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I. In this note we adopt the definitions and notations given by
E. Marezewski in [1] and [2]. Our purpose is to prove two theorems about
independent elements in finite algebras without algebraic constants.
Let (4; F) be an algebra, i. ¢. a set A of elements and a class F of funda-
mental operations consisting of A-valued functions of several variables
running over A. If 4 = {a,b,...} and F = {f,g,...}, we shall some-
times write (4; f,g,...) or {(a,b,...;f,¢,...) instead of (4; F). We de-
note by A™ (n =1, 2, ...) the class of all algebraic operations of n varia-
bles, i e. the smallest class of operations containing so called #rivial
operations

e}c“)(ml,:z:g,...,wn)zmk (k=1,2,...,n),

and closed under the composition with the fundamental operations.
The values of constant algebraic operations are called algebraic constants.
If all algebraic operations ave trivial, then the algebra is called trivial.

Following Marczewski, we say that elements a,,a,,...,a, of A4
are independent if Jor any f,geA™ the equation

f(a'lv Oy oony ly) = glay, as, ceey On)

implies the identity of f and ¢ in A. Henceforth, sets of independent ele-
ments will be called briefly independent sets.
" TEBOREM 1. Let n and m be indegers satisfying the inequalities n >m,
n >3 and let (4; F) be a finite algebra without algebraie constants contwin-
ing at least n-+m elements. Suppose that there exists an m-element subset
M of A such that each n-element subset of ANM is independent. Then each
n-element subset of A is independent.

First of all we shall show by counter-examples that all agsumptions
of this theorem are essential.

1. Let N be the set of all non-negative integers and et f, be
& one-to-one mapping of all ordered =-tuples 4,,4,,...,4, of different
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positive integers into the set of positive integers satisfying the condition

Folirs Tay eoey ) > (s =1,2,...,m).

For instance, as & mapping f, we can take the mapping
Jolty B2y ooy ) =P§‘P§"’---P2”a
where py, P, ..., Pn a6 primes. We extend the mapping f, over all n-tu-
ples of non-negative integers by setting f,(4;, 4, ..., %,) = ¢; in all remain-
ing cases Consider the algebra (N; fo). Since fy 5= ¢{" and f,(0, 4y, ..., in)
=0 =¢™ (0, 6y, ..., 4,), wo infer that all n-element subsets of N contain-
ing 0 are dependent. From the following Lemma it follows that the

algebra in question contains no algebraic constant (formula (1)) and that
every n-element seb of positive integers is independent (formula (2)).

LeMMA. If f is a non-trivial algebraic operation of n variables in (N; fo),
then for any system iy, iy, ..., i, of different positive integers, the inequality

M Jli1y Gy oees

holds. Moreover, if ¢ and b are different algebraic operations of m variables
in (N;fo), then for any system 4y, iy, ..., 4, of different positive integers
the inequality
(2) 9(7:119::;:-":
holds.

Proof. The class N™ of all algebraic operations of # variables in

(N; fo) is the union N™ — U N, where the classes N are defined recur-

W) >0, (8=1,2,...,m)

Gn) 7= (3], Gay ..y )

sively as follows
NE = (&M, ef™, ..., e},

I(cf-;?l = Ngcn)\—' {fo(fnfm '-~7fn):f;'5 I(an)’j =1727 :”’} (k = 0’17'“)

(see [2], D. 47). Let f, g, and b belong to N{™. We shall prove the Lemma
by induction with respect to k. If & = 0 or 1, then our assertion is a direct
consequence of the definition of the mapping f,. Suppose now that the
Lemma is true for all operations from N, where k > 0. For any opera-

tion f from N\ N{ there exist operations fi, fy, ..., fn, belonging to
'N{™, sueh that i
(3) fzfo(flafzv-“;fn)-

Sinee f¢N{™, all operations fi, fa, ..., s are different and at least
one of them, say f;, is non-trivial. Hence it follows that all numbers
Filby fag eevyin)y Falhyfay ooy n)y ooy Fulfny 2y ooy ia) B0 different and
Jilty day iy 4) >4 (8 =1,2,...,7), whenever 4,,4,..., %, are differ-
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ent positive integers. Consequently, by (3) and by the definition of the
mapping f, we have the inequality

FICTRCIRTS

Thus formula (1) holds for all non-trivial operations in N,‘c+1 By
induective assumption and formula (1) it suffices to prove (2) for non-triv-
ial operations g and % from N{%,. Therefore we may assume that g =
= fo(g1s G2y -5 gu) and k= fy(hy, hyy..., h,), where the operations
i3 G2y +evy Gny Bay By ooy By belong to N, all the operations gy, gz, ..., gn
are different, and all the operations &, ks, ..., &, are different. Moreover,
since g # h, there exists an index # (1 <r << n) such that

(4) Gr # D

Given a system 4;,4,, ...,

77:11,) >fj‘(il77;27 "‘7'7;n) >(i8 (8 =1’2,...,9’b).

