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TRANSLATIONS OF INFINITE SUBSETS OF A GROUP

BY
W. R. SCOTT axp LEE M. SONNEBORN (LAWRENCE, KANSAS)

The following problem was proposed by Jan Mycielski [2]:

Let R be the real axis, 4 = R—B and both 4 and B infinite. Does
there exist a translation y such that A~yB is infinite?

This problem was answered affirmatively by P. Lax ([3], p. 646).
His solution is contained in Theorem 1, below (). This paper answers
the same problem for a wide class of groups, R, including all Abelian
groups.

Notation, If & is & group and 4 is a subset of @, G(4), 4 and 4|
will denote, respectively, the subgroup generated by 4, the complement
of A, and the cardinality of 4. ¢ will denote the empty set. Z(@) is the
center of G and [G': K] is the index of the subgroup K in G.

Definition. A group, @, is completely regular (resp. regular) if, and
only if, for each infinite subset, H, of ¢ whose complement, H, is also
infinite there exists x<@ such that Hz~H (resp. Hz~H or sH~H) is
infinite.

Since zH = (Hw~1)~?, complete regularity defined in terms of
right translations as above is equivalent to complete regularity defined
in terms of left translations. Also, since s—H~H resp. Ho—1~H is infi-
nite if and only if sH~H resp. Hu~H is infinite, the above definitions
are symmetric in H and H. Finally, it is obvious that an Abelian group
is regular if and only if it is completely regular.

LevmA. If @ 4s a group which possesses a subgroup K satisfying

1) K s infinite,

2} K = @(A) for some subset A such that |4| < |G},

3) [&: K] = 4],
then G is regular.

(1) The analogous problem, where infinity is replaced by the cardinality of
continuum, is answered in the negative; see Banach [1] and Sierpifski [5], [6]. [Note
of the Editors].
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Proof. Let G, K and A be as in the hypotheses and H and H be in-
finite subsets of @. We may assume that 4 2 4-1.

Case 1. Wither |H| < |6 or |H| < |G|. By symmetry it suffices
to consider |H| < |G|. Since H is infinite, |H-H™| = |[H| < |G|. Thus
for some ye@, y¢H-H-'. Now, if heH and yheH, y = yh-h~teH -H-1
which is false. Thus yH~H =0 and yH~H = yH, which is infinite.

Case 2. |H| = |H| = |G|. Let {x;|f<B} be a set of representatives
for the cosets {#K|re@}. Let B, = {B|feB and zsK~H # 0 and @K~
~H + @}.

A. [By| = |G|. Now for each fecB, there are y,, ypews K such that
ypeH and yseH . Moreover, y, and y; can be selected in such & way that
yp = ypa, for some ageA; for if not, then for each acd and each yemph,
yaexgK~H and since G(4) = K, K < zKnH contrary to definition
of B;. But |B,| > [4] so that for some aecA, a = a; for infinitely many
ﬂeBl #pacH for infinitely many z;eH and Ha~H is infinite.

. |By] < |@|. Let By, = {flogK~H = 0} and By = {ﬁiwﬁKnH = 0}.
Sinee B = B,uB,uB, and |B| = |G|, at least one of B,, B; is not empty.
By symmetry, we may assume B, # 4. Let f3¢B;; 25K « H. Now, if
BaeByy H > 55K = w505 K < w0, H s0 that @' H~H is in-
finite. If, however, B, = g, then H = {w|wex,J{, feB,} and since |B;| <<
< |6, and |H| = |@|, H~w,K is infinite for some feB,. Then zswz'H >
> 2K and x5 HAH is infinite.

TugorEM 1. Every wncountable group 1is regular.

Proof. Let & be uncountable and let A be a countable subset of ¢
and let K = G(A). Since K is countable and [@: K] = |G| the lemma
applies.

TamorEM 2. If G is countable and contains & finitely-generated in-
finite subgroup of infinite index, then G is regular.

THEOREM 3. If G is countable and contains an element, x, of infinite
order and if [G': G(x)] is finite, then

1) if Z(GY~G(z) = {e}, G 1s regular but not completely regular,
and

2) if Z(@)~G(2)

Proof. Since [¢: G(x)] is finite, there is an element y<G(x), y + ¢
such that @(y) is normal in @. Furthermore, [@: G(y)] is finite, and
Z(@)~G(y) = {e} it and only if Z(@)nG(x) = {¢} (see [4], p. 82-84).
Hence, there is no loss in generality in assuming G(z) is normal. Let

# {e}, G 1is not regular.

T1yTay ...y T, DO @ seb of representatives for the cosets of G(z) in G. Now,
—1 — - . .
oyt = or wmar;t =o' for §=1,2,...,n. Let H = {g™r]i =
=1,2,...,n; m >0}. Then, if 2 = a"r;, He = {&™ra’r) i =1,2,...,n;

m >0} = {@"wF i =1,2, ..., 0, m >0} = &2, p =1,2,...,
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..,m; m > 0}. Since % is fixed and ¢ depends only on i and j and is boun-
ded, He~H is finite. This establishes the negative assertion in 1. Since,
in case 2 we may assume ryori’ = 2 for all i, 2H = ™, |m > 0},
and zH~H is also finite.

