

COLLOQUIUM MATHEMATICUM

VOL. XI

1963

FASC. 1

REMARKS ON INDEPENDENCE IN FINITE ALGEBRAS

BY

K. URBANIK (WROCŁAW)

I. In this note we adopt the definitions and notations given by E. Marczewski in [1] and [2]. Our purpose is to prove two theorems about independent elements in finite algebras without algebraic constants. Let (A; F) be an algebra, i. e. a set A of elements and a class F of fundamental operations consisting of A-valued functions of several variables running over A. If $A = \{a, b, \ldots\}$ and $F = \{f, g, \ldots\}$, we shall sometimes write $(A; f, g, \ldots)$ or $(a, b, \ldots; f, g, \ldots)$ instead of (A; F). We denote by $A^{(n)}$ $(n = 1, 2, \ldots)$ the class of all algebraic operations of n variables, i.e. the smallest class of operations containing so called trivial operations

$$e_k^{(n)}(x_1, x_2, \ldots, x_n) = x_k \quad (k = 1, 2, \ldots, n),$$

and closed under the composition with the fundamental operations. The values of constant algebraic operations are called *algebraic constants*. If all algebraic operations are trivial, then the algebra is called *trivial*.

Following Marczewski, we say that elements $a_1, a_2, ..., a_n$ of A are independent if for any $f, g \in A^{(n)}$ the equation

$$f(a_1, a_2, \ldots, a_n) = g(a_1, a_2, \ldots, a_n)$$

implies the identity of f and g in A. Henceforth, sets of independent elements will be called briefly independent sets.

THEOREM 1. Let n and m be integers satisfying the inequalities n > m, n > 3 and let (A; F) be a finite algebra without algebraic constants containing at least n+m elements. Suppose that there exists an m-element subset M of A such that each n-element subset of $A \setminus M$ is independent. Then each n-element subset of A is independent.

First of all we shall show by counter-examples that all assumptions of this theorem are essential.

1. Let N be the set of all non-negative integers and let f_0 be a one-to-one mapping of all ordered n-tuples i_1, i_2, \ldots, i_n of different Colloquium Mathematicum XI

PRINTED IN POLAND

WROCLAWSKA DRUKARNIA NAUKOWA

1

positive integers into the set of positive integers satisfying the condition

$$f_0(i_1, i_2, ..., i_n) > i_s$$
 $(s = 1, 2, ..., n).$

For instance, as a mapping f_0 we can take the mapping

$$f_0(i_1, i_2, \ldots, i_n) = p_1^{i_1} p_2^{i_2} \ldots p_n^{i_n},$$

where p_1, p_2, \ldots, p_n are primes. We extend the mapping f_0 over all n-tuples of non-negative integers by setting $f_0(i_1, i_2, \ldots, i_n) = i_1$ in all remaining cases. Consider the algebra $(N; f_0)$. Since $f_0 \neq e_1^{(n)}$ and $f_0(0, i_2, \ldots, i_n) = 0 = e_1^{(n)}(0, i_2, \ldots, i_n)$, we infer that all n-element subsets of N containing 0 are dependent. From the following Lemma it follows that the algebra in question contains no algebraic constant (formula (1)) and that every n-element set of positive integers is independent (formula (2)).

LEMMA. If f is a non-trivial algebraic operation of n variables in $(N; f_0)$, then for any system i_1, i_2, \ldots, i_n , of different positive integers, the inequality

(1)
$$f(i_1, i_2, ..., i_n) > i_s$$
 $(s = 1, 2, ..., n)$

holds. Moreover, if g and h are different algebraic operations of n variables in $(N; f_0)$, then for any system i_1, i_2, \ldots, i_n of different positive integers the inequality

(2)
$$g(i_1, i_2, \ldots, i_n) \neq h(i_1, i_2, \ldots, i_n)$$

holds.

Proof. The class $N^{(n)}$ of all algebraic operations of n variables in $(N; f_0)$ is the union $N^{(n)} = \bigcup_{k=0}^{\infty} N_k^{(n)}$, where the classes $N_k^{(n)}$ are defined recursively as follows

$$N_0^{(n)} = \{e_1^{(n)}, e_2^{(n)}, \dots, e_n^{(n)}\},\$$

$$N_{k+1}^{(n)} = N_k^{(n)} \cup \{f_0(f_1, f_2, \dots, f_n): f_i \in N_k^{(n)}, j = 1, 2, \dots, n\}$$
 $(k = 0, 1, \dots)$

(see [2], p. 47). Let f, g, and h belong to $N_k^{(n)}$. We shall prove the Lemma by induction with respect to k. If k=0 or 1, then our assertion is a direct consequence of the definition of the mapping f_0 . Suppose now that the Lemma is true for all operations from $N_k^{(n)}$, where k>0. For any operation f from $N_{k+1}^{(n)} \setminus N_k^{(n)}$ there exist operations f_1, f_2, \ldots, f_n , belonging to $N_k^{(n)}$, such that

