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NOTE ON APPROXIMATE DERIVATIVE
BY
K. KREZYZEWSKI (WARSAW)

Z. Zahorski proved in [4] that if the approximate derivative f,, ()
of a function f(z) (& < # < b) exists at every point, except perhaps
for a countable set, then it is of Baire class 3 with respect to the set
of its existence. He also posed the question of whether it is always of
Baire class 2. After his note had been printed, he solved this guestion
affirmatively but he bas not published the proof (3).

In this note we shall prove the following slightly stronger

THEOREM. Let f be a finite function defined on the whole real line and
let B be the set of all points x at which the approzimate derivative f,(x)
exists. If every point of R is a point of outer density of R, then
(a) there ewists a countable set Z C R such that f is of Baire class 1 with
respect o BR—2 (3),
(b) fap s of Baire class 2 with respect io R.
The proof will require the following lemmas.

LemMA 1. Let E be any set on the real line. Then the set By (Hgy)
of all poinis at which outer right-hand (left-hand) upper density of E is posi-
tive, is a Gs4-s6t.

Proof. We may assume that F is measurable and we may confine
ourselves to the case of right-hand upper density. Then, let H,,, for
n,k =1,2,..., denote the set of all points x such that for every
| B~ [, Z]]

T—2

interval [, T], the inequality T—a < 1/k implies <1l/n.

Cs

Since each set H,y is closed and sinee Hyy = ([

N=

H,p)'s the lemma
1

-
L
I

is proved.
LeMMA 2. If functions f and g are upper (lower) approwimately semi-

(*) The author has been informed by Prof. Z. Zahorski that the proof of his
theorem had also been given by A. Matysiak in [2].
() (a) was given without proof in [4] in a slightly weaker form.
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-continuous on the vight at m, then max (f, g) end min (f, g) are also upper
(lower) approzimately semi-continuous on the right at oq. The same is true,
if we replace “the right™ by “the left”.

The proof is quite similar to that of the corresponding assertion
for ordinary semi-continuity.

LEMMA 3. Let f be a bounded measurable function and let F(2) =

@
= [f(t)as. If f is upper (lower) approximately semi-continuous on the right

at x,, then

Fr(my) < flw) (F+ () = f(@o))-

The corresponding assertion is true if we replace “the vight” by “the left”.
The proof is similar to that of Theorem (10.7), p. 132 in [3].
LuMMA 4. Let f be a finite function. Then the set B of all points © ab

which the approzimate derivative fo,(x) ewists is measurable, and f is of

Baire class 2 with respect to R.

Proof. Let us remark that for every real o the sets {z: 11m ap f (t) >a},

{w.hma.pf ) >a}, {z:limap f(¥) < a}, and {z:limap f(¥) < a} are Gy,.
tox—0 e SES0

It is sufficient to show this for the first set. For this purpose let F,, for

each integer » >0, denote the set of all points at which outer right-hand

upper density of the set {t: f(t) > a-1/n} is positive. From the defini-

tion of approximate limits it follows that

fo: Tmap () > o} =

20

U L’Il:

=1
Hence, in view of Lemma 1, we obtain the requlred result. Burther, let

us observe that the sets {w:f(» >11mapf Y, {z:f(x) > llmapf(t)},
ferl—0

{w: f(z) < limap f(¢)}, and {z:f(z) < llmap f()} are of measure zero.

T>T40 Tz

It is sufficient to show this for the first set. For this purpose let us note

that

{m; f(w) > limap f{t )l = U 1&7 s fl@) > w, =10 ﬁﬂ“‘%’»&}"f(‘t)},
x40

1—rt -0
where {Wn}n.1s.. 18 & sequence of all rational numbers. From the defi-
nition of approximate limits and from Lobesgue’s density theorvem, it

follows that each set {z:f(x) >w, > llmﬁup f®)} is of measure zero and

therefore {x: f(x) >11map f(@)} is also of meajsure zero. Let us now put

)}l

< limap f(¢

t—>%--0

Ry = {w limap ap f@ hﬁ;ﬁ) ft) <Yimap f (t)}.

tr—0) i5ET0
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From the preceding remarks, it follows that R, is measurable, and f is
measurable on R,. Sinee at each point of R, at least one of the following

conditions

(1) limap f(t) < f(z) <limap f(2)
{240 I>2—0

(2) limap f(f) <f(z) <lmap f(2)
tsz—0 a0

is satisfied, we get R C R,. Put
h(@) = {f(a:) for zeR,,

0 for z¢R,.

