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ON MAPPINGS THAT CHANGE DIMENSIONS OF SPHERES

BY

A. LELEK (WROCLAW)

A mapping (i.e. a continuous function) f of the space X is said to
be strongly irreducible provided that f(4) = f(X) implies 4 = X for every
closed subset A of X (see [3], p.162).

We denote by D; the set of all points of X on which fis 1-1, i.c.

Dy ={zmaeX,s = ff(a)};

the mapping f is obviously strongly irreducible if the set D; is dense in X.
It is known that the inverse is also true provided that X is a compact
metrie space (see [3], p.163).

Examples. Let us denote by 5I" the boundary of the n-dimensional
cube I™ in the n-dimensional Euclidean space E™.

There exists a strongly irreducible monotone mapping f of I" (n = 2,3, ...)
such that f(bI") is a point and &imyf(I™) = 1 (}). Hence f(I") is & dendrite
(see [1], p. 333, 336 and 333).

Indeed, let ¢ be the Cantor ternary set on the segment I = {t:
0<<t <1}, and let P be an arbitrary n-dimensional parallelepiped in E",
with boundary bP and centre g. Consider a set 4, consisting of points
q-+¢(x—gq), where ¢e('— {1}, #<bP, and E" is understood to be a vector
space. Then 4 is a nowhere dense closed subset of P— P, and each com-
ponent B of (P—bP)—A is a domain in E", bounded by surfaces ¢+
+¢;(bP —q), clearly homeomorphical to bP, where ¢ =1, 2, and ¢, ¢,
are end points of a component interval of I—C. Let us cut every
domain B with compact pieces of (n— 1)-dimensional hyperplanes con-
tained in the closure of B into a finite number of parallelepipeds P’
whose diameters 6 (P’) are less than }6(P). Denote by A’ the union of 4
and of all these (n—1)-dimensional pieces, where B ranges over the coun-
table collection of all components of (P—bP)—4. So 4’ is also closed in
P—bP. Hence the collection C(P) of components of 4’ is one of continua

(}) The idea of the example is due to K. Sieklucki.
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and remains an upper semicontinuous collection after adding to it a new
element being an arbitrary continuum contained in (B*—P) o bP and
containing bP. Moreover, B*—A’ is a Gy-set dense in E", and the coun-
table collection P(P) of closures of components of (P—bP)—A’ is one
of parallelepipeds P’ such that 6(P’) < 46(P), and the boundary bP’
is contained in some element of C(P) for every IP’eP(P).

Now we define the sequence Pg, Py, ... of countable collections of
parallelepipeds as follows: P, = {I"} and Py, is the union of all collec-
tions P(P), where PeP;, for k = 0,1, ... Let us observe that if el

then 8(P) < Vn /2", as the diameter of the ecube I" is V. Thus

(i) K={0I", U UCWP)
k=0 PEPy

is a collection of disjoint continua in I™ (for » = 2,3, ...), and for any
sequence K, K,, ... of elements of K such that K, eC(P;), where PPy,
and k; — oo, we have 5(K;) — 0. It follows that the eollection L consist-
ing of all elements of K and of single points of I"—K*(?) is upper semi-
continnous and I" = L*.

Let f be the mapping induced by L, i. e. satisfying £ (y) <L for every
yef (I™) (see [1], p. 42). Then f is monotone. Further, we have I, == I".—

and their intersection is (I"—K*) o bI", according to (i). Hence J); iy
dense in I" by the Baire theorem, and so f is strongly irreducible. As
bI"e K C L, f(bI") is a point. Bach element L of L can be separated from
any closed subset of I" which does not meet I, with a finite number of
elements of L. Thus the continuum, f(I") has finite order of ramification
at any point, and therefore it is 1-dimensional.

Using the above example one can easily show that if P is a polyhedron
with 2 < dim,P for every peP, then there exists a strongly irredueible mo-
notone mapping f of P such that dimf(P) = 1.

In particular, we get such a mapping f for P being the n-dimengional
sphere 8, with n = 2,3, ... (3).

Theorems. It can be verified that in the last example the points
of 8, on which f is 1-1 correspond to the end points of the dendrite f(S,),
i.e. f(D;) is the end point get of f(5,), dense in f(S,). However, for mup-
pings f which lower the dimension of 8,, the set f(/);) ecannof be too
large.

(®) If K is a collection of sets, K* denotes the wunion of all clements belonging
to K. .

(]) This answers a question proposed to the author by L. V. Keldysh in Septem-
ber 1961 during the International Topological Symposium in Prague.
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TuEOREM 1. If f is a non-constant mapping of the sphere 8, (n = 0,
y...) and dmf(S,—D;,) <0, then n < dimf(S,).

Proof. The theorem being evidently true for » = 0, let us assume
that » > 0. Since f is a non-constant mapping, f(S,) is a non-degenerate
continuum. Thus, if the set 1; were finite, the set (S, —Dy) = f(8,)—f(D;)
would have positive dimension, contrary to the hypothesis. Hence Dy,
is infinite.