(3)
$$f = f_0(f_1, f_2, \dots, f_n).$$

Since $f \notin N_k^{(n)}$, all operations f_1, f_2, \ldots, f_n are different and at least one of them, say f_j , is non-trivial. Hence it follows that all numbers $f_1(i_1, i_2, \ldots, i_n)$, $f_2(i_1, i_2, \ldots, i_n)$, $\ldots, f_n(i_1, i_2, \ldots, i_n)$ are different and $f_j(i_1, i_2, \ldots, i_n) > i_s$ $(s = 1, 2, \ldots, n)$, whenever i_1, i_2, \ldots, i_n are different and

ent positive integers. Consequently, by (3) and by the definition of the mapping f_0 we have the inequality

$$f(i_1, i_2, \ldots, i_n) > f_i(i_1, i_2, \ldots, i_n) > i_s$$
 $(s = 1, 2, \ldots, n)$.

Thus formula (1) holds for all non-trivial operations in $N_{k+1}^{(n)}$. By inductive assumption and formula (1) it suffices to prove (2) for non-trivial operations g and h from $N_{k+1}^{(n)}$. Therefore we may assume that $g = f_0(g_1, g_2, \ldots, g_n)$ and $h = f_0(h_1, h_2, \ldots, h_n)$, where the operations $g_1, g_2, \ldots, g_n, h_1, h_2, \ldots, h_n$ belong to $N_k^{(n)}$, all the operations g_1, g_2, \ldots, g_n are different, and all the operations h_1, h_2, \ldots, h_n are different. Moreover, since $g \neq h$, there exists an index r $(1 \leq r \leq n)$ such that

$$(4) g_r \neq h_r.$$

Given a system i_1, i_2, \ldots, i_n of different positive integers, we put

$$u_s^2 = g_s(i_1^3, i_2^3, \ldots, i_n), \quad v_s = h_s(i_1, i_2, \ldots, i_n) \quad (s = 1, 2, \ldots, n).$$

By inductive assumption $u_1, u_2, ..., u_n$ are different positive integers and $v_1, v_2, ..., v_n$ are different positive integers. Moreover, by (4), $u_r \neq v_r$. Thus, by the definition of the mapping f_0 , we have the inequality

$$g(i_1, i_2, \ldots, i_n) = f_0(u_1, u_2, \ldots, u_n) \neq f_0(v_1, v_2, \ldots, v_n) = h(i_1, i_2, \ldots, i_n),$$

which completes the proof.

The algebra $(N; f_0)$ shows that the assumption of finiteness of the algebra in Theorem 1 is essential.

S. Świerczkowski proved in [6] that if n > 3 and all n-element subsets of a finite algebra are independent, then all algebraic operations of n variables are trivial. We note that in the subalgebra $(1, 2, ...; f_0)$ all n-element subsets are independent. However, f_0 is a non-trivial operation of n variables. Thus the assumption of finiteness of the algebra in Świerczkowski's Theorem is also essential.

2. Let A be an arbitrary set containing at least four elements. For a fixed element a_0 in A we define two symmetric operations f_1 and f_2 of two and three variables respectively by means of the formulas $f_1(x, x) = x, f_1(x, y) = a_0$ if x and y are different; $f_2(x, y, x) = x, f_2(x, y, z) = a_0$ if x, y and z are different. Consider the algebras $(A; f_1)$ and $(A; f_2)$. It is very easy to verify that f_1 is the only non-trivial algebraic operation of two variables in $(A; f_1)$ and f_2 is the only non-trivial algebraic operation of three variables in $(A; f_2)$. Hence it follows that all two-element subsets of A which do not contain a_0 are independent in $(A; f_1)$ and all three-element subsets of A which do not contain a_0 are independent in $(A; f_2)$. On the other hand, for elements a_1 different from a_0 and elements a_2

different from a_0 and a_1 we have the equations $f_1(a_0, a_1) = a_0 = e_1^{(2)}(a_0, a_1)$, $f_2(a_0, a_1, a_2) = a_0 = e_1^{(3)}(a_0, a_0, a_2)$, which show that all pairs of elements of A containing a_0 are dependent in $(A; f_1)$ and all triplets of elements of A containing a_0 are dependent in (A, f_2) . Thus the assumption n > 3 in Theorem 1 is essential.

3. Consider a 2n-element set $\{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n\}$. Put $f(a_j) = b_j$ and $f(b_j) = b_j$ $(j = 1, 2, \ldots, n)$. Of course, the elements a_1, a_2, \ldots, a_n are independent and the elements b_1, b_2, \ldots, b_n are dependent in the algebra $(a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n; f)$. Thus the assumption n > m in Theorem 1 is also essential.

4. Let A be an arbitrary set containing at least n+1 elements. For a fixed element c in A we define a constant operation c(x) = c $(x \in A)$. Obviously, every n-element subset of A which does not contain the element c is independent, and every subset of A containing c is dependent in the algebra (A; c). Thus the assumption that there is no algebraic constant in the algebra is essential.