4, of different positive integers, we put

<@ PRI ] - . - -
us::ga('l’lj'z‘l""?'l'n), vﬂ:hs(lbl?'bﬂ7“'71’ﬂ) (821’27"'7”)‘

By inductive assumption u,, %,,..., %, are different positive inte-
gers and vy, ¥y, ..., v, are different positive integers. Moreover, by (4),
%y 7 ¥,. Thus, by the definition of the mapping f,, we have the inequality
y Un) F Jo(Dyy Doy ooy Un) = h(i;) oy eoey Bn)y

G0, By ooy i) = fo(%s; Yo, ..

which completes the proof.

The algebra (N; f,) shows that the assumption of finiteness of the
algebra in Theorem 1 is essential.

8. Swierczkowski proved in [6] thab if n >3 cmd all n-element sub-
sets of & finite algebra are independent, then oll algebraic operations of n
variables are trivial. We note that in the subalgebra (1,2,...;f,) all
n-clement subsets are independent. However, f, is a non-trivial operation
of n variables. Thus the assumption of finiteness of the algebra in Swiercz-
kowski’s Theorem is also essential.

2. Let A be an arbitrary set containing at least four elements. For
a fixed element 4, in A we define two symmetric operations f, and f,
of two and three variables respectively by means of the formulas f,(z, )=
= @, fi(®, y) = & if » and y are different; fo(z, y, 2) = @, f,(,¥,2) = aq
if #,y and 2 are different. Consider the algebras (4;f;) and (4;f,). It
is very easy to verify that f; is the only non-trivial algebraic operation
of two variables in (4; f;) and f, is the only non-trivial algebraic operation
of three variables in (4;f,). Hence it follows that all two-element sub-
sets of A which do not contain a, are independent in (4 ; f,) and all three-
-element subsets of 4 which do not contain a, are independent in (4 ; f,).
On the other hand, for elements a, different from a, and elements ao®
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different from a, and «; we have the equations fi(ag, @) = oy =
eNay, ay), Folty, Gy @) = & = e (ay, ay, @), which show that all pairs
of elements of A containing a, are dependent in (4;f;) and all triplets
of elements of A containing @, are dependent in (4, f,). Thus the assump-
tion # > 3 in Theorem 1 is essential.

3. Consider a 2n-element set {ay, ty, ..., Gy, D1y by ovy by} Pub
fla;) = by and f(by) =b (j=1,2,...,n). Of course, the elements «;, a,,
..., @, are independent and the elements by, byy - ..y by, ave dependent in
the algebra (ay, da,y ..., Gny b1y byy ooy by; f). Thus the assumption n > m
in Theorem 1 is also essential.

4, Let A be an arbitrary set containing at least n--1 elements.
For a fixed element ¢ in A we define a constant operation ¢(z) = ¢ (wed).
Obviously, every n-element subset of A which does not contain the elem-
ent ¢ is independent, and every subset of A containing ¢ is dependent
in the algebra (A4;c). Thus the assumption that there is no algebraic
constant in the algebra is essential.

From Theorem 1 we obtain some simple corollaries. In [5] a suffi-
cient condition is given for a hereditary class of subsets to be a clasy
of independent sets in an algebra. As a direct consequence of Theorem 1
we obtain examples of hereditary classes of subsets of a finite set which
are not classes of independent sets in any algebra.

COROLLARY 1. Let n and m De initegers satisfying the incqualities
n>m,n >3 and let A be a finite set containing ot least n—+m elements.
Further, let M be .an m-element subset of A. No hereditary class of subsets
of A containing all one-point seis and all n-element subsets of AN M- which
does mnot contain all n-element subsets of A can be a class of independent
sets in any algebra over A.

COROLLARY 2. If an algebra without algebraic constants and with an
n-element basis has less than 2n elements, where n >3, then it is trivial.