Let p,qeD; and p 3 q. The further proof is the same as in [2],
pages 79-81, for X = Dy, ¥ = f(8,) and » = f|.D;. Beginning at page 81,
line 14 from bottom, where the hypothesis is used that X is densely con-
nected in S, (whieh is not assumed here), the proof must be modified
by replacing h(R ~ X) by f(R). Then, though the set B ~ X needs not
be connected. and therefore inelusion (17) is useless, the proof remains
valid. In fact, the set R being connected and containing the points p
and ¢, we infer in the same way that C; ~ f(E) # 0 for some ¢, =1, ..., j.
Hence f(B) ~ f(8,—B) s 0, because C;, Ch(B) =f(B) and RCS,—B.
However, the mapping fis 1-1 on B as BC X = Dy, and so f(B) ~ f(8,—B)
=0, which yields the desired contradiction.

THEOREM 2. If f is a non-constant mapping of the sphere 8, (n =1,
2....) and dimf(S,) < n, then

0 < dim{y: 0 < dimf~(y)}.

1

Proof. Denote by Y the set { } in the last inequality. Let f = gh
be the decomposition of f into mappings g and & such that » is monotone
and g is O-dimensional, i.e. dimg~'(y) = 0 for every y<f(S,) (see [1],
p. 125). Then it zeh(S,—D;), the set 17" (z) is non-degenerate, whence
0 < dimh~'(x) by the monotoneity of h. But since zeg~'g(x), we obtain

b7 e) Ch7lg g () = fg (@),
which gives 0 < dimf 'g(x), that is g(#)e Y. Thus
(ii) gh(8,—D;) C Y.
Since the mapping ¢ is 0-dimensional, we have
dima(8,) < dimgh(S,) = dimf(8,) < n,
aceording to the Hurewiez theorem (see [1], p. 67). This implies
(i) 0 < dimh(8S,—Dy),

by virtue of Theorem 1. But, D;, being a G4-set (see [3], p. 162), its comple-~
mentary set, as well as the continuous image h(S,—D,), is a F, -set,
i.e. the union of countably many compact sets. It follows from (iii) that
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there exists a compaet set X C h(S,—D,) with 0 < dimX. So dimX
< dimg(X) by the same Hurewicz theorem, and ¢(X) C Y Dby (ii). We
get 0 < dimY.

Questions. We have shown by the example (see p.46) that for
some mapping f which lowers the dimension of 8, the set"D; can be dense
in §,,. Then dim(8,—Dy) < n—1 (see {1], p. 353). Actually, the set 8, —D,
hags the dimension equal to n—21. This suggests the following question:

P 390. Is it true that dimf(8,) <n—1 tmplies n—1 < dim(8,—D,)
Jor every mapping f of the sphere 8, (n =3,4,...)%

The proposition trivially helds for » = 1, and follows from the Ilu-
rewicz theorem for » = 2 (see [1], p. 67).

Finally, one eould ask in connection with Theorem 2:

P 391. Does the inequality

0 < dim {y: n— dimf(8,) < dimf*(y)}

hold for every mom-constant mapping f of the sphere S, (n = 3,4,...)%

Since 0 < yields 0 < dimf(8,) for any non-constant f, ‘uhe set {}
in P 391 is equal to f(8,) for n = 1 and to f(8,) or {y: 0 < dimf~"(y)}
for # = 2. Thus, for n = 1 or 2, we get the mequahty in P 391, according
to Theorem 2.
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ON THE IP°-SPACE OF A LOCALLY COMPACT GROUP
BY

M. RAJAGOPALAN (NEW HAVEN, CONN,)

In the paper [5] Zelazko has shown that if & is a loeally compaect
Abelian group which is Hausdorff, then L?(&) for p > 1 is an algebra
under convolution if and only if ¢ is compaet. In this paper I extend
this result to the case when G is discrete but not Abelian and p > 2.
In the commutative case a new proof is given for the fact that L3(&)
is an algebra under convolution if and only if & is compact, based on
only measure theoretic considerations and Fourier transform. Theorem 1
is of its own interest and the author has not seen any published state-
ment of it so far. T wish to express my thanks to Professor Ioneseu Tulcea
who drew my attention to the paper [5].

Meagure theoretic notions are generally taken from [1]. Group theo-
retic notions are as found in either [2] or [3].

If (X, 2, u) is a measure space we write IP(X) or L”(u) for the
space of complex valued funections f(z) on X such that f If(@)|Pdu(z) < oo,

where p > 1 and = co. Similarly, L*(X) or L®(u) wﬂl denote the space
of all essentially bounded measurable functions on X. If f(z)eL”(X),
then ||fll, will denote the usual norm in I”(X) for p > 1. If @ is a group
with a left Haa.r measure u, then f*g will denote the convolution pro-
duet f fly g(y)du(y) provided f(x) and g(z) are measurable and the

mtegral exists for almost all z¢@G.

Let (X, 2, u) be a measure space. A set SeX is called an atom if
u(8) 5 0 and if for every HeX and C 8§ we have either u(§) = u(E)
or u(B) = 0. X or u is said to be purely atomic if every set of non-zero
o-finite measure ¢an be expressed as the union of atoms. Two sets B, FeZ
are called equivalent if u(E—F) = uw(F—E) = 0.

Hereafter we consider a fixed measure space (X, X, u) until theorem 1.

Now we state the following lemma without proof:

LemmaA 1. If every set of mon-zero measure contains an atom, then u
is purely atomic.
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