From Theorem 1 we obtain some simple corollaries. In [5] a sufficient condition is given for a hereditary class of subsets to be a class of independent sets in an algebra. As a direct consequence of Theorem 1 we obtain examples of hereditary classes of subsets of a finite set which are not classes of independent sets in any algebra.

COROLLARY 1. Let n and m be integers satisfying the inequalities n > m, n > 3 and let A be a finite set containing at least n+m elements. Further, let M be an m-element subset of A. No hereditary class of subsets of A containing all one-point sets and all n-element subsets of $A \setminus M$ which does not contain all n-element subsets of A can be a class of independent sets in any algebra over A.

Corollary 2. If an algebra without algebraic constants and with an n-element basis has less than 2n elements, where n > 3, then it is trivial.

Indeed, taking as the set M in Theorem 1 the complement of the basis, we infer that all n-element subsets of the algebra are independent. Thus, by Theorem 1 in [3], p. 749, each n-element subset is a basis of the whole algebra. Consequently, by Theorem 2 in [4], p. 94, the algebra in question is trivial.

We have seen that the assumption n > 3 in Theorem 1 is essential. For n = 2 or 3 we obtain the same result under an additional assumption.

THEOREM 2. Let n=2 or 3, n>m, and let (A; F) be a finite algebra without algebraic constants containing at least n+m elements. Suppose that there exists an m-element subset M of A such that every n-element subset of $A \setminus M$ is independent. Moreover, suppose that M is contained in an n-element independent set. Then every n-element subset of A is independent.

II. Before proving the Theorems we shall prove some Lemmas. By $[a_1, a_2, \ldots, a_n]$ we shall denote henceforth the subalgebra generated by elements a_1, a_2, \ldots, a_n .

LEMMA 1. Let n and m be integers satisfying the inequalities n > m, n > 1 and let $(A; \mathbf{F})$ be an algebra without algebraic constants containing at least n+m elements. Suppose that there exists an m-element subset M of A such that every n-element subset of $A \setminus M$ is independent. Then all operations from $A^{(n-1)}$ are trivial.

Proof. Contrary to this let us suppose that there exists a non-trivial algebraic operation f of s variables depending on every variable, where $1 \leqslant s \leqslant n-1$. Let a_1, a_2, \ldots, a_s be an arbitrary system of different elements of $A \setminus M$. By assumption, the elements a_1, a_2, \ldots, a_s are independent. Since the operation f is non-trivial, we have the inequality $f(a_1, a_2, \ldots, a_s) \neq a_j \quad (j=1,2,\ldots,s)$. Thus the s+1-element set $\{f(a_1, a_2, \ldots, a_s), a_1, a_2, \ldots, a_s\}$ is dependent. But this is possible only when

$$(5) f(a_1, a_2, \ldots, a_s) \in M.$$

Now we define auxiliary algebraic operations f_1, f_2, \ldots, f_n of n variables:

(6)
$$f_j(x_1, x_2, ..., x_n) = \begin{cases} f(x_j, x_{j+1}, ..., x_{s+j-1}) & \text{if} \quad 1 \leqslant j \leqslant n+1-s, \\ f(x_j, x_{j+1}, ..., x_n, x_1, x_2, ..., x_{s+j-n-1}) & \text{if} \quad n+1-s < j \leqslant n. \end{cases}$$

Of course, all the operations f_1, f_2, \ldots, f_n are different. For any system b_1, b_2, \ldots, b_n of different elements of $A \setminus M$ we have, by (5) and (6), the relation $f_j(b_1, b_2, \ldots, b_n) \in M$ $(j = 1, 2, \ldots, n)$. Since the set M has less than n elements, there exists a pair p, q of different indices such that $f_p(b_1, b_2, \ldots, b_n) = f_q(b_1, b_2, \ldots, b_n)$. But this contradicts the independence of b_1, b_2, \ldots, b_n . The Lemma is thus proved.

LEMMA 2. Let $(A; \mathbf{F})$ be an algebra for which all operations from $\mathbf{A}^{(n-1)}$ are trivial and n > 3. Then for any operation f from $\mathbf{A}^{(n)}$ there exists an index k $(1 \le k \le n)$ such that

$$f(x_1, x_2, \ldots, x_n) = e_k^{(n)}(x_1, x_2, \ldots, x_n)$$

whenever at least two elements among x_1, x_2, \ldots, x_n are equal.

