

By putting here $x_1 = X$, $x_2 = ... = x_{k+1} = Y$ we obtain

$$X = F(f(X, Y, ..., Y), Y, ..., Y)$$
.

From the hypothesis, $f(X, Y, ..., Y) \in A^{(2,1)}$. If we had f(X, Y, ..., Y) = h(Y) with some h, then X = F(h(Y), Y, ..., Y)—a contradiction; hence f(X, Y, ..., Y) = h(X) with a suitable $h \in A^{(1)}$.

The set $\{f(x_1, \ldots, x_{k+1}), x_1, x_3, x_4, \ldots, x_{k+1}\}$ is independent in the algebra $A^{(k+1)}$; hence, as before, we obtain

$$x_2 = G(f(x_1, x_2, ..., x_{k+1}), x_1, x_3, ..., x_{k+1})$$

with a suitable $G \in A^{(k+1)}$.

By putting here $x_1 = X, x_2 = Y, x_3 = ... = x_{k+1} = Z$ we obtain

(1)
$$Y = G(f(X, Y, Z, ..., Z), X, Z, ..., Z)$$

From the hypothesis, $f(X,Y,Z,...,Z) \in A^{(8,1)}$. If we had f(X,Y,Z,...,Z) = H(X), or f(X,Y,Z,...,Z) = H(Z) with some H, then Y = G(H(X),X,Z,...,Z), or Y = G(H(Z),X,Z,...,Z) and this is impossible. Hence f(X,Y,Z,...,Z) = H(Y) with a suitable $H \in A^{(1)}$. By setting here Y = Z, we obtain f(X,Y,...,Y) = H(Y); but we obtained above f(X,Y,...,Y) = h(X), whence H must be a constant function, H(Y) = c for all Y; but now from (1) we have Y = G(H(Y),X,Z,...,Z) = G(c,X,Z,...,Z)—a contradiction, because the right side of the last equation does not depend on Y. Hence every function of $A^{(k+1)}$ depends on at most k variables, and from the hypothesis it follows that every function of $A^{(k+1)}$ depends on at most one variable, q.e.d.

The theorem just proved and theorem III of [3] imply the following Corollary. If $\mathfrak A$ is an v^* -algebra, $\dim \mathfrak A \geqslant 3$, then $\mathfrak A$ is decomposable if and only if $A^{(3)} = A^{(3,1)}$.

References

[1] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Pol. Sci., Sér. sci, math., astr. et phys. 6 (1958), pp. 731-736.

[2] — Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), pp. 45-61.

[3] W. Narkiewicz, Independence in a class of abstract algebras, Fund. Math. 50 (1962), pp. 333-340.

Reçu par la Rédaction le 9. 5. 1962

A representation theorem for v^* -algebras

by

K. Urbanik (Wrocław)

By an algebra $\mathfrak A$ we mean a pair (A, F) where A is a non-empty set and F is a family of A-valued functions of finitely many variables running over A. F is called the class of fundamental operations. The class A of algebraic operations is, by definition, the smallest class closed with respect to composition, containing all fundamental operations and all trivial operations defined by the formula

$$e_k^{(n)}(x_1, x_2, ..., x_n) = x_k$$
 $(k = 1, 2, ..., n; n = 1, 2, ...)$.

Two algebras (A, F_1) and (A, F_2) having the same class of algebraic operations will be treated here as identical. In particular, we have the equation (A, F) = (A, A). Further, if the class of algebraic operations on (A, F_1) is contained in the class of algebraic operations on (A, F_2) , then we say that (A, F_1) is a *subsystem* of (A, F_2) .

The subclass of all algebraic operations of n variables will be denoted by $A^{(n)}$ $(n \ge 1)$. Further, by $A^{(0)}$ we shall denote the set of all values of constant algebraic operations. Elements belonging to $A^{(0)}$ will be called algebraic constants. If $1 \le k \le n$, then $A^{(n,k)}$ will denote the subclass of $A^{(k)}$ consisting of all operations depending on at most k variables, i.e. $f \in A^{(n,k)}$ if there is an operation $g \in A^{(k)}$ such that $f(x_1, x_2, ..., x_n) = g(x_{i_1}, x_{i_2}, ..., x_{i_k})$ for a system of indices $i_1, i_2, ..., i_k$ and for every $x_1, x_2, ..., x_n \in A$. By $A^{(n,0)}$ $(n \ge 1)$ we shall denote the subclass of $A^{(n)}$ containing all constant operations. The above definitions are given in a more detailed form in [1], [2] and [4].

Following E. Marczewski [1], we say that elements of a set I ($I \subset A$) are *independent* if for each system of n different elements $a_1, a_2, ..., a_n$ from I and for each pair of operations $f, g \in A^{(n)}$ the equation

$$f(a_1, a_2, ..., a_n) = g(a_1, a_2, ..., a_n)$$

implies that f and g are identical in $\mathfrak A.$ A set whose elements are not independent will be called a set of *dependent* elements. An element $a \in A$ is said to be self-dependent if the one-point set containing a is a set of dependent elements.

We say that an element $a \in A$ is generated by a set E $(E \subset A)$ if it is the result of an algebraic operation applied to some elements in E. We say that a set B $(B \subset A)$ is a basis of the algebra $\mathfrak A$ if it is a set of independent elements and every element from A is generated by B.

