

of condensation of the set

$$\bigcup_{j\geqslant 1}\bigcap_{r\geqslant j}A_{q_r},$$

and every open set containing a point of S also contains a perfect subset of $A_{a_j} \cap A_{a_{j+1}} \cap \dots$ for some j.

Proof. It is clear how nearly all the steps in the proof of Theorem 1 have to be modified to provide a proof of Theorem 2; the only difficulty is in the choice of the disjoint closed subsets H_0 and H_1 and the subsequent choice of the subsets (1) for $k = 2, 3, \ldots$ These choices are justified by the following lemma, which we prove by using one of the ideas we have already used:

LEMMA. Under the conditions of Theorem 2, if A is a μ -measurable set with $\mu(A) > 0$, we can choose two disjoint closed subsets H_0 and H_1 of A with $\mu(H_0) > 0$, $\mu(H_1) > 0$.

Proof. As A is μ -measurable and $\mu(A) > 0$, we can choose a closed set B contained in A with $\mu(B) > 0$. Let X_1, X_2, \ldots be a countable base for the open sets of X. Take

$$C = B - \bigcup X_r$$

the union being taken over all the integers r for which $\mu(B \cap X_r) = 0$. Then C is closed and

$$\mu(C) = \mu(B) - \sum_{\mu(B \cap X_r) = 0} \mu(B \cap X_r) = \mu(B) > 0.$$

Hence C contains at least one point, c say. As $\mu((c)) = 0$, we can choose an open set G with $c \in G$ and $\mu(G) < \mu(C)$. Choose r so that $c \in X_r$ and $X_r \subset G$. Then, as $c \in X_r$, we have $\mu(B \cap X_r) > 0$, so that

$$\mu(C \cap G) \geqslant \mu(B \cap X_r) > 0$$
.

Finally, take H_0 to be a closed subset of $C \cap G$ with $\mu(H_0) > 0$, and take $H_1 = C \cap (X - G)$. It is easy to verify that these sets satisfy our requirements.

UNIVERSITY COLLEGE, LONDON

Reçu par la Rédaction le 6.1.1963

COLLOQUIUM MATHEMATICUM

VOL. XI

1963

FASC. 1

ON A COMBINATORICAL PROBLEM OF K. ZARANKIEWICZ

BY

Š. ZNÁM (BRATISLAVA)

Zarankiewicz [6] raised the following problem. Let A_n be a square matrix of order n, consisting exclusively of 1's and 0's; j is a positive integer with $2 \le j < n$. The problem consists in finding the smallest number of 1's still assuring the existence of a minor of order j, consisting exclusively of 1's. Let us denote this number by $k_j(n)$.

I. Reiman in [5] solves this problem for i=2 and proves that

(1)
$$k_2(n) \leqslant \frac{1}{2}(n+n\sqrt{4n-3})+1.$$

Hyltén-Cavallius [3] proves the inequality

(2)
$$k_j(n) < 1 + (j-1)n + [(j-1)^{1/j}n^{(2j-1)/j}],$$

where [a] is the integer part of a.

This paper deals with improvement of this result. We prove namely that

(3)
$$k_j(n) < 1 + \left\lceil \frac{j-1}{2} n + (j-1)^{1/j} n^{(2j-1)/j} \right\rceil$$

which is somewhat better than (2), e.g. (2) gives $k_3(8) < 56$ and (3) implies $k_2(8) < 48$. However, (3) is worse than (1) for j = 2.

Let k_i denote the number of 1's in the *i*-th row of A_n . It is obviously sufficient to deal with matrices with

$$(4) k_1 \geqslant k_2 \geqslant \ldots \geqslant k_n \geqslant j-1.$$

To prove (3) we need three lemmas.

LEMMA 1. For an arbitrary integer n > 0 and any real a_i , b_i (i = 1, 2, ..., n) with $a_1 \ge a_2 \ge ... \ge a_n$ and $b_1 \ge b_2 \ge ... \ge b_n$ we have

$$n\sum_{i=1}^n a_ib_i\geqslant \sum_{i=1}^n a_i\sum_{j=1}^n b_j$$

(see e.g. [2], p. 43, theorem 43).