Proof. Replacing x_i by x_i in $f(x_1, x_2, ..., x_n)$, where $i \neq j$, we obtain an operation of n-1 variables which, by assumption, is trivial. Thus there exists an index r(i,j) $(1 \leq r(i,j) \leq n)$ such that

$$f(x_1, x_2, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n) = e_{r(i,j)}^{(n)}(x_1, x_2, \ldots, x_n)$$

and, of course, $r(i,j) \neq j$. We note first that the equations r(1,2) = 1 and r(3,4) = 3 never hold simultaneously. Indeed, by (7) they would imply the equations

$$f(x_1, x_1, x_3, x_3, \ldots, x_n) = e_{r(1,2)}^{(n)}(x_1, x_1, x_3, x_3, \ldots, x_n) = x_1,$$

$$f(x_1, x_1, x_2, x_3, \ldots, x_n) = e_{r(3,4)}^{(n)}(x_1, x_1, x_3, x_3, \ldots, x_n) = x_3,$$

which gives a contradiction. Thus there exists a pair p, q $(p \neq q)$ of indices for which $r(p,q) \neq p$. Put k = r(p,q). According to (7) to prove the Lemma it is sufficient to show that

(8)
$$r(i,j) = k \quad \text{if} \quad j \neq k.$$

Suppose that $j \neq k$. Replacing the *p*-th and the *q*-th variable in (7) by x_j and taking into account the inequality $k \neq p, q, j$, we infer that the left-hand side of (7) is equal to $e_k^{(n)}(x_1, x_2, \ldots, x_n)$ and the right-hand side of (7) is equal to

$$e_{r(i,j)}^{(n)}(x_1, x_2, \ldots, x_{p-1}, x_j, x_{p+1}, \ldots, x_{q-1}, x_j, x_{q+1}, \ldots, x_n),$$

which, by simple reasoning, leads to formula (8). The Lemma is thus proved.

Proof of Theorem 1. We shall prove the theorem by induction with respect to m. For m=0 the theorem is obvious. Suppose that m>0. First consider the case when $A\setminus M$ contains n elements a_1,a_2,\ldots,a_n such that $M\setminus [a_1,a_2,\ldots,a_n]\neq 0$. The set $M_0=M\cap [a_1,a_2,\ldots,a_n]\setminus M_0$ contains less than m elements. Moreover, the set $[a_1,a_2,\ldots,a_n]\setminus M_0$ contains at least n elements, all its n-element subsets are independent, in A and, consequently, in $[a_1,a_2,\ldots,a_n]$. Of course, the algebra $[a_1,a_2,\ldots,a_n]$ contains no algebraic constants. Thus, by inductive assumption, all n-element subsets of $[a_1,a_2,\ldots,a_n]$ are independent in the algebra $[a_1,a_2,\ldots,a_n]$ and, consequently, by Swierczkowski's theorem [6], all algebraic operations of n variables are trivial on $[a_1,a_2,\ldots,a_n]$. Hence, by independence of a_1,a_2,\ldots,a_n in A, it follows that all operations from $A^{(n)}$ are trivial and, consequently, all n-element subsets of A are independent.

Now suppose that for every n-tuple a_1, a_2, \ldots, a_n of different elements of $A \setminus M$ the inclusion

$$M \subset [a_1, a_2, \ldots, a_n]$$

holds. First we shall prove that every n-element subset of A containing exactly one element of M is independent. Contrary to this let us suppose that there exists a dependent n-element set $\{a_0, a_1, \ldots, a_{n-1}\}$, where $a_0 \in M$ and $a_1, a_2, \ldots, a_{n-1} \in A \setminus M$. Let a_n be an element of $A \setminus M$ different from $a_1, a_2, \ldots, a_{n-1}$. Obviously, the elements a_1, a_2, \ldots, a_n are inde-

pendent and, by (9), there exists a non-trivial operation f in $A^{(n)}$ such that $f(a_1, a_2, \ldots, a_n) = a_0$. Since a_1, a_2, \ldots, a_n are independent and $f(a_1, a_2, \ldots, a_n)$, $a_1, a_2, \ldots, a_{n-1}$ dependent, for any permutation $a_{i_1}, a_{i_2}, \ldots, a_{i_n}$ of elements a_1, a_2, \ldots, a_n , by Marczewski's Theorem (ii) in [2], p. 60, the elements $f(a_{i_1}, a_{i_2}, \ldots, a_{i_n}), a_{i_1}, a_{i_2}, \ldots, a_{i_{n-1}}$ are also dependent. But this is possible only when $f(a_{i_1}, a_{i_2}, \ldots, a_{i_n}) \in M$ for any permutation of elements a_1, a_2, \ldots, a_n . Since the set M contains less than n elements, there exist an element a_1, a_2, \ldots, a_n and a family $\mathcal I$ containing at least a_1, a_2, \ldots, a_n belongs to a_1, a_2, \ldots, a_n belongs to a_1, a_2, \ldots, a_n , for all $a_1, a_2, \ldots, a_n \in A$ we obtain the equations