Since h is measurable, it follows from Theorem (11.2), p. 299 in [3], that
the set @ of all points & at which h,,(z) exists, is measurable. Hence, since
Q~ R, and R differ at most by a set of measure zero, R is also measurable.
‘We now proceed to the proof of the second part of the lemma. For this
purpose, put

P = {m hmapf(t y < limap f(¢ )} {w hmapf(t ) < limap f(%) }
t—z—0 t—2+0
Sinee P is countable (see [1]), it is sufficient to show that f is of Baire
class 2 with respect to the set A = R—P. For this purpose observe that

(3) {z;f(@) < a,zed}

a,zeA}+{z: hmapf(t)

= {x: lunapf(t @, wed},

where a is any finite number. In view of the remark made at the beginning
of the proof, (3) implies that {z; f(¢)<a,zeA}is an F,-set with respect
to A. By symmetry, we obtain the same for the set {x:f(f) = a, wed}.
This completes the proof.

For any real o, any finite function f defined on a set X, and any
point xeX, let
fO)—f@)

t—x

LemMA 5. Let f be a finite function of Baire class 1 with respect to
a measurable set X of finite measure. Then, for arbitrary « and f§, the set
{: |M(f, X, a,o)| >p,wcX} is an F,-set with respect to X.

Proof. There exists a sequence {f,}1., of finite functions conti-
nuous on X and such that lim f,(z) = f(&), for <X . Let us put for the

00

M(f,X,a,w)-——{t: >a,teX,t;£m}_

integers m, &k >0
Nk(fnvxaayw):{ Intt) fn_

1
PR ,a+7;,teX,t¢w}-
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It is easy to see that

fo: 12107, %, , 01 >, )
1
%

ﬁ{w Valfor X, ay )] = B ,meX}

uCS

Hence, it is sufficient to show that each set {w: | N (foy X, a,2)] =
1 .
> p+ . weX} is closed with respect to X. For this purpose, let w,

1
s =1,2,..., belong to the fixed set {m: | Ni(fn, X, a, 2)] >ﬁ—|—7c-, msX},

and let im @, = 2, w,¢X. Then we have

800

lim Ny (fn, X, a, ms)_{wo} c Nln(fm X, a, @),
800
and therefore lLim |Ny(f., X, a,®s)| < |[Ni(fa, X, a, 2,)|; hence we infer
800

1
that [Ny (fn, X, a, 5)| = B+ I This completes the proof.

‘We now proceed to the proof of the theorem. It follows from Lemma 4
that the set B is measurable and f is measurable on R. Since each point
of R is a point of density for R, we may assume that f is measurable on
the whole real line (°*). Let us now put f, = max(—n, min(n,f)) for
n=1,2,... By Lemma 2 and Lemma 3, in view of (1) and (2), we infer
that for every integer » > 0 and for each point w¢R, one at least of the
following conditions is satisfied:

(4) Fi(o) <fale) <Fz(@) or Fy(e) <ful2) < Fi(2),

where F,(z) = f Falt)dt. Now let

Z = U{w:F}f(w)<F (@)}o {w: 'y () < Bt (@)}

Nz=]
By Theorem (1.1), p. 261 in [3], the set Z is countable. We ghall prove
that f is of Baire class 1 with respect to the set @ = R—2%. In view of
(4) it follows that, for any a and § > «,
{@:fu(@) < B, 2eQ} = {w: Fyj (v) < B, weQ}o {w: Fy; () < B, w<Q),
(8)
{#: fa(®) > 0, 2Q} = {w: F} () > a, xeQ}o {m: Fo (@) > a, 0eQ}.

(®) This assumption is made only in the proof of (a).
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The sets on the right-hand side of (5) are F,-sets with respect to Q (see
the proof of Theorem (4.1), p. 170, in [3]), and hence the sets {z: fulz) > a,

zeQ} and {z: fu(s) < B, w<Q} are also F, with respect to Q. It is easy to
see that

{10 <f(@) < B, 2eQ}
= Ql{m: a <ful®) < B, 2eQ}n{o: —n < fulz) < n, 0eQ)},

and therefore the set {;a < f(») < f,x<Q} is an F-set with respect
to @. This completes the proof of the first part of the theorem (4). We
now proceed to the second part. It is sufficient to show that f,, is of Baire
class 2 with respect to Q. For this purpose, let {I}s_., . denote
a sequence of all closed different rational intervals, and N (q) (¢ =1, 2, ...)
the set of all integers s > 0 such that |I,] < 1/g. It is easy to see that
for every real «

(6) {wf;p(m) > a, meQ} = ﬁ ﬁ (qAn,q,sy

where A, 45 (1, ¢ =1, 2, ..., s« N(b)) is the set of all points « belonging
to @~ I, such that |M(f, @~ I, a—1/n, z)| > |I,|. From Lemma 5 it
follows that each set Angsis F, with respect to Qn Is, and therefore
also an F,-set with respect to @. By (6) the set {m: f,, (%) > a, <@} is Foy
with respect to Q. By symmetry, the set {z:f; (¢) < a,z<@Q} is also
F,, with respect to @, and therefore f;p is of Baire class 2 with respect
to @. This completes the proof of the theorem.

(%) From the proof it follows that (a) holds for a measurable function f without
any assumption concerning the density of the set R.
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