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such that lim|z,[, = 0, and [|f * @l >C n=1,2,.. Taking [|u,(?)]
instead of x,(f) we have also lim ||z, (?)ll, =0 an{l Hf* [yl = C, 80
we may assume that z,(3) = 0. Taking a suitable sequence of positive
sealars ¢, we obtain lim|a,,l, = 0, and lim ||f * @, @)l, = oo, 80 Dby
passing, if necessary, to a subsequence We Iay asSume that

lwall, <1/2" and [If * 2l = 0

o0
for n =1,2,... Now let y = Dw,; we have yely, 80 Ilf * 4|y << oo, On
Ne=1

the other hand, y > #,, and so fxy = f*u, 2 0. Consequently |f* yl,
= |If * 2l =0 whlch is the contradietion menuoned above, q.o.d.

COROLLARY. If L,(@), p =1, is an algebra wnder the convolution,
then it is o Banach algebra (i. e. there exists a submultiplicative norm equi-
valent to the norm ||zli,)-

We may formulate now our main result

TaEoREM 1. Let G be a locally compact group end p > 2; then the space
L, (@) is an algebra under the convolution if and only if the group G is
compact.

We may rewrite also the main result of [3] in the following form.:

THEOREM 2. Let G be a locally compact Abelian group aend p >1;
then the space Ly(G) is an algebra under the convolution if and only if the
group @ 13 compact.

The following problem. is open:

P 392. Is the conclusion of theorem 1 true for 1 < p = 27

REFERENCES

[1] B. Eckmann, Uber monothetische Gruppen, Commentarii Mathematici
Helvetici 16 (1943/44), p. 249-263.

[2] M. Rajagopalan, On the I?-spuce of o locally compact growp, this volume,
p. 49-52.

[3] W. Zelazko, On the algebras Ly of locally sompact growps, ibidom 8 (1961),
p. 115-120.

[4] — On the divisors of zero of the group algebra, Fundamonta Mathomaticao
45 (1957), p. 99-102.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF HOTENCKS

Regw par lo Bédaction le 20. 12. 1961

icm®

COLLOQUIUM MATHEMATICUM

VOL. X

1963 FASC. 1

ON DECOMPOSITION OF A COMMUTATIVE p-NORMED
ALGEBRA INTO A DIRECT SUM OF IDEALS
BY

W. ZELAZKO (WARSAW)

1. In the theory of commutative complex Banach algebras it is
known that a Banach algebra 4 is decomposa,ble into a direct sum of
its two non-trivial ideals

(1.1) A =1L,

if and only if the compact space I of all multiplicative lincar funetionals
of 4 may be written in the form
(1.2) M =M, v M,,

where M, and M, are disjoint closed subsets of M.
The decompositions (1.1) and (1.2) are equivalent to the decomposi-
tion of the unit eeA into a sum of two non-zero idempotents

(1.3) 6 = 61+ 6y,
where
(1.4) & =6, € =6y €6 =0

When we have the decomposition (1.3) with (1.4) the decompositions
(1.1) and (1.2) may be written by means of the formulas

(1.5) I, =64, I,=¢A,
and
(1.6) M, = {feM: fle) =1}, M, = {feM: fle,) = 1}.

This result was obtained by Silov [4], who used analytic functions
of several variables of elements of A. Here is presented a similar result
for the class of p-normed algebras.

2. A p-normed algebra A is a metric algebra complete in the norm

lwll satistying

eyl < lleltliyll, ol = [afll),
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where &, ¥ e 4, ais a scalar, and p 18 2 fixed real number satisfying 0 < p
< 1. Bvery locally bounded complete metrie algebra is isomorphic and
homeomorphic with a p-normed algebra ([5], theorem 1), and the clags
of p-normed algebras is more wide then that of Banach algebras. In this
paper we assume A to be a commutative complex p-normed algebra with
unit e.

The greatest part of the theory of Banach algebras ig true, also for
p-normed algebras. We list out some of these facts, which will be needed
in the sequel.

2.4. If M is set of all multiplicative linear functionals of a p-normed
algebra A (topologized as in [1], so it forms a compact space), then

(2.1.1) tim /| = max|f(a)?",

and the radical of 4 may be defined (see [6]) as

(2.1.2) radA = {zed: im})/ "] = 0}.

2.2. If med, then the spectrum o(x) of x is defined as
o(@) = {f(»): feM}.

It is a compact subset of the complex plane, and for every analytic
function @(z) defined in an open neighbourhood U of o(x) there existy
in A an element y such that (see [7])

fy) = o(f(=)

3. Now we proceed to prove that if 4 is a commutative complex
p-normed algebra with unit ¢, then (1.1) is equivalent to (1.2). But if
(1.1) holds, then taking the subsequent decomposition of the unit e,
we get two idempotents satisfying (1.4), so the decomposition (1.2) is
given by (1.6). It is only to be shown, that (1.2) implies (1.1), or in view
of the formula (1.5), that (1.2) implies the existence of an idempotent e,
guch that

(3.1)

(2.21)

(2.2.2) for every feM.