(10)
$$f(x_{i_1}, x_{i_2}, \dots, x_{i_n}) = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})$$

whenever i_1, i_2, \ldots, i_n and j_1, j_2, \ldots, j_n belong to \mathscr{I} . Of course, we may assume that \mathscr{I} forms a group of permutations. Thus the identity permutation belongs to \mathscr{I} . By Lemmas 1 and 2 there exists an index k $(1 \le k \le n)$ such that

$$f(x_1, x_2, \ldots, x_n) = e_k^{(n)}(x_1, x_2, \ldots, x_n)$$

whenever at least two elements among $x_1, x_2, ..., x_n$ are equal. Thus, by (10),

$$e_k^{(n)}(x_{i_1}, x_{i_2}, \ldots, x_{i_n}) = e_k^{(n)}(x_1, x_2, \ldots, x_n)$$

whenever i_1, i_2, \ldots, i_n belongs to $\mathscr I$ and at least two elements among x_1, x_2, \ldots, x_n are equal. In other words, all permutations from $\mathscr I$ preserve the k-th index. Thus $\mathscr I$ contains at most (n-1)! permutations, which gives a contradiction. Thus every n-element subset of A containing exactly one element of M is independent. Therefore, setting $M_0 = M \setminus \{a_0\}$, where a_0 is an element of M, we have the independence of each n-element subset of $A \setminus M_0$. Hence, by inductive assumption, all n-element subsets of A are independent, which completes the proof of Theorem 1.

LEMMA 3. Let n > 1 and let $(A; \mathbf{F})$ be an algebra containing a finite subalgebra $(B; \mathbf{F})$ in which all n-element subsets are independent. If there exists an n-element subset of B independent in $(A; \mathbf{F})$, then all n-element subsets of A are independent.

Proof. Contrary to this let us suppose that there exists a dependent *n*-element set $\{a_1, a_2, \ldots, a_n\}$ in A. Consequently, there are different operations f and g in $A^{(n)}$ such that

$$(11) f(a_1, a_2, ..., a_n) = g(a_1, a_2, ..., a_n).$$

Of course, without loss of generality, we may assume that the following inequalities hold:

(12)
$$f \neq e_k^{(n)}, \quad q \neq e_k^{(n)} \quad (k = 1, 2, ..., n-2).$$

Let b_1, b_2, \ldots, b_n be an *n*-tuple of elements of B which is independent in the algebra (A; F). By assumption, the subalgebra $[b_1, b_2, \ldots, b_n]$ is finite and each of its n-element subsets is independent. Thus, by (12), the *n*-element set $\{b_1, b_2, ..., b_{n-2}, f(b_1, b_2, ..., b_n), g(b_1, b_2, ..., b_n)\}$ is independent and, by Theorem 1 in [3], p. 749, is a basis of $[b_1, b_2, \ldots, b_n]$. Consequently, there exist operations h_1 and h_2 in $A^{(n)}$ such that

$$\begin{split} &h_1(b_1, b_2, \ldots, b_{n-2}, f(b_1, b_2, \ldots, b_n), g(b_1, b_2, \ldots, b_n)) = b_{n-1}, \\ &h_2(b_1, b_2, \ldots, b_{n-2}, f(b_1, b_2, \ldots, b_n), g(b_1, b_2, \ldots, b_n)) = b_n. \end{split}$$

Since b_1, b_2, \ldots, b_n are independent in the algebra (A; F), the elements b_1, b_2, \ldots, b_n in the last equations can be replaced by the elements a_1, a_2, \ldots, a_n . Hence and from (11) we get the equations

$$(13) h_1(a_1, a_2, \ldots, a_{n-2}, f(a_1, a_2, \ldots, a_n), f(a_1, a_2, \ldots, a_n)) = a_{n-1},$$

$$(14) h2(a1, a2, ..., an-2, f(a1, a2, ..., an), f(a1, a2, ..., an)) = an.$$

By Lemma 1 all operations of n-1 variables are trivial in the algebra $[b_1, b_2, ..., b_n]$ and, consequently, by independence of $b_1, b_2, ..., b_n$ in (A; F), are trivial on A. Thus, by (13) and (14),

$$a_{n-1}, a_n \in \{a_1, a_2, \ldots, a_{n-2}, f(a_1, a_2, \ldots, a_n)\},$$

which is impossible, because a_1, a_2, \ldots, a_n are different. The Lemma is

An operation $f \in A^{(n)}$ is said to be alternating if for every system x_1, x_2, \ldots, x_n of elements of A the equation

$$f(x_1, x_2, \ldots, x_n) = f(x_n, x_1, \ldots, x_{n-1})$$

holds.

8

LEMMA 4. Let f be an alternating operation of three variables in an algebra $(A; \mathbf{F})$. Then for every triplet a_1, a_2, a_3 of independent elements of A the relation

$$f(a_1, a_2, f(a_1, a_2, a_3)) \notin \{a_1, a_2\}$$

holds.

