44 J. MIODUSZEWSKI [3] H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Mathematica 4 (1937), p. 145-234. [4] J. Mioduszewski, A functional conception of snake-like continua, Fundamenta Mathematicae 51 (1962), p. 179-189. [5] И. Шведов, Доказательство теоремы о гомеоморфизме полиздров и точсиных множеств, Доклады Академии Наук СССР 22 (1958), р. 566-569. Reçu par la Rédaction 31.10.1961 VOL. X ## COLLOQUIUM MATHEMATICUM 1963 FASC. 1 ON MAPPINGS THAT CHANGE DIMENSIONS OF SPHERES BY ### A. LELEK (WROCŁAW) A mapping (i.e. a continuous function) f of the space X is said to be *strongly irreducible* provided that f(A) = f(X) implies A = X for every closed subset A of X (see [3], p. 162). We denote by D_t the set of all points of X on which f is 1-1, i.e. $$D_t = \{x : x \in X, x = f^{-1}f(x)\};$$ the mapping f is obviously strongly irreducible if the set D_f is dense in X. It is known that the inverse is also true provided that X is a compact metric space (see [3], p. 163). **Examples.** Let us denote by bI^n the boundary of the *n*-dimensional cube I^n in the *n*-dimensional Euclidean space E^n . There exists a strongly irreducible monotone mapping f of I^n (n = 2, 3, ...) such that $f(bI^n)$ is a point and $\dim f(I^n) = 1$ (1). Hence $f(I^n)$ is a dendrite (see [1], p. 333, 336 and 338). Indeed, let C be the Cantor ternary set on the segment $I=\{t\colon 0\leqslant t\leqslant 1\}$, and let P be an arbitrary n-dimensional parallelepiped in E^n , with boundary bP and centre q. Consider a set A, consisting of points q+c(x-q), where $c\in C-\{1\}$, $x\in bP$, and E^n is understood to be a vector space. Then A is a nowhere dense closed subset of P-bP, and each component B of (P-bP)-A is a domain in E^n , bounded by surfaces $q+c_i(bP-q)$, clearly homeomorphical to bP, where i=1,2, and c_1,c_2 are end points of a component interval of I-C. Let us cut every domain B with compact pieces of (n-1)-dimensional hyperplanes contained in the closure of B into a finite number of parallelepipeds P' whose diameters $\delta(P')$ are less than $\frac{1}{2}\delta(P)$. Denote by A' the union of A and of all these (n-1)-dimensional pieces, where B ranges over the countable collection of all components of (P-bP)-A. So A' is also closed in P-bP. Hence the collection C(P) of components of A' is one of continua ⁽¹⁾ The idea of the example is due to K. Sieklucki. and remains an upper semicontinuous collection after adding to it a new element being an arbitrary continuum contained in $(E^n-P)\cup bP$ and containing bP. Moreover, E^n-A' is a G_δ -set dense in E^n , and the countable collection P(P) of closures of components of (P-bP)-A' is one of parallelepipeds P' such that $\delta(P')\leqslant \frac{1}{2}\delta(P)$, and the boundary bP' is contained in some element of C(P) for every $P'\in P(P)$. Now we define the sequence P_0, P_1, \ldots of countable collections of parallelepipeds as follows: $P_0 = \{I^n\}$ and P_{k+1} is the union of all collections P(P), where $P \in P_k$, for $k = 0, 1, \ldots$ Let us observe that if $P \in P_k$, then $\delta(P) \leq \sqrt{n}/2^k$, as the diameter of the cube I^n is \sqrt{n} . Thus (i) $$K = \{bI^n\} \cup \bigcup_{k=0}^{\infty} \bigcup_{P \in P_k} C(P)$$ is a collection of disjoint continua in I^n (for $n=2,3,\ldots$), and for any sequence K_1,K_2,\ldots of elements of K such that $K_i \in C(P_i)$, where $P_i \in P_{k_i}$ and $k_i \to \infty$, we have $\delta(K_i) \to 0$. It follows that the collection L consisting of all elements of K and of single points of $I^n - K^*(2)$ is upper semicontinuous and $I^n = L^*$. Let f be the mapping induced by L, i. e. satisfying $f^{-1}(y) \in L$ for every $y \in f(I^n)$ (see [1], p. 42). Then f is monotone. Further, we have $D_f = I^n - K^*$, all sets $I^n - C^*(P)$ are G_0 -sets dense in I^n for $P \in P_k$, $k = 0, 1, \ldots$, and their intersection is $(I^n - K^*) \cup bI^n$, according to (i). Hence D_f is dense in I^n by the Baire theorem, and so f is strongly irreducible. As $bI^n \in K \subset L$, $f(bI^n)$ is a point. Each element L of L can be separated from any closed subset of I^n which does not meet L, with a finite number of elements of L. Thus the continuum $f(I^n)$ has finite order of ramification at any point, and therefore it is 1-dimensional. Using the above example one can easily show that if P is a polyhedron with $2 \leq \dim_p P$ for every $p \in P$, then there exists a strongly irreducible monotone mapping f of P such that $\dim_f(P) = 1$. In particular, we get such a mapping f for P being the n-dimensional sphere S_n with $n = 2, 3, \ldots$ (3). **Theorems.** It can be verified that in the last example the points of S_n on which f is 1-1 correspond to the end points of the dendrite $f(S_n)$, i.e. $f(D_f)$ is the end point set of $f(S_n)$, dense in $f(S_n)$. However, for mappings f which lower the dimension of S_n , the set $f(D_f)$ cannot be too large. THEOREM 1. If f is a non-constant mapping of the sphere S_n (n = 0, 1, ...) and $\dim f(S_n - D_t) \leq 0$, then $n \leq \dim f(S_n)$. Proof. The theorem being evidently true for n=0, let us assume that n>0. Since f is a non-constant mapping, $f(S_n)$ is a non-degenerate continuum. Thus, if the set D_f were finite, the set $f(S_n-D_f)=f(S_n)-f(D_f)$ would have positive dimension, contrary to the hypothesis. Hence D_f is infinite. Let p, $q \, \epsilon \, D_f$ and $p \neq q$. The further proof is the same as in [2], pages 79-81, for $X = D_f$, $Y = f(S_n)$ and $h = f \mid D_f$. Beginning at page 81, line 14 from bottom, where the hypothesis is used that X is densely connected in S_n (which is not assumed here), the proof must be modified by replacing $h(R \cap X)$ by f(R). Then, though the set $R \cap X$ needs not be connected and therefore inclusion (17) is useless, the proof remains valid. In fact, the set R being connected and containing the points p and q, we infer in the same way that $C_{i_0} \cap f(R) \neq 0$ for some $i_0 = 1, \ldots, j$. Hence $f(B) \cap f(S_n - B) \neq 0$, because $C_{i_0} \subset h(B) = f(B)$ and $R \subset S_n - B$. However, the mapping f is 1-1 on B as $B \subset X = D_f$, and so $f(B) \cap f(S_n - B) = 0$, which yields the desired contradiction. THEOREM 2. If f is a non-constant mapping of the sphere S_n (n = 1, 2, ...) and $\dim f(S_n) < n$, then $$0 < \dim\{y \colon 0 < \dim f^{-1}(y)\}.$$ Proof. Denote by Y the set $\{\ \}$ in the last inequality. Let f=gh be the decomposition of f into mappings g and h such that h is monotone and g is 0-dimensional, i.e. $\dim g^{-1}(y)=0$ for every $y \in f(S_n)$ (see [1], p. 125). Then if $x \in h(S_n-D_h)$, the set $h^{-1}(x)$ is non-degenerate, whence $0 < \dim h^{-1}(x)$ by the monotoneity of h. But since $x \in g^{-1}g(x)$, we obtain $$h^{-1}(x) \subseteq h^{-1}g^{-1}g(x) = f^{-1}g(x),$$ which gives $0 < \dim f^{-1}g(x)$, that is $g(x) \in Y$. Thus (ii) $$gh(S_n-D_h) \subset Y$$. Since the mapping g is 0-dimensional, we have $$\dim h(S_n) \leqslant \dim gh(S_n) = \dim f(S_n) < n,$$ according to the Hurewicz theorem (see [1], p. 67). This implies (iii) $$0 < \dim h(S_n - D_h),$$ by virtue of Theorem 1. But, D_h being a G_{δ} -set (see [3], p. 162), its complementary set, as well as the continuous image $h(S_n-D_h)$, is a F_{σ} -set, i.e. the union of countably many compact sets. It follows from (iii) that ⁽²⁾ If K is a collection of sets, K^* denotes the union of all elements belonging to K. ⁽³⁾ This answers a question proposed to the author by L. V. Keldysh in September 1961 during the International Topological Symposium in Prague. A. LELEK 48 there exists a compact set $X \subseteq h(S_n - D_h)$ with $0 < \dim X$. So $\dim X \le \dim g(X)$ by the same Hurewicz theorem, and $g(X) \subseteq Y$ by (ii). We get $0 < \dim Y$. Questions. We have shown by the example (see p. 46) that for some mapping f which lowers the dimension of S_n the set D_f can be dense in S_n . Then $\dim(S_n - D_f) \leq n - 1$ (see [1], p. 353). Actually, the set $S_n - D_f$ has the dimension equal to n-1. This suggests the following question: **P 390.