It remains to prove that G is regular in 1. Let H and H be infinite.
If either H~G(z) or H~G(z) is finite (say H~G (), then for some r;,
r;G(z)~H is infinite and 7 HA~H is infinite. Hence we may assume that
H nG(w) and H~G(z) are both infinite and that G is not regular. If both
H and H contain arbitrarily large or arbitrarily small powers of x, «H ~H
is infinite so we may also assume that one of H, H contains all sufficiently
large powers of z and the other all sufficiently small powers of . We
assume H o {z"|n > mo} Since Z (@) nG(ac) = {e}, for some r;, ;@1 " =
= o1, Now, since Hr;'~H is finite, 2"r;'eH for all n > m,;. But then
rHA~H can be finite only if r;a"r7'eH for all n >m,. Thus  "<H for
all n > m,, which is impossible since H contains all sufficiently small
powers of 2. This completes the proof of theorem 3.

THEOREM 4. If @ is a countable group which is the union of an increa-
sing sequence of finite groups, then @ is not regular.
Proof. Let @ = |J @, where G, is a finite group and &; S &;.;.

n=0
Let p(2) = min{n|xe@,} for each .’,Z'eG Let H = {z|p(x) is even}. H and
H are clearly infinite. If p(2) # p(y), »(wy) = max{p(2), p(y)}. Thus
if ye@, p(zy) = p(ys) = p(z) for all = sueh that p(») >p( }, hence for
all but finitely many z¢G. Therefore for each ye@, Hy~H and yH~H
are finite and @ is not regular.

TuroREM 5. If @ 48 a countable abelian group, G is regular if, and only
if

1) @ contains an element, x, of infinite order,
and

Y GG (x) is infinite.

Proof. Sufficiency is given by theorem 2.

Necessity. If G does not contain an element of infinite order it
satisfies the hypotheses of theorem 4, and is therefore not regular. If
@ contains an element, z, of infinite order such that G/G () is finite it
satisfies the hypotheses of theorem 3, 2) and is not regular.

P 418. Is there an uncountable group which is not completely
regular?
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COMMENTS ON SOME WALLACE'S PROBLEMS
ON TOPOLOGICAL SEMIGROUPS
BY
P. 5. MOSTERT (NEW ORLEANS, LA.)

In [20] Wallace lists nine problems on topologieal sernigroups (P 326-
-334). This note is intended to review the present status of this latest
set, and to indicate directions in which the author feels some of the more
interesting might take. I shall state each problem and follow it with
my comments. In the following, semigroup will always mean topological
semigroup (i.e., a Hausdorff space with a continuous associative
multiplication). We shall use S to denote the semigroup, F its set of
idempotents, and K the kernel (minimal ideal) when it exists.

P 326. Is it possible to construct a semigroup on the closed n-cell,
n 22, such that B is the boundary?

Comments on P 326. The answer is still far from known, although
in the case » =2, a number of results have been obtained, mostly by
participants in & seminar of R. J. Koch’s during the past year. For
example, one can easily show that every element of § has a square root,
and from this one obtaing (using the methods of A. Lester Hudson [6])
that every element lies on an I-semigroup with end points on the boundary.
Further properties can be established using these subsemigroups. Again,
in [6] it is shown that the boundary of § cannot be a subsemigroup, for
this implies the existence of idempotents in the interior.

P 327. Is it possible to construct a continuous associative multi-
plication on an n-sphere in such a way that (i) every element is the pro-
duect of two elements, (ii) there is a zero element.

Comments on P 327. It is generally conjectured that there is
no non-trivial semigroup on & sphere X with X2 = X except the groups
on §* and 8% In dimension 1, this was proved by Koch and Wallace [11].
If there exists a structure with non-trivial multiplication (i. e., not such
that 2y =« or &y = y for @, y <X such that X2 = X, one can show that
there exists one with zero, so that the problem is more general than it
appears. It has been shown by Mostert and Shields [16] that if X = §2
has a non-trivial eonnected subgroup, then X% s+ X. Wallace's genera-
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