Proof. Let us assume that $f(a_1, a_2, f(a_1, a_2, a_3)) = a_j$, where j = 1or 2. Hence, by independence of a_1 , a_2 and a_3 , for all elements x_1 , x_2 and x_3 in A we get the equation

$$(15) f(x_1, x_2, f(x_1, x_2, x_3)) = x_j.$$

Thus
$$f(x_1, x_2, x_n) = f(x_1, x_2, f(x_1, x_2, f(x_1, x_2, x_3))) = x_j$$
. Since the

operation f is alternating, the last equation implies that f(x, y, x) =f(y, x, x) = f(x, x, y) = x. Hence and from (15) it follows that

$$x = f(y, x, x) = f(y, x, f(y, x, x)) = y$$
 if $j = 1$

and

$$x = f(x, y, x) = f(x, y, f(x, y, x)) = y$$
 if $j = 2$,

which gives a contradiction.

Proof of Theorem 2. Let us suppose that there exists an n-element subset $\{a_1, a_2, \ldots, a_n\}$ of $A \setminus M$ for which $M \cap [a_1, a_2, \ldots, a_n] = 0$. Thus, by assumption, all n-element subsets of $[a_1, a_2, ..., a_n]$ are independent in the algebra (A; F). Hence and from Lemma 3 it follows that every n-element subset of A is independent.

Now let us assume that for every n-element subset $\{a_1, a_2, \ldots, a_n\}$ of $A \setminus M$ the relation

(16)
$$M \cap [a_1, a_2, ..., a_n] \neq 0$$

holds.

First we consider the case when M is a one-point set $\{c\}$. We have to prove that every n-element subset of A containing c is independent. Contrary to this let us suppose that there exists a dependent n-element set $\{c, b_1, b_2, \ldots, b_{n-1}\}$, where, of course, $b_1, b_2, \ldots, b_{n-1}$ belong to $A \setminus M$. Given an arbitrary element b_n , different from $b_1, b_2, \ldots, b_{n-1}$, there exists, by (16), an operation $f \in A^{(n)}$ such that $f(b_1, b_2, \ldots, b_n) = c$. Of course, the operation f is non-trivial. Moreover, from the independence of b_1, b_2 , ..., b_n and the dependence of $f(b_1, b_2, \ldots, b_n), b_1, b_2, \ldots, b_{n-1}$ we obtain, by Theorem (ii) in [2], p. 60, the dependence of elements $f(a_1, a_2, ..., a_n)$, $a_1, a_2, \ldots, a_{n-1}$ for any system a_1, a_2, \ldots, a_n of elements of $A \setminus M$. On account of the independence of each n-element subset of $A \setminus M$ this is possible only when $f(a_1, a_2, ..., a_n) \in M$. Thus $f(a_1, a_2, ..., a_n) = c$ and, consequently, for any system $a_1, a_2, \ldots, a_{n-1}$ of elements of $A \setminus M$ the set $\{c, a_1, a_2, \ldots, a_{n-1}\}$ is dependent. In other words, every n-element subset of A containing M is dependent, which contradicts the assumption of the Theorem. Consequently, for one-point sets M the Theorem is proved.

Now suppose that M is a two-element set $\{c_1, c_2\}$ and, of course, that relation (16) holds. In this case we have n=3. By the assumption there exists an element $a_1 \in A \setminus M$ such that c_1, c_2, a_1 are independent. Let a_2 , a_3 be a pair of elements of $A \setminus M$ different from a_1 . Without loss of generality, in virtue of (16), we may assume that

$$(17) c_1 \in [a_1, a_2, a_3].$$

First we shall prove that every three-element subset of $[a_1, a_2, a_3]$ which does not contain the element c_2 is independent. Contrary to this let us suppose that there exists a pair b_1 , b_2 of elements of $[a_1, a_2, a_3] \setminus M$ such that c_1 , b_1 , b_2 are dependent. Of course, we can choose an element b_3 in $[a_1, a_2, a_3] \setminus M$ different from b_1 and b_2 . Since b_1 , b_2 , b_3 are independent and the subalgebra $[a_1, a_2, a_3]$ is generated by three elements, we have, by Theorem 1 in [3], p. 749, the equation $[b_1, b_2, b_3] = [a_1, a_2, a_3]$. Hence and from (17) it follows that there exists an operation $f \in A^{(3)}$ such that

$$(18) f(b_1, b_2, b_3) = c_1.$$

It is clear that the operation f is non-trivial. Moreover, we shall prove that it is alternating. We know that the elements $f(b_1, b_2, b_3)$, b_1 , b_2 are dependent and the elements b_1 , b_2 , b_3 are independent. Thus, by Theorem (ii) in [2], p. 60, for any triplet u_1 , u_2 , u_3 of different elements of $A \setminus M$ the elements $f(u_1, u_2, u_3), u_1, u_2$ are also dependent. By the independence of all three-element subsets of $A \setminus M$ this is possible only when

(19)
$$f(u_1, u_2, u_3) \in M$$
.