** Is it true that $\dim f(S_n) \leq n-1$ implies $n-1 \leq \dim(S_n-D_f)$ for every mapping f of the sphere S_n $(n=3,4,\ldots)$? The proposition trivially holds for n = 1, and follows from the Hurewicz theorem for n = 2 (see [1], p. 67). Finally, one could ask in connection with Theorem 2: P 391. Does the inequality to Theorem 2. $$0 < \dim\{y : n - \dim f(S_n) \leq \dim f^{-1}(y)\}$$ hold for every non-constant mapping f of the sphere S_n (n = 3, 4, ...)? Since 0 < n yields $0 < \dim f(S_n)$ for any non-constant f, the set $\{ \}$ in P 391 is equal to $f(S_n)$ for n = 1, and to $f(S_n)$ or $\{y : 0 < \dim f^{-1}(y)\}$ for n = 2. Thus, for n = 1 or 2, we get the inequality in P 391, according #### REFERENCES - [1] C. Kuratowski, Topologie II, Warszawa 1961. - [2] A. Lelek, On compactifications of some subsets of Euclidean spaces, Colloquium Mathematicum 9 (1962), p. 79-83. - [3] G. T. Whyburn, Analytic Topology, New York 1942. MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES Recu par la Rédaction le 8, 11, 1961 6 VOL. X # COLLOQUIUM MATHEMATICUM 1963 FASC, 1 ## ON THE LP-SPACE OF A LOCALLY COMPACT GROUP BY ## M. RAJAGOPALAN (NEW HAVEN, CONN.) In the paper [5] Zelazko has shown that if G is a locally compact Abelian group which is Hausdorff, then $L^p(G)$ for p>1 is an algebra under convolution if and only if G is compact. In this paper I extend this result to the case when G is discrete but not Abelian and $p\geqslant 2$. In the commutative case a new proof is given for the fact that $L^2(G)$ is an algebra under convolution if and only if G is compact, based on only measure theoretic considerations and Fourier transform. Theorem 1 is of its own interest and the author has not seen any published statement of it so far. I wish to express my thanks to Professor Ionescu Tulcea who drew my attention to the paper [5]. Measure theoretic notions are generally taken from [1]. Group theoretic notions are as found in either [2] or [3]. If (X, \mathcal{E}, μ) is a measure space we write $L^p(X)$ or $L^p(\mu)$ for the space of complex valued functions f(x) on X such that $\int_x |f(x)|^p d\mu(x) < \infty$, where $p \geqslant 1$ and $\neq \infty$. Similarly, $L^\infty(X)$ or $L^\infty(\mu)$ will denote the space of all essentially bounded measurable functions on X. If $f(x) \in L^p(X)$, then $||f||_p$ will denote the usual norm in $L^p(X)$ for $p \geqslant 1$. If G is a group with a left Haar measure μ , then f * g will denote the convolution product $\int_G f(y^{-1}x)g(y)d\mu(y)$ provided f(x) and g(x) are measurable and the integral exists for almost all $x \in G$. Let (X, \mathcal{L}, μ) be a measure space. A set $S \in \mathcal{L}$ is called an atom if $\mu(S) \neq 0$ and if for every $E \in \mathcal{L}$ and $C \cap S$ we have either $\mu(S) = \mu(E)$ or $\mu(E) = 0$. X or μ is said to be purely atomic if every set of non-zero σ -finite measure can be expressed as the union of atoms. Two sets $E, F \in \mathcal{L}$ are called equivalent if $\mu(E - F) = \mu(F - E) = 0$. Hereafter we consider a fixed measure space (X, Σ, μ) until theorem 1. Now we state the following lemma without proof: LEMMA 1. If every set of non-zero measure contains an atom, then μ is purely atomic. Colloquium Mathematicum X.