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of condensation of the sei

un A!l,d

izl =]

and every open set containing a point of 8 also contains a perfect subset
of Adyrdg,,~ ... for some j.

Proof. Tt is clear how nearly all the steps in the proof of Theorem 1
have to be modified to provide a proof of Theorem 2; the only difficulty
is in the choice of the disjoint closed subsets H, and H; and the subse-
quent choice of the subsets (1) for % = 2, 3, ... These choices are justi-
fied by the following lemma, which we prove by using one of the ideas
we have already used:

LeMMA. Under the conditions of Theorem 2, if A i8 a u-measurable
set with u(4) >0, we can choose two disjoint closed subsets H, and H,
of A with u(H,) >0, u(H,) >0.

Proof. As A is y-measurable and u(4) >0, we can choose a closed
set B contained in A with u(B) >0. Let X;, X,,... be a countable
base for the open sets of X. Take

0 =B—U'X,,
the union being taken over all the integers r for which u(B~ X,) = 0.
Then C is closed and

u(0) = pu(B)— p(BnX,) = u(B) >0.
HBAZ)=0

Hence ¢ containg at least one point, ¢ say. As ,u((o)) = (}, we can
choose an open set @ with c<@ and u(@) < u(C). Choose r so that ceX,
and X, = @. Then, as ¢eX,, we have u(B~ X,) >0, so that

w(Cn@) Zu(B~X,) >0.

Finally, take H, to be a closed subset of O ~@ with u(H,) >0, and
take H; = O~ (X —@). Tt is easy to verify that these sets satisfy our
requirements.
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Zarankiewicz [6] raised the following problem. Let A, be a square
matrix of order =, consisting exclusively of 1’s and 0’s; j is a positive
integer with 2 <<j <<®. The problem consists in finding the smallest
number of 1’s still assuring the existence of a minor of order j, consisting
exclusively of 1’s. Liet us denote this number by %;(n).

L. Reiman in [5] solves this problem for j = 2 and proves that

ka(n) < t(n-+nVdn—3)+1.
Hyltén-Cavallius [3] proves the inequality

0

2) ky(n) < 14 (j—1)n-[(j— 1)@ =007,

where [a] is the integer part of a.
This paper deals with improvement of this resnlt. We prove namely
that

3)

y(n) <1+ [’ ot (j——l)"’n(”—””]

which is somewhat better than (2), e.g. (2) gives k;(8) < 56 and (3)
implies %,(8)<c 48. However, (3) is worse than (1) for j = 2.

Let k; denote the number of 1’8 in the i-th row of 4,,. It is obviously
sufficient to deal with matrices with
(4)

Bk >... 2k, =j—1.

To prove (3) we need three lemmas.

LeMMA 1. For an arbitrary integer n > 0 and any real a;, b; (¢ = 1, 2,
cees ) With @y =@y > ... =0, ond by = by > ... > b, we have

n

nZa'ibi Zzaizbi

n
A=) i=1 F=1

(see e.g. [2], p. 43, theorem 43).
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Lovva 2. If k= y;Zki, then

q=1

51+

i=1

for amy positive integer j < m.
Proof. We proceed by induction with respect to j. For j = 1 formula
(8) is clearly satisfied. So let us suppose that it holds for a number h < n—1.

According to (4)
oy 7«:2) (Icn) ky—h _ ky—h Jip—h
> —_— 2 .. = .
(h)> (h > Rl h+1 T B41 T hr1

In virtue of lemma 1 we get therefore by the induction hypothesis
3
A\ ki—h _ 1 (k) \ i
Z(h-{—l) 2( )h-l—l 2 hl & ht1
- k,.}K—h (K)K——h ( K )
S )
s \n/l n+1 b/ h+1 h+1

=
L=+ (G — 1)V then

)=o)

for any integer j with 2 <j <.
Proof. We shall distinguish two cases.
1. If j is even, then (6) can be written in the form

(WITY (U —1)... (2T —3(j—2)) (™ (T—14) ...(n*" (T —j+ 1))

q.e. d.
TLemuMA 3. If U =

> ((G—1)"n)..((j— 10 —3(— 2)))((1 — 1" (n—13)-..

G =1 —j+1),

and, with some modifications,
(T (U =+ 1) (T 1) (U—j+2)...(n*] (U —4(j—2)) (U —4j))
> (=1 (e — 1) — 1 (n—1) (n—j+2))...
(=173 —2)) (n—13)) -
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The condition j << implies U > j—1; therefore all factors on both
gides are positive. Henece it is sufficient to prove that the r-th factor on
the left-hand side is larger that the r-th factor on the right-hand side where
1 <7 <j/2 since the number of factors is j/2, i. e. that

W (U —r+1)(U—j+7)
This means that
w2 — 1)l p 1 (f— 1) — r - 1)((— 1Ml (j— 1) 47— 1)

>(—1" (n—r+1)(n—j+r),
and with some wmodifications

> (j—1 e —r41)(n—j+7).

(1) =1 (4 —1) —r+ 1Y 4 (r— 1) (— ) (G— 1)
Since r < j/2, we have
(8) =1 -~ <3G—1PG 1% < j(j—1) .

Since 2 <j < n, we have nV~?7 > jU-3/  Multiplying this inequal-
ity by n*(j—1) we get

(G— 1)(2-54)/7” > J(f—z)IJ(J —1) D21~ (G— 1)2n2/i

Vi | (a‘:_l
2 2

(j'_l)z 2/
4 T

2
—-r+1) n*t
Hence we infer (7) using (8).

2. If j is odd, the proof is analogous.
Now, to prove (3) observe that if

n N
D k{>]—;—1— At (§— 1)@= — ny,

4=l

then
n
N (F; . n
© ()> 1 ()
) % i) >6-0(;
In fact, since K > U >j—1, we have (K) > (U) Hence, by lemma
2 and 3, ! !

S =e() = (5) =0 (3)

1
According to the result of [1], relation (9) is a sufficient condition

for the existence of a minor of order j, consisting exclusively of 1’s. Thus
(3) is proved.
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The following theorem is well known:
o0
If the series ) g(n)/n is absoluiely convergent and f(n) = >'g(d),
n=1 . an
then

1\ -
lim — = n)fa.
tim = ') = D g
ngT n=1
Recently E. Cohen [2] proved the following generalization of this
theorem:

If the series > g(m)/n is absolutely convergent and g,(n) = > g{@)ve(nfd)
n=1 din
(where to(n) is defined by v, (n) =1, o1 (n) = Dlrg(d)), then
amn

o
. 1 O 1 N 9(%)
lim N T =1 2, ...).
20 210g 0 nZ s (1) (s—1) 24 n (s »25-e)

In this note we give a simple proof of the theorem of E. Cohen, based
on the remark that if ||a,,| is an infinite matrix satisfying the conditions

(i) l@ppl < M with some M independent of k and =,
(ii) for every n the sequence {a,xlh.: is convergent to, Say, Gn,

. oo
then from 3 |¢,| < oo follows

=1
0o o0
lim Z Uy 1 Cn == by @y, Cn,
k00 ’ —
n=1 Na==1

The following formula is well-known and can be easily proved by
induetion:

(*) lim L 2 To(m) = L[(s—1)l.
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