Indeed, taking as the set M in Theorem 1 the complement of the
Dasis; we infer that all n-element subsets of the algebra are independent.
Thus, by Theorem 1 in [3], p. 749, each n-element subset is a basis of the

whole algebra. Consequently, by Theorem 2 in [4], p. 94, the algebra in

question is trivial

‘We have seen that the assuwmption n >3 in Theorem 1 is esgential.
For n = 2 or 83 we obtain the same result under an additional assumption.

THEOREM 2. Let # =2 or 3, n >m, and let (A; F) be a finite alge-
bra without algebraic constants containing at least n-+m elements. Suppose
that there exists an m-element subset M of A such that every n-element sub-
set of ANM 48 independent. Moreover, suppose that M is contained in an
n-element independent set. Then every n-element subset of A is independent.
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II. Before proving the Theorems we shall prove some Lemmas.
By [ay, @y, ..., a,] we shall denote henceforth the subalgebra generated
by elements @, tq, ..., a,.

Lemata 1. Let n and m be integers sotisfying the inequalities n =i,
n >1 and let (d; F) be an algebra without algebraic constanis containing
at least n-t-m elements. Suppose that there exvists an m-element subset M
of 4 such that every n-element subset of ANM is independeni. Then all
operations from APV are trivial.

Proof. Contrary to this let us suppose that there exists a non-tri-
vial algebraic operation f of s variables depending on every variable, where
1 <s<n—1. Let a,,a,,...,a, be an arbitrary system of different
elements of AN M. By assumption, the elements a,, 4y, ..., ¢, are inde-
pendent. Since the operation f is non-trivial, we have the inequality

flayy @, ooy tg) #a; (j=1,2,...,8). Thus the s--1l-element set
{flay, @y, ..., @), &y, ta, ..., a,} is dependent. But this is possible only
when
(3) f(aia“2’~-~ya's)f M.

Now we define auxiliary algebraic operations fy,fs, ..., . of n
variables: :

F@yy B0y onvy Bogg) if 1<j<s<ntl—s,

(6) fj(mly Loy oevy J;n) = f(wfi L1y ooey Ly Byy By -ony mé!+]'—n—1)

if ndl—s<j<n.

Of course, all the operations f,,fs,...,f, are different. For any
system by, by, ..., b, of different elements of AN\ M we have, by (5) and
(6), the relation f;(by, by, ..., by)e M (§ =1,2,...,n). Since the set M
has less than n elements, there exists a pair p, ¢ of different indices such
that fp(by, by, «.vy by) == fo(by, by, ..., by). But this contradicts the inde-
pendence of by, by, ..., b,. The Lemma is thus proved.

LuMMa 2. Let (A; F) be an algebra for which all operations from A®~Y
are trivial and n >3. Then for any operation f from A™ there ewists an
index & (L <k < n) such that

J(@r; @y ooy 0,) = f‘;cn)(mu Doy ooy Tn)

whenever at least two elements among By, Ly, ..., o, ore equal.

Proof. Replacing u; by »; in f(2,, @,, ..., ©,), Where 4 == j, we obtain
an operation of m—1 variables which, by assumption, is trivial. Thus
there exists an index 7(4, j) (1 <r(¢,j) < n») such that

(7)

f(mls Lyy ooy By_y,y Byy m:H—lv seey mn.) = eg("i),a')(wlv'”zy (R mn)
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and, of course, r(¢,Jj) # j. We note first that the equations r(1,2) =1
and 7(3,4) = 3 never hold simultaneously. Indeed, by (7) they would
imply the equations

1 g3 n 0. . N, . ] —_—
Fl@y, @y 5y @y, ooy @) = "9(‘(1),‘.’.) (@yy dory Byy By g o ovy Bp) = Wy,
1 73 n 1, 21 €, " o — .
Fl@y, @y, 203,25, ...y 2,) = L£(3),4)(a'1ﬂ Wy Bigy Wy, ey ) = Ly,

which gives a contradiction. Thus there exists a pair p, g (p # ¢) of
indices for which »(p, g) = p. Put k& = »(p, ¢). According to (7) to prove
the Lemma it ig sufficient to show that

(8) (e, f) =%k i j#k

Suppose that j # k. Replacing the p-th and the ¢-th variable in
(7) by #; and taking into account the inequality % +p, q,j, we infer
that the left-hand side of (7) is equal to e{®(z;, @,, ..., #,) and the right-
hand side of (7) is equal to

( ; P
3r(i2]')(w17 Doy eevy Bpoys By Bpy1y o9 Bgo1s Bfy Bgyts oons )y

which, by simple reasoning, leads to formula (8). The Lemma is thus
proved.

