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Totality of uniform structures with linearly ordered base
.
: E. M. Alfsen and O. Njastad (Oslo)

According to [2] a uniform structure is said to be fofal if it is the
finest member of its p-equivalence class, i.e. if it is finer than any other
uniform structure with the same uniform set-neighbourhoods. (The above
form of the definition, specialized to proper uniform structures, is the
third characterization of totality in Theorem 3 of [2]. For the notion
of p-equivalence, cf. also [1], p. 97.) "

Yu. M. Smirnov has proved that every metrizable uniform structure
is total [5], p. 570 (cf. also [2] Theorem 4). In the present paper we prove
that every uniform structure with a linearly ordered base is total. The
method of proof is a transfinite extension of a technique which goes back
to Efremovié (proof of Lemma 1 of [£], p. 190).

Lemma 1. Every well-ordered set B contains a cofinal, well ordered
subset C such that every proper segment of C has strictly smaller power than C
and every cofinal subset of C has the same power as C.

Proof. Let y be the smallest cardinal of any cofinal subset of B.
If y =1, then B contains a last element b, and we shall be through with
C = {b}.

For y >1 the set I of ordinals of cardinality strictly less than y
contains non-void proper segments I, = {f|fel,f < a}, and I, has
cardinal strictly less than y for every a e I, whereas I itself has cardinal z.

Let p be some one-one mapping of I into a cofinal subset of B. The
set p(I,) can not be cofinal in B for any « € I since it has cardinal strictly
less than . Let ¢(a) denote the least upper bound of ¢(Z,) in B for every
ael. Clearly ¢ is a non-decreasing mapping of I onto a cofinal subset
O=g(I) of B. Moreover, C is well ordered (in the ordering induced from B),
sinee it is the image of the well-ordered set I by the non-decreasing map-
ping ¢. The cardinal of ¢ cannot exceed y since O = p(I); hence by the
cofinal nature of C it must equal to y.

Now we assume that D is some proper segment of €. It follows from
the non-decreasing nature of ¢ that F = ¢~1(D) is a proper segment of I.
Hence the cardinal of ¥, and hence also of D = ¢(F), must be strictly
less than 7. Thus we have proved that the cofinal well-ordered subset €
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of B has the first of the two required properties. The second property
follows from the fact that every cofinal subset of C also is cofinal in B,
and hence its cardinal cannot be strictly less than z.

LevMA 2. Let U and W be subsets of a Cartesian product 8 x §, and
assume that W is symmetric and contains the diagonal A, and that WA C U,
Moreover, let (Zq; Yo)aes b Some generalized sequence with a lineraly ordered
index set A, and assume that (., y,) ¢ U for a € A. Then there exists a cofinal
subset I' of A such thal (xg,y,) ¢ W whenever f and y both belong to I

Proof. By transfinite induction we may extract a cofinal, well-
ordered subset B of 4, and from B we may extract a cofinal well-ordered
subset ' with properties of the set C of Lemma 1. Since C is cofinal in 4
as well as in B, it will be sufficient to construct a cofinal subset I" of ¢
which has the desired property.

For every ae (U, we define

-Da={/3]/3€07(maayﬁ)ew}7 Ea={5l6507(mﬁ7ya)ew}-

For arbitrary elements B, y of D, we shall have (w3, y,) ¢ W?; for
otherwise the three relations:

(@5, ) € w2, (@, Ya) € w1, (@5 yﬁ) e W,

would imply (ws, y5) e W2 C U, contrary to hypothesis.

The assumption 4 C W entails W C W2, and so we have actually
proved that (@, y,) ¢ W whenever g,y eD,. Thus if D, is cofinal in ¢
for any «, say a = a,, then we shall be through with I"= D,,. Similarly
we prove that if F, is cofinal for any «, say « = ¢y, then we may write
I'= E,.

In the remaining case in which none of the sets D,, F, are cofinal
in C, we define y(a) to be the least upper bound of D, v ¥, in C for every
ae 0. We may assume that ¢ has no last element o', for otherwise we
should be through with I"= {a'}. Now the sets

Fo={lpeC,p<a}={8FecC,f<at1}

are proper segments of C for all a e 0. Hence they have strictly smaller
power than C. The same statement holds for ¢(#,), and so y(F,) is non-
cofinal in C for every a e C. Let p(a) denote the least strict upper bound
of p(F,) and «in C for every a € C. Clearly ¢ is a non-decreasing mapping
of C into itself, and has the following two properties:

) pla) <B—>(wa, yp) ¢ W, (25, 3a) ¢ W.

(2) a< g(a) for every ae C.

N For some fixed element a, of ¢' we shall construct a suitable trans-
finite continnation I" of the sequence:

dy @), (P(<P(ao)),
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More specifically, let I' be the intersection of all subsets G of ¢ with
the following properties:

(3) og € G.

(4) a e G—>pla) e G.

(5) Every least upper bound (in C) of a subset of ¢ again belongs to G.

There certainly exist sets with the properties (3)-(5), e.g. the set
of all successors of ay, and their intersection I' is non-void since a, e I'.
Tt is also easily verified that I' itself has the properties (3)-(5), and so
it is the smallest set with these properties. By a standard, although not
quite trivial, argument (cf. e.g. [3], p. 5), we can prove that the mini-
mality of I" together with the properties (2)-(5) yield the following addi-
tional property of I':

(6) y,0 el and y < é=9(y) < 4.

The set " must be cofinal in O, for otherwise it would have a least
upper bound y’ which should belong to I' by (5) thus giving " < p(y') € r
by (2) and (4) contrary to the definition of y'.

Now, let y and 6 be arbitrary elements of I. If y = 4, we have
(,, Ys) € W, and henee also (z,, ys) ¢ W. If y < 8, we shall have @(y) <6
by (6), and hence we obtain (z,, ys) ¢ W by virtue of (1). Similarly é <y
implies (z,,¥s) ¢ W, and so the proof is accomplished.