Hence, in particular, we obtain the relation $f(b_{i_1},b_{i_2},b_{i_3})\epsilon$ M for every permutation i_1,i_2,i_3 of indices 1, 2, 3. Since M consists of two elements, there exist three permutations p_1,p_2,p_3,q_1,q_2,q_3 and r_1,r_2,r_3 for which the equation

$$f(b_{p_1},b_{p_2},b_{p_3})=f(b_{q_1},b_{q_2},b_{q_3})=f(b_{r_1},b_{r_2},b_{r_3})$$

holds. Hence, by the independence of b_1, b_2, b_3 , for all elements x_1, x_2 and x_3 in A we get the equation

$$f(x_{p_1}, x_{p_2}, x_{p_3}) = f(x_{q_1}, x_{q_2}, x_{q_3}) = f(x_{r_1}, x_{r_2}, x_{r_3}).$$

Let \mathscr{I} be the group of permutations of variables x_1, x_2, x_3 under which the operation f is invariant. We have proved that \mathscr{I} contains at least three permutations. Thus, \mathscr{I} is either the alternating group \mathscr{A}_3 or the symmetric group \mathscr{S}_3 . In both cases we obtain the equation

$$f(x_1, x_2, x_3) = f(x_3, x_1, x_2) = f(x_2, x_3, x_1),$$

which shows that the operation f is alternating.

From (19) it follows that there exists an index i (i = 1 or 2) such that

(20)
$$f(a_1, a_2, a_3) = c_i.$$

Now we shall prove that

$$f(a_1, a_2, c_i) = c_i.$$

Since the operation f is alternating, we have, by (20) and Lemma 4, $f(a_1, a_2, c_i) \notin \{a_1, a_2\}$. Thus the relation $f(a_1, a_2, c_i) \in A \setminus M$ would imply the independence of $f(a_1, a_2, c_i)$, a_1 , a_2 and, consequently, by Theorem (ii) in [2], p. 60, the independence of $f(b_1^+, b_2, b_3)$, b_1 , b_2 which, by (18), contradicts the assumption of dependence of c_1 , b_1 , b_2 . Consequently, $f(a_1, a_2, c_i) \in M$. Suppose that $f(a_1, a_2, c_i) = c_j$, where $j \neq i$ and, consequently, $\{c_i, c_j\} = \{c_1, c_2\}$. Since the operation f is alternating, we have then the equation $f(c_i, a_1, a_2) = c_j$. Thus the set $\{f(c_i, a_1, a_2), c_i, a_1\}$ being equal to $\{c_1, c_2, a_i\}$ is independent, which, by Theorem (ii) in [2], p. 60, implies the independence of $f(b_1, b_2, b_3)$, b_1 , b_2 . But, according to (18), this contradicts the assumption of the dependence of c_1 , b_1 , b_2 , which completes the proof of (21).

From (20) and (21), in view of the independence of a_1 , a_2 and a_3 , we get the equation

$$(22) f(x_1, x_2, f(x_1, x_2, x_3)) = f(x_1, x_2, x_3)$$

for all x_1, x_2 and x_3 in A. Since the elements c_1, c_2, a_1 are independent and the operation f is non-trivial, we have the inequality $f(a_1, c_1, c_2) \neq a_1, c_1, c_2$. Set

$$(23) d_1 = f(a_1, c_1, c_2).$$

Further, since the operation f is alternating, we have, by (22) and (23), the equation

(24)
$$f(c_2, a_1, d_1) = f(c_2, a_1, f(a_1, c_1, c_2)) = f(c_2, a_1, f(c_2, a_1, c_1))$$
$$= f(c_2, a_1, c_1) = f(a_1, c_1, c_2) = d_1.$$

Let us take an element d_2 in $A \setminus M$, different from a_1 and d_1 . Since all three elements a_1 , d_1 and d_2 belong to $A \setminus M$, we have, by (19),

(25)
$$f(a_1,\,d_1,\,d_2)\,\epsilon\,\,M \quad \text{ and } \quad f(d_1,\,a_1,\,d_2)\,\epsilon\,\,M\,.$$
 If

$$(26) f(a_1, d_1, d_2) = c_1,$$

then, by (22) and (23), we get the equation

$$f(c_1, a_1, f(a_1, c_1, c_2)) = f(c_1, a_1, d_1) = f(a_1, d_1, c_1)$$

$$= f(a_1, d_1, f(a_1, d_1, d_2)) = f(a_1, d_1, d_2) = c_1.$$

Hence, by the independence of c_1, c_2, a_1 , we get the equation

$$(27) f(x_1, x_2, f(x_2, x_1, x_3)) = x_1^{-1}$$

for all $x_1, x_2, x_3 \in A$. In particular, we have the equation

$$f(a_1, d_1, f(d_1, a_1, d_2)) = a_1$$

On the other hand, by Lemma 4,

$$f(a_1, d_1, f(a_1, d_1, d_2)) \neq a_1$$

Thus, $f(a_1, d_1, d_2) \neq f(d_1, a_1, d_2)$, which, according to (25) and (26), implies the equation $f(d_1, a_1, d_2) = c_2$. Since the operation f is alternating, the last equation and (27) imply

$$f(c_1, a_1, d_1) = f(a_1, d_1, c_2) = f(a_1, d_1, f(d_1, a_1, d_2)) = a_1,$$

which contradicts (24).