Proot of Theorem 1. We shall prove the theorem by induction
with respect to m. For m = 0 the theorem is obvious. Suppose that
m > 0. First consider the cagse when AN\ M contains » elements a;, ay, ..., ¢y,
such that M\ [a, t5,...,a,] #0. The set M, = M~ [ay, Gs,y ..., 0]
contains less than m elements. Moreover, the set [ay,as,..., 6,]\ M,
contains at least » elements, all its n-element subsets are independent,
in 4 and, consequently, in [a,, 4, ..., @,]. Of course, the algebra [a,, a,,
...y @] contains no algebraic constants. Thus, by inductive agsumption,
all n-element subsets of [a,, a,,..., a,] are independent in the algebra
[ay, @, ...,8,] and, consequently, by Swierezkowski’s theorem [6],
all algebraic operations of n variables are trivial on [a,, as, ..., a,]-
Hence, by independence of a,,a,, ..., a, in 4, it follows that all oper-
ations from A™ are trivial and, consequently, all n-element subsets
of A are independent.

Now suppose that for every n-tuple a, ay,...,a, of different ele-
ments of AN\ M the inclusion

(9) M < [ay, toy ..., O]

holds. First we shall prove that every n-element subset of 4 containing
exactly one element of M is independent. Contrary to this let us suppose
that there exists a dependent n-element set {ay, a,, ..., @,_,}, Where
Gge M ond @y, Gy, ..., @1 AN M. Let a, be an element of AN M different
from ay, @y, ..., 4,_,;. Obviously, the elements a,,ay, ..., a, are inde-
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pendent and, by (9), there exists a non-trivial operation f in A™ such
that f(ay, @gy ..., 4,) = ay. Since a,,a;,...,a, are independent and
flon, @y o5 @n), Gy, @y, ..., @,y dependent, for any permutation a;, a;,,
.oy @, of elements ay, @y, ..., a,, by Marczewski’s Theorem (i) in [2],
p. 60, the elements f(a;,, a;,, ..., 65,) s @i @4y, - -5 G, _, are also dependent.
But this is possible only when f(a; , @y, ..., @;, ) e M for any permutation
of elements a,, 0y, ..., a,. Since the set I contains less than =n
elements, there exist an element c¢e A and a family # containing at
least (n—1)!4-1 permutations iy, 4, ..., 4, such that fa;, ai, ..., a,) =¢
whenever 4,4y, ..., 14, belongs to #. Hence, by the independence of
Gy, Gy ... Gy, for all z,2,,...,2,eA we obtain the equations

(10) Ty @iy oes i) = F(By, Bgpy -0y @5,)
whenever 4y, 4y, ..., 4, and ji, js, .-, jo belong to £. Of course, we may
assume that # forms a group of permutations. Thus the identity per-
mutation belongs to #. By Lemmas 1 and 2 there exists an index k
(1 <% < n) such that

F(@r, @y o0y ) = e (1, @y .- -, a";)

whenever at least two elements among @, %, ..., %, are equal. Thus,
by (10),
) , N ()
e;c )(wilz mig? L] ‘7'1',,,) = e%)(mu Loy eees mnv)

whenever 4,4, ..., 4, belongs to 4 and at least two elements among
&y, Ly, - - -y T, aTe equal. In other words, all permutations from . preserve
the %-th index. Thus .# contains at most (n—1)! permutations, which
gives a contradiction. Thus every n-element subset of A containing exactly
one element of M is independent. Therefore, setting M, = M\{ao},
where a, is an element of M, we have the independence of each n-element
subset of AN M,. Hence, by inductive assumption, all n-element subsets
of A are independent, which completes the proof of Theorem 1.

LEMMA 3. Let n > 1 and let (A; F) be an algebra containing a finite
subalgebra (B; F) in which all n-clement subsets are independent. If there
exists an n-clement subset of B independent in (A; F), then all n-element
subsets of A are independent.

Proof. Conftrary to this let us suppose that there exists a depen-
dent n-element set {a;, @, ..., 4y} in 4. Consequently, there are different
operations f and ¢ in A™ such that
(11) Flayy gy oeny @) = g(a1, Gay oevy ).

