =1,2,...} be a sequence of disjoint elements of P
whose join is in P. In view of 5.1 and 5.3 we can write

m(J) @) = mo (,Q Os(@)) -t ..+ g (,Q Cps (2)) Gy

= Z{mo Ol(mk [I,1+ ano(cn 1 mk )a'n 1}

k=1

Il
(L

m (mk)

&
i
-~

This completes the proof of the theorem.
THEOREM 5.5. The set of all z<P such that m(x) = 0 is an ideal of P.

Proof. Let I = {w<P: m(x) = 0}. The set I, = I~B is an ideal
of the Boolean algebra B. Put i, = mm{z a; #* 0} and let 2 be an arbit-
rary element of I.

Colloguium Mathematicum X.2 2
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Then
My (oi(m)) =0 for every ¢ =1,

which means that C;(z)eI, for each ¢ > 4,. Therefore D; (#)el,.

On the other hand, if D; (#)eI,, then C;(x) eI, for each ¢ = 4,. Hence
m(z) = 0 and zel.

In consequence, by 1.4, I is an ideal of P.

Definition 5.6. If m, is a two-valued measure on B, then the num-
bers 0 = &g, Gy, +.., 0y = 1 are the only values of m. In this case the
meagure m will be called n-valued measure.

THEOREM 5.7. If m is an n-valued measure on P, then the ideal of all
elements of measure zero is prime.

Proof. It follows from 3.6, 5.4 and from the fact that the ideal of all
elements of a Boolean algebra of two-valued measure zero is prime.

6. A representation theorem. The representation problem for Post
algebras was solved first by G. Epstein in his paper [1]. In this seetion
another solution of that problem will be presented.

Lot P = <6qy €1y .-+ én_1; BY be an arbitrary but fixed Post algebra.

Let % be a compact topological space such that

(s;) the Boolean algebra B is isomorphic with the field F of all
clopen subsets of X (see [6], p. 22),

(8,) each element X = 0 of the field F contains at least n—1 points
(an isolated point of X may be split in n—1 parts if necessary).

Therefore there exists a sequence ¥, Ey,..., B, , of dense subscts
of X such that

(dy) E,cByc..cB,_ =%,
(d,) E;_, is a boundary set in H,
for ¢ =2,3,...,n—1. ‘
THEOREM 6.1, The class R of subsets of X of the form

A B A By oAy By,

where A;eF, i =1,...,m—1, is a Post algebra with sel-theoretical union
and wntersection as lattice operations.

Proof. Conditions (1), (2), (3) of 3.1 must be verified. Condition
(1) is obviously satisfied with ¢, = 0 (the empty set), 6, = By, ..., €1 =
= F,_; = ¥%; condition (2) is fulfilled by definition if we put I = B;
condition (3) follows from (d,) and from the assumption that #, is dense.

TEEOREM 6.2. The isomorphism hy of B onto F may be extended to
a Post isomorphism of P onto R.

Proof. It follows immediately from 4.3.
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) 7. _Factor algebras. Let P = {¢,¢,,...,6,1; B> be a P lattice,
i.e. L is a distributive lattice with 0 = ¢, and 1 = e, , such that for
every mel there exists a representation

& = bye;ubyesu .. by,

where b;eB, i=1,2,...,n—1,
Let I be an ideal of the Boolean algebra B with the property:
(w) if beB and be; < ¢;_; for some index ¢ >0, then bel.
Levwma 7.1, If I 48 an ideal of the Boolean algebra B with the property

(w), and an element xzeL has two monotonic represeniations
(p) &L = blelvbgez\.l.--ub"_l = dieyulaly. ..U m—11
then
bi—di udi—bisl fOT 4 =1,...,‘77/-1.
Proof. Since b; > b; and d; > d; for 1 <i <j <n—1, it follows

from (p) that wze, = b,e, = d,e,. Hence

(by—dy)e, = (dy—dy)e; =0
and ‘

(by—by)e; = (dy—by)e; = 0.

Therefore, by (w), b,—d,el and d;—b;el.
Now let us suppose that

bi—d;y o d;—b;el

for 0 <4<k <n—1, where k is a fixed but arbitrary integer > 1.

Taking meets of ¢, and of each of the two sides of the identity (p)
‘we obfain

bieyu ... ubre, = dyeyu ... odey,
whence
(ba—br)erw . oo (b —bi)ep_y = (dy— bp)ero ..o (d— i) ey
Then
(dp—br)er < €p_1-

But the last inequality implies dj,—biel, by property (w).
In the same way the relation b,—d;eI can be proved.
Consequently, by induction

bk—dkudk—bkEI
for k =1,...,n—1, g.e. d.
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Definition 7.2. If I is an ideal of B with property (w) and if

B o= 06,000l 1y Y = D6 Ubyes .o 0by g

are monotonic representations of two elements of L, then we shall write

=y if and only if a;—byub;—a;el
for ¢ =1,...,n—1.
TEEOREM 7.3. The relation =1is an equivalence relation, i.e. it is
reflexive, transitive and symmetrical. .
Proof. It follows from 7.1 and from the known properties of the
relation a—b wb—ael in a Boolean algebra (see e.g. [6], p. 27).
THEOREM T7.4. If =y and u = v, then o = Yyov and U = Y.
The easy proof is ommitted.

The abstract class of the relation =, containing an element z of L,
will be denoted by [#]. The set of all classes [«], where # runs over L,
will be denoted by L/I. :

The set L[I becomes a distributive lattice with zero 0 = [¢,] and unit
1 = [e,.;] under the following definition of lattice operations:

wluly] = [owy], [al~ly] = @yl

BJI is, of course, a Boolean algebra of complemented elements of the
lattice L/I. :

TEEOREM 7.5, If L 48 a Pylattice, L = {6q, 61, ..., 6n_13 B>, and
I is an ideal of B with the property (w), then the factor lattice L[I is a Post
algebra.

Proof. By the above remarks L/I is a Pylattice. By property (w)
of I we get property (3) of 3.1, q.e. d.

COROLLARY 7.6. If {€q, €1y ---;€n_1; B) s a Post algebra and I is
any ideal of B, then the factor lattice P[I is a Post algebra.

Bxampre. Let F be the field of all Lebesgue measurable sets of the
real line X. Let M denote a fixed non-measurable subset of X such that
for every element EeF of positive measure the intersection F~M is not
measurable. For the existence of such a set M see Halmos [2], p. 70.
The family L of all subsets X = X of the form X = 4,~MUA4,, where
Ay, AyeF, i o Pylattice with n = 3, with set-theoretical union and in-
tersection as lattice join and meet, respectively, with the empty set as
€y, M as ey, and the whole space as e, = 1.

Let I denote the ideal of all sets of measure zero. Clearly, it has pro-

perty (w). Therefore there exists the factor lattice L/I and it is a Post
algebra.
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