

COLLOQUIUM MATHEMATICUM

VOL. X

1963

FASC. 2

TRANSLATIONS OF INFINITE SUBSETS OF A GROUP

BY

W. R. SCOTT AND LEE M. SONNEBORN (LAWRENCE, KANSAS)

The following problem was proposed by Jan Mycielski [2]:

Let R be the real axis, A = R - B and both A and B infinite. Does there exist a translation γ such that $A \cap \gamma B$ is infinite?

This problem was answered affirmatively by P. Lax ([3], p. 646). His solution is contained in Theorem 1, below (1). This paper answers the same problem for a wide class of groups, R, including all Abelian groups.

Notation. If G is a group and A is a subset of G, G(A), \tilde{A} and |A| will denote, respectively, the subgroup generated by A, the complement of A, and the cardinality of A. θ will denote the empty set. Z(G) is the center of G and [G:K] is the index of the subgroup K in G.

Definition. A group, G, is completely regular (resp. regular) if, and only if, for each infinite subset, H, of G whose complement, \tilde{H} , is also infinite there exists $x \in G$ such that $Hx \cap \tilde{H}$ (resp. $Hx \cap \tilde{H}$ or $xH \cap \tilde{H}$) is infinite.

Since $xH = (H^{-1}x^{-1})^{-1}$, complete regularity defined in terms of right translations as above is equivalent to complete regularity defined in terms of left translations. Also, since $x^{-1}\tilde{H} \cap H$ resp. $\tilde{H}x^{-1} \cap H$ is infinite if and only if $xH \cap \tilde{H}$ resp. $Hx \cap \tilde{H}$ is infinite, the above definitions are symmetric in H and \tilde{H} . Finally, it is obvious that an Abelian group is regular if and only if it is completely regular.

LEMMA. If G is a group which possesses a subgroup K satisfying

- 1) K is infinite,
- 2) K = G(A) for some subset A such that |A| < |G|,
- 3) [G:K] = |G|,

then G is regular.

⁽¹⁾ The analogous problem, where infinity is replaced by the cardinality of continuum, is answered in the negative; see Banach [1] and Sierpiński [5], [6]. [Note of the Editors].

Proof. Let G, K and A be as in the hypotheses and H and \tilde{H} be infinite subsets of G. We may assume that $A \supseteq A^{-1}$.

Case 1. Either |H|<|G| or $|\tilde{H}|<|G|$. By symmetry it suffices to consider |H|<|G|. Since H is infinite, $|H\cdot H^{-1}|=|H|<|G|$. Thus for some $y\in G$, $y\notin H\cdot H^{-1}$. Now, if $h\in H$ and $yh\in H$, $y=yh\cdot h^{-1}\in H\cdot H^{-1}$ which is false. Thus $yH\cap H=\emptyset$ and $yH\cap \tilde{H}=yH$, which is infinite.

Case 2. $|H| = |\tilde{H}| = |G|$. Let $\{x_{\beta} | \beta \in B\}$ be a set of representatives for the cosets $\{xK | x \in G\}$. Let $B_1 = \{\beta | \beta \in B \text{ and } x_{\beta}K \cap H \neq \emptyset \text{ and } x_{\beta}K \cap H \neq \emptyset \}$.

A. $|B_1| = |G|$. Now for each $\beta \in B_1$ there are y_β , $y'_\beta \in x_\beta K$ such that $y_\beta \in H$ and $y'_\beta \in \tilde{H}$. Moreover, y_β and y'_β can be selected in such a way that $y'_\beta = y_\beta a_\beta$ for some $a_\beta \in A$; for if not, then for each $a \in A$ and each $y \in x_\beta K$, $ya \in x_\beta K \cap H$ and since G(A) = K, $x_\beta K \subset x_\beta K \cap H$ contrary to definition of B_1 . But $|B_1| > |A|$ so that for some $a \in A$, $a = a_\beta$ for infinitely many $\beta \in B_1$, $z_\beta a \in \tilde{H}$ for infinitely many $z_\beta \in H$ and $Ha \cap \tilde{H}$ is infinite.