Of course, without loss of generality, we may assume that the fol-
lowing inequalities hold:

(12) fte®™, g (k=1,2,...,2—2).
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Let by, by, ..., b, be an n-tuple of elements of B which is indepen-
dent in the algebra (4; F). By assumption, the subalgebra [b;, b, ..., b,]
is finite and each of its n-element subsets is independent. Thus, by (12),
the n-element set {by, by, «vy Bysy F(B1y bay ooy By)y G(Byy Doy «ory by)} 8
independent and, by Theorem 1in [3], p. 749, is & basis of [by, b,, ..., b,].
Consequently, there .exist operations h, and h, in A™ such that

y Oy f(byy by oy By)y g(b1y Bay oy bn)) = Byt
:bn-wf(blybzy ) bn)) = By

Falb, b, ...
h2(b], by ... 5 00)5 g(bys by ..

Since by, by, ..
ments by, b, ..

., b, are independent in the algebra (4; FF), the ele-
., b, in the last equations can be replaced by the elements

Gyy Goy .., G,. Hence and from (11) we get the equations
(13) hl(ah Agy oeny “n—mf(al: oy «ves a’n):f(“l} Qay oy a’n)) =y s
(14) h’z(aly Agy ovoy a’n—-?.!f(aly Ayy eony a’n)’f(“l? oy -vey a’n)) = .

By Lemma 1 all operations of n—1 variables are trivial in the alge-
bra [by, by, ..., b,] and, consequently, by independence of b, b,, ..., b,
in (4; F), are trivial on 4. Thus, by (13) and (14),

Uy 1y a’nf{als (CYRERE) “n-zy.f(“u Ugy ooy Up)hy

which is impossible, because a;, a,, ..
thus proved.

An operation feA™ is said to be alternating it for every system
Ty, Byy ..., &, of elements of A the equation

.y @, are different. The Lemma ix

f(xly Dy ney y) sf(wn’ By oevy Buoy)
holds.
LeMmA 4. Let f be an alternating operation of three variables in an

algebra (A5 F). Then for every triplet a,, ay, a5 of independent elements
of A the relation

fla, @y, flay, gy, aa))¢{“1: @}
holds.
Proof. Let us assume that flay, ay, f(ay, @, as)) = @;, where j == 1

or 2. Hence, by independence of a,, a, and a;, for all elements w, z,
and @, in A we get the equation

(15) Flaer, @y, ), 2, 105)) = .

Thus f(x,, ®,, 2,) = f(ml, By, fla, @a, flwy, @, :1:3))) = ;. Sinee the
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operation f is alternating, the last equation implies that f(x,y,x) =
=f(y, %, %) = f(x,2,y) = «. Hence and from (15) it follows that
‘”:f(ya'r’:‘u):'f(yamvf(?/’m5“’)):.'/ it j=1

and
.1‘:'~—~f($,y,$) =f($,’l,f($,_l/,.ﬂ))=}] if j:zy

which gives a contradiction.

Proof of Theorem 2. Let us suppose that there exists an n-element
gubset {a;, @y, ..., a,} of ANM for which M ~ [a,, as, ..., a,] = 0. Thus,
by assumption, all n-element subsets of [ay, a4, ..., @,] are independent
in the algebra (A4; F). Hence and from Lemma 3 it follows that every
n-element subset of A is independent.

Now let us assume that for every n-element subset {a,, ¢a, ..., Gy}
of AN M the relation
(16)

M A [y, Gy ..., a,] =0

holds.

Yirst we consider the case when M is a one-point set {¢}. We have
to prove that every n-element subset of A containing ¢ is independent.
Contrary to this let us suppose that there exists a dependent n-element
set {e, by, byy ..., by_1}, where, of course, by, by, ..., b,_, belong to AN M.
Given an arbitrary element b,, different from by, b, ..., b, _;, there exists,
by (16), an operation feA™ such that f(by, by, ..., b,) = ¢. OFf course,
the operation f is non-trivial. Moreover, from the independence of b,, b,,
..., b, and the dependence of f(by, by, ..., by), b1y bay «-vy by_y We obtain,
by Theorem (ii) in [2], p. 60, the dependence of elements f(a;, ¢, ..., @),
@, Ggy ooy Gy fOr any system a,, @, ..., a, of elements of ANM. On
account of the independence of each n-element subset of AN\ M this is
possible only when f(ay, dy, ..., a,)e M. Thus f(a,, a,, ..., @,) = ¢ and,
eonsequently, for any system a;, @, ..., @,.; of elements of ANM the
set {¢, a;, @y, ..., @y} is dependent. In other words, every n-element
subset of A containing M is dependent, which contradicts the assumption
of the Theorem. Consequently, for one-point sets M the Theorem is
proved.