THEOREM. Bvery uniform structure with a linearly ordered base is total.

Proof. Let Q¢ be a uniform structure on a set S which admits a base
of entourages V,, a € A, where A is some linearly ordered set and V,D V*
whenever a < f. As usual we shall apply the notation E € F to denote
that a subset F of § is a uniform neighbourhood of another subset E.
(Cf. e.g. [1], p. 97.)

Let Q' be some other uniform structure of § belonging o the same
p-equivalence class as 9. In other words, the relation ¥ € F has the
same meaning relatively to U and .

If 9 were not coarser than 9, there would exist an entourage U
of ' not containing any V,, ¢ e A. In that case we might assign (by
the axiom of choice) to every « € 4 a couple (&, ¥.) such that (@, ¥.) € Vs
(Tay ya) ¢ U.

Let W be a symmetric entourage of U’ such that W¢C U. By Lemma 2,
there exists a cofinal subset I" of 4 such that (,,y,) ¢ W whenever y
and & both belong to I'. Defining X = {m|y eI}, Y = {y,lyel}, we
obtain W(X) n ¥ = 0, or equivalently W(X)C CY which means thab
X€eCYy.

On the other hand (z,, ,) ¢ V,; hence V,(X) n ¥ = @, or equivalently
¥ (X) ¢ CY, for yeI'. Since I' is cofinal in A, {V,},er must be a base
of U, and hence, the relation just proved means that X ¢ CY. This con-
tradiction establishes the proof.
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O paHrax CUCTEM MHOXXECTE M Pa3MEepHOCTH
NpOCTPAHCTR

A. Apxanrenbcxui (Mocksa)

Hacrostimas paGoTa TOCBSIIEHA B OCHOBHOM HMCCHIENOBAHMIO NIOHATHA PAaHra
CHCTEMBI MHOMKECTB M CBSISH 3TOTO TIOHATHA C Pa3MEPHOCTHIO IIPOCTPAHCTRA.
Hapsany C DOHATHEM DAaHTa CHCTEMBI MHOXKECTB B cMblcie Harara OxaskIBaeTcs
NOJe3HbIM PACCMATPHBATH PAHIH HECKOJBKO IO MHOMY ONpEJCTCHHBIE, B UaCTHO-
CTH TaK, KaK 3T0 ObLIO CHemaHo MHOM padee B [2].

B § 1 npuBopstres Hanbostee 0BIIME PE3Y ILTATEI, U3 KOTOPBIX BakHeHImMi —
XapaKTEPUCTHKY Pa3MEPHOCTH IIPOH3BONBHOIO TOMOJNOIHUYECKOrO IPOCIPAHCTBA —
nmaet teopema 1.4.

I[OCTOMHCTBA METPMUYECKUX HPOCTPAHCTE W OMKOMIIAKTOB IIO3BOIAIT JOKa-
31T JUIA HEX GOJiee CHTBHBIE Pe3YNBTaThl, cobpammeie B § 2.

Haxoner| cirydail c1ab0-CUETHOMEPHAIX M CUETHOMEPHBIX TIPOCTPAHCTB pa-
300pan orfesHO B § 3. PaspuTas Tam TEOPHA MO3BOJIIET IOKA3aTh HHBAPHAHTHOCTD
KTACCA TPOM3BOJGHBIX C1a60-CUeTHOMEPHBIX IIPOCTPAHCTB ¥ METPHUECKHX CUETHO-
MEDHEBIX IPOCIPAHCTB IIPH OTKPBITHIX, HENPEPHIBHEIX, KOHEUHOKPATHBIX OTOGpa-
JKEHHSAX .

3ameuy, 4o B 3T0# paboTe BCE IOKPBITHA IIPEHIOJNATAIOTCA OTKPBITHIMH,
4 pa3MEPHOCTs IIPOCTPAHCTBA €CThH BCIOZly PAasMEPHOCTb, ONpEXENeHHas C Io-
MOUpI0 NOKpeITHH. IIORX caabo-cuemmomepHsiymy TPOCTPAHCTBAMY TIOHMMAIOTCS
npefICTaBEMble B BHIE CYMMBI CYCTHOIO MHOYKECTBA CBOKX 3aMKHYTHIX KOHEUHO-
MEPHBIX HOAIPOCTPAHCTE, & IO CHenHOMEPHbLMY — TIDETICTABUMEIE B BU/IE CYMMBI
CYETHOTO WICTAa CBOMX HyJIBMEPHBIX IOJMHOXKecTB. Haxoden, & y Hac — Bcerma
HEKOTOPOE LEJ0e HOJIOMKHTEIBHOE JHCIIO.

TIpuBeieM OCHOBHEIE OIPEesICHIs.

Harara (') HaspIBaeT JBA MHOXKECIBA 3a8UCUMBLMY, ECTIU OIHO M3 HHX COIEp-
skuTca B gpyrom. CHCTeMa MHOXKECTB HA3BIBACTCSA 3AQ6ucumoil, €CIM OHA COZep-
AT 32BMCHMBIE MHOJKECTB3, B IIPOTHBHOM CIy4ae OHA HA3bIBACICH HE3ABHCH-
MOH.

(*) Pesymrarer Harara, OTHOCANIMECH K DAHTaM CHCTEM MHOKECTB, KOTOpbIE S OTMEUAXO
B 3TOll paboTe, MHE M3BECTHBI TOMBKO B BHJEe (POPMYIMPOBOK M3 YCTHBIX HCTOUHHKOB. [loKa-
3aTe;IbCTBA MX, NOBHJHUMOMY, Clle He ONyGIMKOBAHBI.
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