B. $|B_1| < |G|$. Let $B_2 = \{\beta | x_{\beta}K \cap H = \theta\}$ and $B_3 = \{\beta | x_{\beta}K \cap \tilde{H} = \theta\}$. Since $B = B_1 \cup B_2 \cup B_3$ and |B| = |G|, at least one of B_2 , B_3 is not empty. By symmetry, we may assume $B_3 \neq \theta$. Let $\beta_3 \in B_3$; $x_{\beta_3}K \subset H$. Now, if $\beta_2 \in B_2$, $H \supset x_{\beta_2}K = x_{\beta_2}x_{\beta_3}^{-1}x_{\beta_3}K \subset x_{\beta_2}x_{\beta_3}^{-1}H$ so that $x_{\beta_2}x_{\beta_3}^{-1}H \cap \tilde{H}$ is infinite. If, however, $B_2 = \theta$, then $\tilde{H} \subset \{x|x \in x_{\beta}K, \beta \in B_1\}$ and since $|B_1| < |G|$, and $|\tilde{H}| = |G|$, $\tilde{H} \cap x_{\beta}K$ is infinite for some $\beta \in B_1$. Then $x_{\beta}x_{\beta_3}^{-1}H \supset x_{\beta}K$ and $x_{\beta}x_{\beta_3}^{-1}H \cap \tilde{H}$ is infinite.

THEOREM 1. Every uncountable group is regular.

Proof. Let G be uncountable and let A be a countable subset of G and let K = G(A). Since K is countable and [G:K] = |G| the lemma applies.

THEOREM 2. If G is countable and contains a finitely-generated infinite subgroup of infinite index, then G is regular.

THEOREM 3. If G is countable and contains an element, x, of infinite order and if [G:G(x)] is finite, then

- 1) if $Z(G) \cap G(x) = \{e\}$, G is regular but not completely regular, and
 - 2) if $Z(G) \cap G(x) \neq \{e\}$, G is not regular.

Proof. Since [G: G(x)] is finite, there is an element $y \in G(x)$, $y \neq e$ such that G(y) is normal in G. Furthermore, [G: G(y)] is finite, and $Z(G) \cap G(y) = \{e\}$ if and only if $Z(G) \cap G(x) = \{e\}$ (see [4], p. 82-84). Hence, there is no loss in generality in assuming G(x) is normal. Let r_1, r_2, \ldots, r_n be a set of representatives for the cosets of G(x) in G. Now, $r_i x r_i^{-1} = x$ or $r_i x r_i^{-1} = x^{-1}$ for $i = 1, 2, \ldots, n$. Let $H = \{x^m r_i | i = 1, 2, \ldots, n; m > 0\}$. Then, if $z = x^k r_j$, $Hz = \{x^m r_i x^k r_j | i = 1, 2, \ldots, n; m > 0\} = \{x^m x^{\pm k} r_i r_i | i = 1, 2, \ldots, n; m > 0\} = \{x^m x^{\pm k} x^t r_j | i = 1, 2, \ldots, n; m > 0\} = \{x^m x^{\pm k} x^t r_j | i = 1, 2, \ldots, n; m > 0\}$

..., n; m > 0}. Since k is fixed and t depends only on i and j and is bounded, $Hz \cap \tilde{H}$ is finite. This establishes the negative assertion in 1. Since, in case 2 we may assume $r_i x r_i^{-1} = x$ for all i, $zH = \{x^{k+m+t} r_p | m > 0\}$, and $zH \cap \tilde{H}$ is also finite.

It remains to prove that G is regular in 1. Let H and \tilde{H} be infinite. If either $H \cap G(x)$ or $\tilde{H} \cap G(x)$ is finite (say $H \cap G(x)$), then for some r_i , $r_iG(x) \cap H$ is infinite and $r_i^{-1}H \cap \tilde{H}$ is infinite. Hence we may assume that $H \cap G(x)$ and $\tilde{H} \cap G(x)$ are both infinite and that G is not regular. If both H and \tilde{H} contain arbitrarily large or arbitrarily small powers of x, $xH \cap \tilde{H}$ is infinite so we may also assume that one of H, \tilde{H} contains all sufficiently large powers of x and the other all sufficiently small powers of x. We assume $H \supset \{x^n|n > m_0\}$. Since $Z(G) \cap G(x) = \{e\}$, for some r_i , $r_ixr_i^{-1} = x^{-1}$. Now, since $Hr_i^{-1} \cap \tilde{H}$ is finite, $x^nr_i^{-1} \in H$ for all $n > m_1$. But then $r_iH \cap \tilde{H}$ can be finite only if $r_ix^nr_i^{-1} \in H$ for all $n > m_2$. Thus $x^{-n} \in H$ for all $n > m_2$, which is impossible since \tilde{H} contains all sufficiently small powers of x. This completes the proof of theorem 3.