Now suppose that M is a two-element set {e,, ¢;} and, of course,
that relation (16) holds. In this case we have n = 3. By the assumption
there exists an element a,e AN M such that ¢, ¢., a, are independent.

“ Let a,, a; be a pair of elements of AN M different from a,. Without loss

of generality, in virtue of (16), we may assume that

(17) eyelay, ayy a4].
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First we shall prove that every three-element subset of [a), a,, a5]
which does not contain the element ¢, is independent. Contrary to this
let us suppose that there exists a pair by, b, of elements of [a,, @, a;]\ M
such that ey, by, b, are dependent. Of course, we can choose an element,
by in [ay, ¢y, as N\ M different from b, and d,. Since by, b,, b are indepen-
dent and the subalgebra [a;, @, a;] is generated by three elements, we
have, by Theorem 1 in [3], p. 749, the equation [by, by, U] = [a, @y, a;].
Hence and from (17) it follows that there exists an operation fed® yuch
that

(18) Sbyy by bg) = ;.

It is clear that the operation f is non-trivial. Moreover, we shall
prove that it is alternating. We know that the elements f(b,, by, bs),
by, b, ave dependent and the elements b, b,, b; are independent. Thus,
by Theorem (ii) in [2], p. 60, for any triplet u;, u,, u; of different ele-
ments of ANM the elements f(uy, 4y, us), 4;, 4y aTe also dependent. By
the independence of all three-element subsets of AN M this is possible only
when

(19) Fluzy gy tg)e M.
Hence, in particular, we obtain the relation S(bi, sy by)e M for
every permutation 4,, 4,, 4, of indices 1,2,3. Since M consists of two

elements, there exist three permutations py, ps, ps, @1, e, g5 a0 Ty Tay Py
for which the equation

f(bpli bpz: b'pa) = f(bql: qu’ bq3) = f(brlr br2: brs)
holds. Hence, by the independence of by, by, by, for all elements By, By
and #; in A we get the equation
f(mpu Tpyy "1":4)3) zf(a:qu Ty “"93) ":f(wrl; By y Bpy) -

Let # be the group of permutations of variables @y, 8y, @3 under
which the operation f is invariant. We have proved that . contains at
least three permutations. Thus, .# is either the alternating group 7,
or the symmetric group ;. In both cases we obtain the equation

F@yy g, 03) = f(ws, @, , @3) = [y, %, @),

which shows that the operation f is alternating.

From (19) it follows that there exists an index 4 (i == 1 or 2) such
that

(20) flay, ay, az) = ¢;.
Now we shall prove that
(21) f(ay, a5, ¢;) = 0.

iom®
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Since the operation f is alternating, we have, by (20) and Lemma 4,
flay, sy ¢)¢{ay, ax}. Thus the relation f(a,, as, ¢;)e ANM would imply
the independence of f(a,, as,¢;), a;, @, and, consequently, by Theorem
(ii) in [2], p- 60, the independence of f(b,, b,, b3), by, b, which, by (18),
contradicts the assumption of dependence of e, b, b,. Consequently,
flay, ay, ¢;)e M. Suppose that f(a,, a.,¢;) = ¢;, where j i and, con-
sequently, {e;, ¢;} = {61, 6z}. Sinee the operation f is alternating, we
have then the equation f(e;, a1, a;) = ¢;. Thus the set {f(e;, a1, @), ¢;, a1}
being equal to {¢, ¢, a;} is independent, which, by Theorem (ii) in [2],
p. 60, implies the independence of f(by, bs, bs), by, b,. Bub, according
to (18), this confradicts the assumption of the dependence of ey, by, b,
which ecompletes the proof of (21).

From (20) and (21), in view of the independence of «,, a, and a,,
we get the equation
(22) f(wl, Ly, f(#y, @y, 7’3)) = f(@y, B2, Ts)
for all @, x, and @, in 4. Since the elements ¢, ¢, 4; are independent
and the operation f is non-trivial, we have the inequality f(a,. ¢, €,)
% Ay, Gy Cy. Set

(23) dy = f(ay, ¢1, 03).