Now consider the case $f(a_1, d_1, d_2) = c_2$. Since the operation f is alternating, we have, by (22), the equation

$$f(c_2, a_1, d_1) = f(a_1, d_1, c_2) = f(a_1, d_1, f(a_1, d_1, d_2)) = f(a_1, d_1, d_2) = c_2,$$

which also contradicts (24). This completes the proof of the independence of each three-element subset of $[a_1, a_2, a_3]$ which does not contain the element c_2 . Since a_1, a_2, a_3 are independent in the algebra (A; F), to prove the Theorem it is sufficient, by Lemma 3, to show that all three-element subsets of $[a_1, a_2, a_3]$ are independent in the algebra $[a_1, a_2, a_3]$. If $c_2 \not= [a_1, a_2, a_3]$, then it is obvious. Further, if $c_2 \not= [a_1, a_2, a_3]$, then every three-element subset of $[a_1, a_2, a_3]$ which does not contain c_2 is independent. Moreover, the set $\{c_1, c_2, a_1\}$ containing c_2 is independent and, by (17), is contained in $[a_1, a_2, a_3]$. Thus, by the first part of the proof (n = 3, m = 1), every three-element subset of $[a_1, a_2, a_3]$ is independent, which completes the proof of Theorem 2.

REFERENCES

- [1] E. Marczewski, A general scheme of the notions of independence in mathematics, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, 6 (1958), p. 731-736.
- [2] Independence and homomorphisms in abstract algebras, Fundamenta Mathematicae 50 (1961), p. 45-61.
- [3] S. Świerczkowski, On independent elements in finitely generated algebras. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, 6 (1958), p. 749-752.
- [4] On algebras which are independently generated by every n elements, Fundamenta Mathematicae 49 (1960), p. 93-104.
- [5] -A sufficient condition for independence, ('olloquium Mathematicum 9 (1962), p. 39-42.
- [6] On two numerical constants associated with finite algebras, Annali di Matematica pura ed applicata, in print.

INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCHENCES

Recu par la Rédaction le 10, 2, 1963

COLLOQUIUM MATHEMATICUM

VOL. XI 1963 FASC, 1

ON FREE PRODUCTS

OF m-DISTRIBUTIVE BOOLEAN ALGEBRAS

 $\mathbf{B}\mathbf{Y}$

R. SIKORSKI AND T. TRACZYK (WARSAW)

1. Introduction. Let $\mathfrak m$ be an arbitrary cardinal number and $\{\mathfrak U_t\}_{t\in T}$ be an indexed set of non-degenerate $\mathfrak m$ -complete Boolean algebras. An $\mathfrak m$ -complete Boolean algebra $\mathfrak B$ is said to be a *minimal* $\mathfrak m$ -product of $\{\mathfrak U_t\}_{t\in T}$ if there exist $\mathfrak m$ -isomorphisms

$$i_t:\mathfrak{A}\to\mathfrak{B} \qquad (t\,\epsilon\,T)$$

such that

- (a) the union of all the subalgebras $i_t(\mathfrak{A}_t)$ m-generates \mathfrak{B} ,
- (b) the subalgebras $i_t(\mathfrak{A}_t)$, $t \in T$, are m-independent in \mathfrak{B} ,
- (c) the set of all meets of the form

$$\bigcap_{t \in T'} i_t(A_t)$$
 where $A_t \in \mathfrak{U}_t$, $T' \subset T$, $\overline{T}' \leqslant \mathfrak{m}$

is dense in 33.

Christensen and Pierce [1] proved the existence of the minimal m-product of any indexed set of non-degenerate m-complete Boolean algebras (for $\mathfrak{m}=\aleph_0$ see also Sikorski [5]). They proved also that

1.1. The minimal m-product of m-complete m-distributive Boolean algebras is a free m-distributive product of these algebras.

We recall that an m-complete m-distributive Boolean algebra \mathfrak{V} is said to be a *free* m-distributive product of an indexed set $\{\mathfrak{U}_i\}_{i\in I}$ of m-complete m-distributive Boolean algebras if there exist isomorphisms

$$i_t: \mathfrak{A}_t \to \mathfrak{B} \quad (t \in T)$$

such that

- (a) the union of all the subalgebras $i_t(\mathfrak{U}_t)$ m-generates \mathfrak{B} ,
- (β) if, for every $t \in T$, h_t is a homomorphism of $i_t(\mathfrak{A}_t)$ into any \mathfrak{m} -complete \mathfrak{m} -distributive Boolean algebra \mathfrak{C} , then there is a homomorphism h of \mathfrak{B} into \mathfrak{C} which is a common extension of all the homomorphisms h_t , i. e. $h_t(A) = h(A)$ for $A \in i_t(\mathfrak{A}_t)$ (cf. Sikorski [3], p. 214).