THEOREM 4. If G is a countable group which is the union of an increasing sequence of finite groups, then G is not regular.

Proof. Let $G = \bigcup_{n=0}^{\infty} G_n$ where G_n is a finite group and $G_i \subseteq G_{i+1}$. Let $p(x) = \min\{n \mid x \in G_n\}$ for each $x \in G$. Let $H = \{x \mid p(x) \text{ is even}\}$. H and \tilde{H} are clearly infinite. If $p(x) \neq p(y)$, $p(xy) = \max\{p(x), p(y)\}$. Thus if $y \in G$, p(xy) = p(yx) = p(x) for all x such that p(x) > p(y), hence for all but finitely many $x \in G$. Therefore for each $y \in G$, $Hy \cap \tilde{H}$ and $yH \cap \tilde{H}$ are finite and G is not regular.

THEOREM 5. If G is a countable abelian group, G is regular if, and only if

- 1) G contains an element, x, of infinite order, and
 - 2) G/G(x) is infinite.

Proof. Sufficiency is given by theorem 2.

Necessity. If G does not contain an element of infinite order it satisfies the hypotheses of theorem 4, and is therefore not regular. If G contains an element, x, of infinite order such that G/G(x) is finite it satisfies the hypotheses of theorem 3, 2) and is not regular.

P 418. Is there an uncountable group which is not completely regular?

REFERENCES

- [1] S. Banach, Sur les transformations biunivoques, Fundamenta Mathematicae 19 (1922), p. 10-12.
 - [2] Jan Mycielski, P 356, Colloquium Mathematicum 9 (1962), p. 165.

220 W. R. SCOTT AND LEE M. SONNEBORN

- [3] P. Erdős, Some remarks on set theory, Annals of Mathematics 44 (1943), p. 646.
 - [4] A. G. Kurosh, The theory of groups, I, New York 1960.
- [5] W. Sierpiński, Sur les translations des ensembles linéaires, Fundamenta Mathematicae 19 (1922), p. 22-28.
- [6] Sur une décomposition de la droite, Commentarii Mathematici Helvetici 22 (1949), p. 317-320.

THE UNIVERSITY OF KANSAS

Reçu par la Rédaction le 22. 4. 1962

COLLOQUIUM MATHEMATICUM

VOL. X

1963

FASC, 2

COMMENTS ON SOME WALLACE'S PROBLEMS ON TOPOLOGICAL SEMIGROUPS

BY

P. S. MOSTERT (NEW ORLEANS, LA.)

In [20] Wallace lists nine problems on topological semigroups (P 326-334). This note is intended to review the present status of this latest set, and to indicate directions in which the author feels some of the more interesting might take. I shall state each problem and follow it with my comments. In the following, semigroup will always mean topological semigroup (i. e., a Hausdorff space with a continuous associative multiplication). We shall use S to denote the semigroup, E its set of idempotents, and K the kernel (minimal ideal) when it exists.

P 326. Is it possible to construct a semigroup on the closed *n*-cell, $n \ge 2$, such that E is the boundary?

Comments on P 326. The answer is still far from known, although in the case n=2, a number of results have been obtained, mostly by participants in a seminar of R. J. Koch's during the past year. For example, one can easily show that every element of $\mathcal B$ has a square root, and from this one obtains (using the methods of A. Lester Hudson [6]) that every element lies on an I-semigroup with end points on the boundary. Further properties can be established using these subsemigroups. Again, in [6] it is shown that the boundary of $\mathcal B$ cannot be a subsemigroup, for this implies the existence of idempotents in the interior.

P 327. Is it possible to construct a continuous associative multiplication on an *n*-sphere in such a way that (i) every element is the product of two elements, (ii) there is a zero element.

Comments on P 327. It is generally conjectured that there is no non-trivial semigroup on a sphere X with $X^2=X$ except the groups on S^1 and S^3 . In dimension 1, this was proved by Koch and Wallace [11]. If there exists a structure with non-trivial multiplication (i. e., not such that xy=x or xy=y for $x,y\in X$ such that $X^2=X$, one can show that there exists one with zero, so that the problem is more general than it appears. It has been shown by Mostert and Shields [16] that if $X=S^2$ has a non-trivial connected subgroup, then $X^2\neq X$. Wallace's genera-

Colloquium Mathematicum X.2

3