Further, since the operation f is alternating, we have, by (22) and (23),
the squation

(24) Slesy ay, dy) :f(023 ay, fay, e, 6)} =f(02, ay, fesy s ”'x))
= fles; a1, €1) = flay, ¢, €2) = d.

Let us take an element d, in AN M, different from a; and d,. Since
all three elements a,, d, and d, belong to AN\ M, we have, by (19),

(25) fla,, dy,doye M and f(dy. ay, dy)e M.
If
(26) f(aly d]a d?) == O,
then, by (22) and (23), we get the squation
f(cls ”’17f(a17 Gy (’2)) = f(cla ay, dl) :‘f(“ls d]a ¢)
*':f(“u a4y, f(ay, dy, dz)) = flay, dy, do) = 0;.
Hence, by the independence of ¢, ¢,,a;, we get the equation
(27) f(ml’ @y f(@a, 1, Ws)) =
for all #,, @,, #3¢ A. In particular, we have the equation

f(“la dy, f(dy, ay, d2)) = .
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On the other hand, by Lemma 4,
Flaw, &y flay, &y, ) # @
Thus, f(ay, di, ds) # f(ds, @1, ds), which, according to (25) and (26),

implies the equation f(d, a;, d;) = ¢,. Since the operation f is alternating,
the last equation and (27) imply

fley, ay, &) = flay, &, ) :f(""u dyy fldyy ar, dz)) = by,
which contradicts (24).
Now consider the case f(ay, dy, dy) = ¢;. Since the operation f is
alternating, we bhave, by (22), the equation

Fles yy dy) = flag, dyy ¢5) "“’f(a'n dy, fay, dy, dz)) == flay, dyy da) == ¢y,

which also contradiets (24). This completes the proof of the independence
of each three-element subset of [a,, ., ¢;] which does not contain the
element ¢,. Since @y, @, a; are independent in the algebra (4;F), to
prove the Theorem it is sufficient, by Lemma 3, to show that all three-
element subsets of [a,, @y, a5] arve independent in the algebra [a,, ay, as].
If o,¢[ay, ay, as], then it is obvious. Further, if ¢,e[a,, ay,a3], then
every three-element subset of [a,, @,, 3] which does not contain ¢, is
independent. Moreover, the set {¢,, ¢,, a,} containing ¢, is independent
and, by (17), is contained in [a,, a,, a3]. Thus, by the first part of the
proof (n = 3, m = 1), every three-element subset of [a,, as, a,] 15 inde-
pendent, which completes the proof of Theorem 2.
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ON FREE PRODUCIN
OF m-DISTRIBUTIVE BOOLEAN ALGEBRAN
BY

R. SIKORSKI ann T. TRACZY K (WARBAW)

1. Introduction. Let m be an arbitrary cardinal number and {Uelser
be an indexed set of non-degenerate m-complete Boolean algebras. An
m-complete Boolean algebra B is said to be a mintmal m-product of
{2} if there exist m-isomorphisms

b U—B (L)

such that
(a) the union of all the subalgebras 4,(2;) m-generates B,
(b) the subalgebras 4,(2;), teT', are m-independent in B,
(¢) the set of all meets of the form

mtsﬂ"iﬁ(Af)

is dense in B.

Christensen and Pierce [1] proved the existence of the minimal
m-produet of any indexed set of non-degenerate m-complete Boolean
algebras (for m = ¥, see also Sikorski [3]). They proved also that

1.1. The minimal m-product of w-complete m-distributive Boolean
algebras is a free w-distributive product of these algebras.

We recall that an m-complete m-distributive Boolean algebra B3
is said to be a free m-distributive product of an indexed set {2 }er OF
m-complete m-distributive Boolean algebras if there exist isomorphisms

where A;e,., I"<cT,T <m

’I;tZ)Z[l "“7% (t(T)
such that

(«) the union of all the subalgebras 4,(2;) m-generates B,

(B) if, for every teT, ks is & homomeorphism of 4;(2,) into any m-com-
plete m-distributive Boolean algebra @, then there is & homomorphism
% of B into C which is a common extension of all the homomorphisms

By, 1. B(A) = h(A) for Aei®) (of. Sikorski [3], p. 214).
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