- icm[©]
- [3] E. M. Alfsen, J. E. Fenstad, Correction to a paper on proximity and totally bounded uniform structures, Math. Scand. 9 (1961), p. 258.
- [4] N. Bourbaki, Topologie générale, Chapters I-II, Act. Sci. et Ind., pp. 858-1142. Paris 1951.
 - [5] Topologie générale, Chapter IX, Act. Sci. et Ind., p. 1045, Paris 1958.
- [6] V. E. Efremovič, The geometry of proximity I, Mat. Sbornik N. S. 31 (1952), pp. 189-200. (in Russian.)
 - [7] S. Leader, On clusters in proximity spaces, Fund. Math. 47 (1959), 205-213.
 [8] On completion of proximity spaces by local clusters, Fund. Math. 48 (1960),
- [8] On completion of proximity spaces by local clusters, Fund. Math. 48 (1960), pp. 201-216.
- [9] S. Mrówka, On complete proximity spaces, Doklady Akad. Nauk. SSSR,
 N. S. 108 (1956), pp. 587-590.
- [10] On the notion of completeness in proximity spaces; Bull. Acad. Polon. Sci., III, 4 (1956), pp. 477-478.
- [11] Yu. M. Smirnow, On proximity spaces, Mat. Sbornik, N. S. 31 (1952), pp. 543-574. (in Russian.)
- [12] On completeness of proximity spaces, Doklady Akad. Nauk. SSSR, N. S. 88 (1953), pp. 761-764. (in Russian.)
- [13] On completeness of proximity spaces I, Trudy Moskov. Obsc. 3 (1954), pp. 271-306. (in Russian.)
- [14] On completeness of proximity spaces II, Trudy Moskov Obsc. 4 (1955), pp. 21-435. (in Russian.)
- [15] On completeness of uniform spaces and proximity spaces, Doklady Akad. Sci SSSR N. S. 91 (1953), pp. 1281-1284. (in Russian.)
- [16] A. Weil, Sur les espaces à structures uniformes et sur la topologie générale, Paris 1937.

Reçu par la Rédaction le 13. 11. 1961

Totality of uniform structures with linearly ordered base

by

E. M. Alfsen and O. Njåstad (Oslo)

According to [2] a uniform structure is said to be *total* if it is the finest member of its p-equivalence class, i.e. if it is finer than any other uniform structure with the same uniform set-neighbourhoods. (The above form of the definition, specialized to proper uniform structures, is the third characterization of totality in Theorem 3 of [2]. For the notion of p-equivalence, cf. also [1], p. 97.)

Yu. M. Smirnov has proved that every metrizable uniform structure is total [5], p. 570 (cf. also [2] Theorem 4). In the present paper we prove that every uniform structure with a linearly ordered base is total. The method of proof is a transfinite extension of a technique which goes back to Efremovič (proof of Lemma 1 of [4], p. 190).

Lemma 1. Every well-ordered set B contains a cofinal, well ordered subset C such that every proper segment of C has strictly smaller power than C and every cofinal subset of C has the same power as C.

Proof. Let χ be the smallest cardinal of any cofinal subset of B. If $\chi = 1$, then B contains a last element b, and we shall be through with $C = \{b\}$.

For $\chi > 1$ the set I of ordinals of cardinality strictly less than χ contains non-void proper segments $I_{\alpha} = \{\beta \mid \beta \in I, \beta < \alpha\}$, and I_{α} has cardinal strictly less than χ for every $\alpha \in I$, whereas I itself has cardinal χ .

Let ψ be some one-one mapping of I into a cofinal subset of B. The set $\psi(I_a)$ can not be cofinal in B for any $a \in I$ since it has cardinal strictly less than χ . Let $\varphi(a)$ denote the least upper bound of $\psi(I_a)$ in B for every $a \in I$. Clearly φ is a non-decreasing mapping of I onto a cofinal subset $C = \varphi(I)$ of B. Moreover, C is well ordered (in the ordering induced from B), since it is the image of the well-ordered set I by the non-decreasing mapping φ . The cardinal of C cannot exceed χ since $C = \varphi(I)$; hence by the cofinal nature of C it must equal to χ .

Now we assume that D is some proper segment of C. It follows from the non-decreasing nature of φ that $F = \varphi^{-1}(D)$ is a proper segment of I. Hence the cardinal of F, and hence also of $D = \varphi(F)$, must be strictly less than χ . Thus we have proved that the cofinal well-ordered subset C

of B has the first of the two required properties. The second property follows from the fact that every cofinal subset of C also is cofinal in B, and hence its cardinal cannot be strictly less than χ .

