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cette équation. Reste & étudier le cas ol il existe deux nombres m, et 2,
(Oﬂ My < 'no) tels que ?]mo(fG) = g'no(m) Alors gno(w) = gmyo—mo[gmn("ﬂ)L
ot gy my(@) = @. On a ensuite f[gng_my-1(®)] = g,fo,mo(w) = w.. La fon-
ction f(z) est donc inverse de g, _m,_1(%) et par suite elle est univalente,
Comme continue, elle est strictement monotone. Il existe donc en vertu
du corollaire qui précéde une infinité de fonctions geC;, satisfaisant
a (1).
ExeMPLE. Soit #7¢¢0, 1> un nombre irrationnel. Posons

T+ pour O <o <<l—y,
f@y={o+n—1 pour 1—gp<z<I,
0 pour =1.

La fonetion f transforme done I'intervalle <0,1> en lui-méme, mais
elle est discontinue en deux points. Nous allons montrer que la seule
fonetion geCyy, qui satisfait & Déquation (1) est la fonetion g = e,
En posant &, = g(&,), (1) entraine en effet f(&,) = g[f(&,)]. Le point
£ = f(&,) est done un point fixe de la transformation g. Tn posant
& = f(£n-1), on constate par récurrence que tous les nombres &, sont des
points fixes de la transformation g. Or Pensemble des nombres £, étant
dense dans <0,1), la fonction continue g, dont l'ensemble des points
fixes est dense, est nécessairement la fonetion-identité.
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DIFFERENTIABILITY OF MONOTONIC FUNOTIONS
BY
L. A. RUBEL (URBANA, ILL.)

This paper gives still another proof of the theorem of Lebesgue
that & non-decreasing function f(z) on a closed interval [a, b] has a finite
derivative f'(z) almost everywhere. Riesz [1], p. 5-9, has proposed an
elegant elementary proof that uses no measure theory beyond that of
sets of measure zero. The proof is elegant and simple in the case where
f(=) is continuous, but the details ([2], p. 69-75) of the straightforward
extension of Riesz’s proof to the discontinuous case are troublesome and
tedious. We use only elementary methods, borrowing half of Riesz’s
proof. Qur proof for the general case is then no longer than Riesz’s proof
for the continuous case.

Recently in this journal, Boas [3] gave a simple proof, but one that
required some measure-theoretic preliminaries, that if £ is a jump function,
then f' exists and is zero almost everywhere. Since each monotonic function
is the sum of a monotonic continuous function and & jump funetion,
the result for arbitrary monotonic function follows from the result for
continuous functions and for jump functions. There shortly followed
a completely elementary proof for jump functions by Lipirnski [4]. We
end this paper with a short proof that f’ is zero almost everywhere if f
is a jump funetion.

The prineipal innovation in our proof of Lebesgue’s theorem is the idea
of studying a continuous inverse of f(z) to make the extension to the dis-
continuous case in a painless way. We take as our starting point Lemma, 1,
which is the second part of what Riesz proved in detail.

LemmA 1. If F(y) is continuous and non-decreasing on [A, B], then
F'(y) < oo exists almost everywhere.

The first part of Riesz's proof shows that F’(y) < oo almost every-
where. We do not need this fact in Lemma 1, and will give a separate
proof later that the derivative is finite almost everywhere even in the
discontinuous case.

LeMMA 2. Let f(z) be a strictly increasing function on [a,b]. Then
F(@) has a continuous inverse; thai is, there emists a continuous, non-de-
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creasing function F(y) defined on [f(a), f(b)] such that F(f(m)) =g for
each zela, b].

Geometrically, the construction of F' is evident. An analytical expres-
sion for F is
(1) Fy) = sup {t: f(1) < 9}

It is obvious that F is non-decreasing. Hence, to show that F' is con-
tinuous, it is enough to show that the range of F ig all of [a@, b]. This
follows from the trivially verified fact that F(f ('m)) = .

Now let f(«) be a non-decreasing, but possibly discontinuous function
on [a,b]. We must show that f'(x) < oo exists almost everywhere.
Without loss of generality, we may suppose that f is strictly increasing,
and satisfies, moreover, the condition

(2) fy)—fl@)zy—=

since we could otherwise consider f(z)-+. If ¥(y) is the function of
Lemma 2, then by Lemma 1, F'(y) <--oo exists almost everywhere.
‘We write

whenever y >,

PR () R (5 F(f(’y))—F(f(w)))-{

y—o  Fi@)—F(f@) \ fy—fl)

Thus, for every point of continuity of f(x) such that f(x) does not lie
in the exceptional set B; where F' fails to exist, we see that f'(z) < +oo
exists. But the set of points of discontinuity of f is countable at most.
Furthermore, f-1(B,) has measure zero, since if I is any interval, then
f~1(I) is a union of intervals of total length not exceeding the length
of I, by (2). Hence f'(w) < +oo exists almost everywhere.

To complete the proof, we need only show that the set H,, of those
o for which f'(z) = oo, has measure zero. Our method is close to one
used by Lipinski [4]. For ¢ >0, let Hy be the set of those we(a, b) for
which there exist s = s, and ¢ = ¢, with s < @ <<t such that

4) F@)—f(s) > 0(t—s).

It is clear that Ey is open, and hence the disjoint union of open
intervals:

(8) By = U (Gn, by)-
Let us denote by [ay,, b,] any closed sub-interval of (a,, b,) such that
(6) bnlrs—a‘w,, = %(bn““a’n)'

Now it is clear that [ar,, b,] is covered by the open intervals (sg, )
for wela,, b,] and that (s, 1,) C (an, b,). By the Heine-Borel theorem,
there is a finite subcovering, say (s, ?;) where k =1,2,..., N; and if
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‘we choose a subcovering with N as small as possible, then each point
of U (s, &) lies in at most two of the intervals (sg, #), because given
any three open intervals with a common point, some one is contained in
the union of the other two.

Hence, using (4), we have

(D) Up—an < 3 (—s) <O X {Ft)—F(s)} <207 {f(ba)—F(an)}
and then by (6) and (7) we have

(8) D b= an) <407 I {f(ba)—f(aa)} < 407 {f(B)—F(a)}.

Since F, is contained in each g, it follows, on letting ¢ — oo, that
E_, has measure zero, and the proof is complete.

We now show briefly that if f is a jump function, then f' = 0 almost
everywhere, To say that f is a jump function is to say that f(x) = 3 fr ()
where fi(z) = 0 for & < ay, fr(z) = S) for @ > ax, 0< fr(ar) < S, and
38, < oo. Choose € >0, then ¢ >0, and let g = )"f;, where 3"’
is a sum over a finite set of indices & such that }8,— 3'S; < ¢C. Then
h = f—g is non-decreasing, h(b)—h(a) < ¢C, and b’ = f’ except on fini-
tely many points. By (8), we see that {z: h'(2) > C} can be covered by
open intervals whose total length is less than 4c. Hence {x: f'(x) > C} has
measure zero for each positive C. Since {z: f'(z)> 0}= U {»: f'(2) = 27"},
the result is proved. "
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