Colloquium Mathematicum XI

LEMMA 2. If $k = \frac{1}{n} \sum_{i=1}^{n} k_i$, then

$$\sum_{i=1}^{n} \binom{k_i}{j} \ge n \binom{K}{j}$$

for any positive integer j < n.

Proof. We proceed by induction with respect to j. For j=1 formula (5) is clearly satisfied. So let us suppose that it holds for a number h < n-1. According to (4)

$$\binom{k_1}{h} \geqslant \binom{k_2}{h} \geqslant \ldots \geqslant \binom{k_n}{h}, \quad \frac{k_1 - h}{h + 1} \geqslant \frac{k_2 - h}{h + 1} \geqslant \ldots \geqslant \frac{k_n - h}{h + 1}.$$

In virtue of lemma 1 we get therefore by the induction hypothesis

$$\sum_{i=1}^{n} {k_i \choose h+1} = \sum_{i=1}^{n} {k_i \choose h} \frac{k_i - h}{h+1} \ge \frac{1}{n} \sum_{i=1}^{n} {k_i \choose h} \sum_{i=1}^{n} \frac{k_i - h}{h+1}$$
$$= \left\{ \sum_{i=1}^{n} {k_i \choose h} \right\} \frac{K - h}{h+1} \ge n {K \choose h} \frac{K - h}{h+1} = n {K \choose h+1},$$

q. e. d.

LEMMA 3. If $U = \frac{1}{2}(j-1) + (j-1)^{1/j}n^{(j-1)/j}$, then

(6)
$$n\binom{U}{j} > (j-1)\binom{n}{j}$$

for any integer j with $2 \le j < n$.

Proof. We shall distinguish two cases.

1. If j is even, then (6) can be written in the form

$$(n^{1/j}U)(n^{1/j}(U-1))\dots(n^{1/j}(U-\frac{1}{2}(j-2)))(n^{1/j}(U-\frac{1}{2}j))\dots(n^{1/j}(U-j+1))$$

$$> ((j-1)^{1/j}n)\dots((j-1)^{1/j}(n-\frac{1}{2}(j-2)))((j-1)^{1/j}(n-\frac{1}{2}j))\dots$$

$$\dots((j-1)^{1/j}(n-j+1)),$$

and, with some modifications,

$$\begin{split} & (n^{2\beta}\,U(\,U-j+1)) \Big((n^{2\beta}\,(\,U-1)\,(\,U-j+2) \ldots \big(n^{2\beta}_{-2}\,(\,U-\frac{1}{2}(j-2))\,(\,U-\frac{1}{2}j) \big) \\ & > \big((j-1)^{2\beta}n\,(n-j+1) \big) \big((j-1)^{2\beta}(n-1)\,(n-j+2) \big) \ldots \\ & \qquad \qquad \ldots \Big((j-1)^{2\beta} \big(n-\frac{1}{2}(j-2) \big) \,(n-\frac{1}{2}j) \Big) \,. \end{split}$$

The condition j < n implies U > j-1; therefore all factors on both sides are positive. Hence it is sufficient to prove that the r-th factor on the left-hand side is larger that the r-th factor on the right-hand side where $1 \le r \le j/2$ since the number of factors is j/2, i. e. that

$$n^{2j}(U-r+1)(U-j+r) > (j-1)^{2j}(n-r+1)(n-j+r).$$

This means that

$$n^{2\beta}((j-1)^{1\beta}n^{(j-1)\beta}+\frac{1}{2}(j-1)-r+1)((j-1)^{1\beta}n^{(j-1)\beta}-\frac{1}{2}(j-1)+r-1)$$

$$>(j-1)^{2\beta}(n-r+1)(n-j+r),$$

and with some modifications

(7)
$$(j-1)^{(j+2)/j} n > (\frac{1}{2}(j-1)-r+1)^2 n^{2/j} + (r-1)(j-r)(j-1)^{2/j}$$
.
Since $r \le j/2$, we have

$$(8) (r-1)(j-r)(j-1)^{2/j} < \frac{1}{2}(j-1)^2(j-1)^{2/j} < \frac{1}{2}(j-1)^2n^{2/j}.$$

Since $2 \le j < n$, we have $n^{(j-2)/j} \ge j^{(j-2)/j}$. Multiplying this inequality by $n^{2j}(j-1)^{(2+j)/j}$, we get

$$(j-1)^{(2+j)/j}n \geqslant j^{(j-2)/j}(j-1)^{(j+2)/j}n^{2/j} \geqslant (j-1)^2n^{2/j}$$
 $> \frac{(j-1)^2}{4}n^{2/j} + \frac{(j-1)^2}{2}n^{2/j} \geqslant \left(\frac{j-1}{2} - r + 1\right)^2n^{2/j} + \frac{(j-1)^2}{2}n^{2/j}.$

Hence we infer (7) using (8).