LEMMA 2. Let U and W be subsets of a Cartesian product $S \times S$, and assume that W is symmetric and contains the diagonal Δ , and that $W^4 \subset U$. Moreover, let $(x_a, y_a)_{a \in A}$ be some generalized sequence with a linerally ordered index set A, and assume that $(x_a, y_a) \in U$ for $\alpha \in A$. Then there exists a cofinal subset Γ of A such that $(x_\beta, y_\gamma) \in W$ whenever β and γ both belong to Γ .

Proof. By transfinite induction we may extract a cofinal, well-ordered subset B of A, and from B we may extract a cofinal well-ordered subset C with properties of the set C of Lemma 1. Since C is cofinal in A as well as in B, it will be sufficient to construct a cofinal subset C of C which has the desired property.

For every $a \in C$, we define

$$D_{\alpha} = \{\beta \mid \beta \in C, (x_{\alpha}, y_{\beta}) \in W\}, \qquad E_{\alpha} = \{\beta \mid \beta \in C, (x_{\beta}, y_{\alpha}) \in W\}.$$

For arbitrary elements β , γ of D_a we shall have $(x_\beta,\,y_\gamma) \in W^2$; for otherwise the three relations:

$$(x_{\beta}, y_{\gamma}) \in W^2$$
, $(x_{\gamma}, y_{\alpha}) \in W^{-1}$, $(x_{\alpha}, y_{\beta}) \in W$,

would imply $(x_{\beta}, y_{\beta}) \in W^4 \subset U$, contrary to hypothesis.

The assumption $\Delta \subset W$ entails $W \subset W^2$, and so we have actually proved that $(x_{\beta}, y_{\gamma}) \in W$ whenever $\beta, \gamma \in D_a$. Thus if D_a is cofinal in C for any a, say $a = a_0$, then we shall be through with $\Gamma = D_{a_0}$. Similarly we prove that if E_a is cofinal for any a, say $a = a_0$, then we may write $\Gamma = E_{a_0}$.

In the remaining case in which none of the sets D_a , E_a are cofinal in C, we define $\psi(a)$ to be the least upper bound of $D_a \cup E_a$ in C for every $a \in C$. We may assume that C has no last element a', for otherwise we should be through with $\Gamma = \{a'\}$. Now the sets

$$F_a = \{\beta \mid \beta \in C, \beta \leqslant \alpha\} = \{\beta \mid \beta \in C, \beta < \alpha + 1\}$$

are proper segments of C for all $a \in C$. Hence they have strictly smaller power than C. The same statement holds for $\psi(F_a)$, and so $\psi(F_a)$ is non-cofinal in C for every $a \in C$. Let $\varphi(a)$ denote the least strict upper bound of $\varphi(F_a)$ and a in C for every $a \in C$. Clearly φ is a non-decreasing mapping of C into itself, and has the following two properties:

- (1) $\varphi(\alpha) \leqslant \beta \rightarrow (x_{\alpha}, y_{\beta}) \in W, (x_{\beta}, y_{\alpha}) \in W.$
- (2) $\alpha < \varphi(\alpha)$ for every $\alpha \in C$.

For some fixed element a_0 of C we shall construct a suitable transfinite continuation Γ of the sequence:

$$\alpha_0$$
, $\varphi(\alpha_0)$, $\varphi(\varphi(\alpha_0))$, ...

More specifically, let Γ be the intersection of all subsets G of C with the following properties:

- (3) $\alpha_0 \in G$.
- (4) $\alpha \in G \rightarrow \varphi(\alpha) \in G$.
- (5) Every least upper bound (in C) of a subset of G again belongs to G.

There certainly exist sets with the properties (3)-(5), e.g. the set of all successors of a_0 , and their intersection Γ is non-void since $a_0 \in \Gamma$. It is also easily verified that Γ itself has the properties (3)-(5), and so it is the smallest set with these properties. By a standard, although not quite trivial, argument (cf. e.g. [3], p. 5), we can prove that the minimality of Γ together with the properties (2)-(5) yield the following additional property of Γ :

(6) $\gamma, \delta \in \Gamma$ and $\gamma < \delta \Rightarrow \varphi(\gamma) \leq \delta$.

The set Γ must be cofinal in C, for otherwise it would have a least upper bound γ' which should belong to Γ by (5) thus giving $\gamma' < \varphi(\gamma') \in \Gamma$ by (2) and (4) contrary to the definition of γ' .

Now, let γ and δ be arbitrary elements of Γ . If $\gamma = \delta$, we have $(x_{\gamma}, y_{\delta}) \in W^4$, and hence also $(x_{\gamma}, y_{\delta}) \in W$. If $\gamma < \delta$, we shall have $\varphi(\gamma) \leq \delta$ by (6), and hence we obtain $(x_{\gamma}, y_{\delta}) \in W$ by virtue of (1). Similarly $\delta < \gamma$ implies $(x_{\gamma}, y_{\delta}) \in W$, and so the proof is accomplished.