M, = {feM: f(o) = 1}.

Note, that if @ is an idempotent, then either f(a) == 1, or f(a) = 0
for every f<M. Setting ¢, = e— ¢, we get the second idempotent, and by
(1.5) we get (1.1). So we prove the existence of ¢, such that the implica-
tion (1.2) — (3.1) holds.

Let the space M satisfy (1.2). Pusb

oy /.
llelly = max If (@] = (timy/ [}a™])".
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By 2.1 it is a submultiplicative homogeneous norm in the algebra
with unit A’ = A /rad A. The space of multiplicative linear functionals
is the same for A’ as that of A. The completion 4 of A’ in the norm |l
is a semisimple Banach algebra, and its space M satisfies (1.2). So there

exists in 4 an idempotent & such that

M, = {feM: flz;) = 1},
and
M, = {feM: f(é%) = 0}

(we use here the same symbols for elements of M treated as functionals
on A, and as those for A).
But A’ is dense in 4, so we may choose such XeA’, that

(3.2) F(X)—11<1/38 for feM,,
(3.3) FX)<1/3  for  feM,.

This holds for any element of A4’ sufficiently close to ;. The same
hold for any xeX, i. e. red. Hence

o{e) CK(0,1/3) v K(1, 1/3),'
where K (24, 7) is a disc with ecentre z, and radius r. The function
zeK(1,1/3),
2eK(0,1]3)

is analytic in K (0,1/3) u K(1,1/3), so, by 2.2, there exists an element
¢'eA such that :

1 for

2 = ‘0 for

1 for feM,,

e') =
1) ‘0 for  feM,.
Hence, by 2.1, )

e’ = ¢'mod (rad 4).

It is sufficient to apply now the following

LEMMA. Let e’ be an element of a p-normed algebra A, which is idempo-
tent modulo radical; then there ewists in A an idempotent e, which is equal,
modulo radical, to e'.

This lemma is formulated in the Rickart’s book ([3], theorem (2.3.9))
for Banaeh algebras, but its proof is also valid for p-normed algebras.
So we have proved the following

THroREM. Let A be a commuiative complex p-normed algebra with
unit e. Let TN be the compact space of its multiplicative linear functionals.
Then A may be written in the form (1.1) of direct sum of its ideals if and
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only if the space M may be written in the form (1.2) of wnion of two disjoini
closed subsets. The relations between these two decompositions are given
by (1.3), (1.5) and (1.6).

Remark. The proof given in [4] cannot be indirectly used here,
because we do mot know whether the theory of analytic funetions of
several variables known for the Banach algebras is true for the p-normed
algebras. So we pose the following problem:

P 393. Let A be a p-normed algebra, SN its multiplicative linear
funetional space. Let z,...,®,c4. The joint spectrum of the n-tuple
(@1, ..., %) I8 defined as

O(@yy ooey ) = {(f(‘ﬁl)’ ,f(:b‘,,/))e(j”':fegn} .

Let ®(2,...,%) be an analytic function of n complex variables
defined on an open subset U C C" containing the spectrum. o (o, ..., #,).
Does there exist in 4 an element y such that

7(y) = O(f(@), ..., flaw))

A similar problem may be posed also for the locally analytic opera-
tions in a p-normed algebra (for the definition ef. [2], § 13).

for every  feM?
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ON A NEW APPROACH TO CONTINUOUS METHODS
OF SUMMATION*

BY

L. WEODARSKI (LODZ)

Introduction. Tn my preceding paper [4] I gave a definition of the
continuous methods of limitation as follows:

Definition 1. A functional method of limitation A deseribed by
the sequence {a.(t)} of functions a.(t) defined in the interval t, <t < T
(T < +oo) is ealled continuous method if

(i) all funetions a,(t) are continuous in this interval t, <t < T,

(ii) there exists an increagsing sequence fy, by, ta; .-vstmy - tending
to T such that for every sequence © = {£,} the convergence of the series

Aty 2) = D a(1) &,
=0

for t = t, and ¢t = t,,,, implies uniform convergence of the series A(t, z)
in the interval t, <t <tyi1-

Definition 2. The sequence x = {&,} is called limitable by the contin-
nous method A to the number &, if

1° the series A (i, ) is convergent for #, <t < T,

2° the limit LimA(t, z) = & exists.

Definition 3. The set A* of sequences x = {£,} limitable by the
method A is called the field of the method A.

Now we shall give a new definition of & continuous method of limi-
tation:

Definition 4. A functional method of limitation A4 = {a,(!)}
(o <t < T) will be called continuous method (in a mew sense) if this
method satisfies the condition (i).

* written during my stay at Tulane University.
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