2. If j is odd, the proof is analogous. Now, to prove (3) observe that if

$$\sum_{i=1}^{n} k_{i} > \frac{j-1}{2} n + (j-1)^{1/j} n^{(2j-1)/j} = n U,$$

then

(9)
$$\sum_{i=1}^{n} \binom{k_i}{j} > (j-1) \binom{n}{j}.$$

In fact, since K > U > j-1, we have $\binom{K}{j} > \binom{U}{j}$. Hence, by lemma 2 and 3,

$$\sum_{i=1}^{n} \binom{k_i}{j} \geqslant n \binom{K}{j!} > n \binom{U}{j} > (j-1) \binom{n}{j}.$$

According to the result of [1], relation (9) is a sufficient condition for the existence of a minor of order j, consisting exclusively of 1's. Thus (3) is proved.

84

š. ZNÁM

REFERENCES

- [1] K. Čulik, Teilweise Lösung eines verallgemeinerten Problems von K. Zaran-kiewicz, Annales Polonici Mathematici 3 (1956), p. 164-168.
- [2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge
- [3] C. Hyltén-Cavallius, On a combinatorical problem, Colloquium Mathematicum 6 (1958), p. 59-65.
- [4] T. Kövári, Vera T. Sós and P. Turán, On a problem of K. Zarankiewicz, ibidem 3 (1954), p. 50-57.
- [5] I. Reiman, Über ein Problem von K. Zarankiewicz, Acta Mathematica Academiae Scientiarum Hungaricae 9 (1958), p. 269-273.
 - [6] K. Zarankiewicz, P 101, Colloquium Mathematicum 2 (1951), p. 301.

Reçu par la Rédaction le 15. 11. 1963

COLLOQUIUM MATHEMATICUM

VOL. XI

1963

FASC. 1

ON A SUMMATION FORMULA OF E. COHEN

 \mathbf{BY}

W. NARKIEWICZ (WROCŁAW)

The following theorem is well known:

If the series $\sum\limits_{n=1}^{\infty}g(n)/n$ is absolutely convergent and $f(n)=\sum\limits_{\mathbf{d}\mid n}g(\mathbf{d})$, then

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leqslant x}f(n)=\sum_{n=1}^{\infty}g(n)/n.$$

Recently E. Cohen [2] proved the following generalization of this theorem:

If the series $\sum_{n=1}^{\infty} g(n)/n$ is absolutely convergent and $g_s(n) = \sum_{d \mid n} g(d) \tau_s(n/d)$ (where $\tau_s(n)$ is defined by $\tau_1(n) = 1$, $\tau_{s+1}(n) = \sum_{d \mid n} \tau_s(d)$), then

$$\lim_{x\to\infty}\frac{1}{x\log^{s-1}x}\sum_{n\leqslant x}g_s(n)=\frac{1}{(s-1)!}\sum_{n=1}^{\infty}\frac{g(n)}{n} \quad (s=1,2,\ldots).$$

In this note we give a simple proof of the theorem of E. Cohen, based on the remark that if $||a_{n,k}||$ is an infinite matrix satisfying the conditions

- (i) $|a_{n,k}| \leq M$ with some M independent of k and n,
- (ii) for every n the sequence $\{a_{n,k}\}_{k=1}^{\infty}$ is convergent to, say, a_n , then from $\sum_{k=0}^{\infty}|c_m|<\infty$ follows

$$\lim_{k o\infty}\sum_{n=1}^\infty a_{n,k}c_n = \sum_{n=1}^\infty a_nc_n.$$

The following formula is well-known and can be easily proved by induction:

(*)
$$\lim_{x\to\infty} \frac{1}{x \log^{s-1} x} \sum_{m\leqslant x} \tau_s(m) = 1/(s-1)!.$$