THEOREM. Every uniform structure with a linearly ordered base is total.

Proof. Let \mathcal{U} be a uniform structure on a set S which admits a base of *entourages* V_a , $a \in A$, where A is some linearly ordered set and $V_a \supset V^\beta$ whenever $a < \beta$. As usual we shall apply the notation $E \in F$ to denote that a subset F of S is a uniform neighbourhood of another subset E. (Cf. e.g. [1], p. 97.)

Let \mathscr{U}' be some other uniform structure of S belonging to the same p-equivalence class as \mathscr{U} . In other words, the relation $E \subseteq F$ has the same meaning relatively to \mathscr{U} and \mathscr{U}' .

If \mathcal{U}' were not coarser than \mathcal{U} , there would exist an *entourage* U of \mathcal{U}' not containing any V_a , $a \in A$. In that case we might assign (by the axiom of choice) to every $a \in A$ a couple (x_a, y_a) such that $(x_a, y_a) \in V_a$, $(x_a, y_a) \in U$.

Let W be a symmetric entourage of \mathcal{U}' such that $W^4 \subset U$. By Lemma 2, there exists a cofinal subset Γ of A such that $(x_\gamma, y_\delta) \notin W$ whenever γ and δ both belong to Γ . Defining $X = \{x_\gamma | \gamma \in \Gamma\}$, $Y = \{y_\gamma | \gamma \in \Gamma\}$, we obtain $W(X) \cap Y = \emptyset$, or equivalently $W(X) \subset CY$ which means that $X \subseteq CY$.

On the other hand $(x_{r}, y_{r}) \in V_{r}$; hence $V_{r}(X) \cap Y \neq \emptyset$, or equivalently $V(X) \not\subset CY$, for $\gamma \in \Gamma$. Since Γ is cofinal in A, $\{V_{r}\}_{r \in \Gamma}$ must be a base of \mathcal{U} , and hence, the relation just proved means that $X \not\subset CY$. This contradiction establishes the proof.

References

- [1] E. M. Alfsen, J. E. Fenstad, A note on completion and compactification, Math. Scand. 8 (1960), pp. 97-104.
- [2] E. M. Alfsen, O. Njåstad, Proximity and generalized uniformity, Fund. Math. this volume pp. 235-252.
 - [3] Dunford Schwartz, Linear operators I, New York 1958.
- [4] V. A. Efremovič, The geometry of proximity I, Mat. Sbornik 31, N. S. (1952), pp. 189-200 (in Russian).
- [5] Yu. M. Smirnov, On proximity spaces, Mat. Sbornik, 31 N. S. (1952), pp. 543-574 (in Russian).

Reçu par la Rédaction le 17. 11. 1961

О рангах систем множеств и размерности пространств

А. Архангельский (Москва)

Настоящая работа посвящена в основном исследованию понятия ранга системы множеств и связи этого понятия с размерностью пространства. Наряду с понятием ранга системы множеств в смысле Нагата оказывается полезным рассматривать ранги несколько по иному определенные, в частности так, как это было сделано мной ранее в [2].

В \S 1 приводятся наиболее общие результаты, из которых важнейший — характеристику размерности произвольного топологического пространства — дает теорема 1.4.

Достоинства метрических пространств и бикомпактов позволяют доказать для них более сильные результаты, собранные в § 2.

Наконец случай слабо-счетномерных и счетномерных пространств разобран отдельно в § 3. Развитая там теория позволяет доказать инвариантность класса произвольных слабо-счетномерных пространств и метрических счетномерных пространств при открытых, непрерывных, конечнократных отображениях.

Замечу, что в этой работе все покрытия предполагаются открытыми, а размерность пространства есть всюду размерность, определенная с помощью покрытий. Под *слабо-счетномерными* пространствами понимаются представимые в виде суммы счетного множества своих замкнутых конечномерных подпространств, а под *счетномерными* — представимые в виде суммы счетного числа своих нульмерных подмножеств. Наконец, k у нас — всегда некоторое целое положительное число.

Приведем основные определения.

Нагата (1) называет два множества *зависимыми*, если одно из них содержится в другом. Система множеств называется *зависимой*, если она содержит зависимые множества, в противном случае она называется независимой.

⁽¹) Результаты Нагата, относящиеся к рангам систем множеств, которые я отмечаю в этой работе, мне известны только в виде формулировок из устных источников. Доказательства их, повидимому, еще не опубликованы.