Following E. Marczewski we say that an algebra $\mathfrak A$ is a v^* -algebra if it satisfies the following conditions:

(I) each self-dependent element is an algebraic constant,

(II) if the elements a_1, a_2, \ldots, a_n $(n \ge 1)$ are independent and the elements $a_1, a_2, \ldots, a_n, a_{n+1}$ are dependent, then a_{n+1} is generated by a_1, a_2, \ldots, a_n .

Condition (I) may be treated as a degenerated case (n=0) of (II). The properties of v^* -algebras were discussed by W. Narkiewicz [6], [7]. We note that the notion of v^* -algebra is a generalization of the notion of Marczewski's algebra (called by E. Marczewski v-algebra, [3], [8]). It can be proved that every v^* -algebra has a basis and all bases have the same cardinal number, which is called the *dimension* of the algebra (see [6]). In what follows by dim $\mathfrak A$ we shall denote the dimension of a v^* -algebra $\mathfrak A$.

The aim of the present paper is to give a complete description of all v^* -algebras of dimension $\geqslant 3$. Namely, we shall prove the following representation theorem, which is a generalization of the representation theorem for Marczewski's algebras [8].

Theorem. Let $\mathfrak{A} = (A, F)$ be a v*-algebra of dimension $\geqslant 3$.

(i) If $A^{(0)} \neq 0$ and $A^{(8)} \neq A^{(3,1)}$, then there is a field $\mathcal K$ such that A is a linear space over $\mathcal K$ and, further, there exists a linear subspace A_0 of A such that A is the class of all operations f defined as

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k + a,$$

where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathcal{K}$ and $a \in A_0$.

(ii) If $A^{(0)} = 0$ and $A^{(3)} \neq A^{(3,1)}$, then there is a field $\mathcal K$ such that A is a linear space over $\mathcal K$ and, further, there exists a linear subspace A_0 of A such that A is the class of all operations f defined as

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k + a,$$

where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathcal{K}, \sum_{k=1}^n \lambda_k = 1$ and $\alpha \in A_0$.

(iii) If $A^{(8)} = A^{(8,1)}$, then there are a group \mathcal{G} of transformations of the set A and a subset A_0 of A containing all fixed points of transformations

that are not the identity and invariant under all transformations from G such that A is the class of all operations f defined as

$$f(x_1, x_2, \ldots, x_n) = g(x_j) \qquad (1 \leqslant j \leqslant n)$$

or.

$$f(x_1, x_2, \ldots, x_n) = a,$$

where $g \in \mathcal{G}$ and $a \in A_0$.

We note that every algebra of form (i) or (ii) is a Marczewski algebra. Every algebra of form (iii) is a v^* -algebra. Moreover, an algebra of form (iii) is a Marczewski algebra if and only if every transformation from $\mathcal G$ that is not the identity has at most one fixed point in A. In particular, as a direct consequence of the representation theorem, we obtain the following corollary

(*) Every at least three-dimensional v*-algebra, with $A^{(3)} \neq A^{(3,1)}$, is a Marozewski algebra.

It should be noted that the assumption $\dim \mathfrak{A} \geqslant 3$ of the representation theorem is essential. Namely, for any integer k (k=0,1,2) there exists a k-dimensional v^* -algebra which is not of the form stated in the theorem. Now we shall quote a few such counter-examples.

Let T be the set consisting of two elements, 0 and 1. Put 0'=1 and 1'=0. We define three families of fundamental operations on T. Let F_0 be the class of all T-valued operations of finitely many variables defined on T. By F_1 we denote the subclass of F_0 consisting of all operations f satisfying the condition

$$f(x'_1, x'_2, ..., x'_n) = f'(x_1, x_2, ..., x_n)$$
.

Further, by F_2 we denote subclass of F_1 containing all operations f for which the equation $f(0,0,\ldots,0)=0$ holds. Put $\mathfrak{A}_k=(T,F_k)$ (k=0,1,2). First we shall show that \mathfrak{A}_0 , \mathfrak{A}_1 and \mathfrak{A}_2 are v^* -algebras. All elements in the algebra \mathfrak{A}_0 are self-dependent and are algebraic constants, which implies that \mathfrak{A}_0 is a zero-dimensional v^* -algebra. Further, there is no algebraic constant in the algebras \mathfrak{A}_1 and \mathfrak{A}_2 . Thus every one-point set in these algebras is a set of independent elements. Since the operation f(x)=x' is algebraic in \mathfrak{A}_1 , we see that the elements 0 and 1 are dependent and condition (II) of the definition of v^* -algebras holds. Thus \mathfrak{A}_1 is a one-dimensional v^* -algebra. Finally, it is very easy to verify that the only operations of two variables in \mathfrak{A}_2 are trivial ones. Thus the elements 0 and 1 are both independent (see [5], p. 291) and, consequently, \mathfrak{A}_2 is a two-dimensional v^* -algebra.

Now we shall prove that the algebras \mathfrak{A}_0 , \mathfrak{A}_1 and \mathfrak{A}_2 are not of the form stated in the theorem. It is very easy to verify that the operation p^* of three variables defined by the formula

$$p^*(x, y, z) = xy + yz + xz \pmod{2}$$

is algebraic in \mathfrak{A}_2 (see [5], p. 292) and, consequently, in \mathfrak{A}_0 and \mathfrak{A}_1 . Since the operation p^* depends on every variable, the algebras \mathfrak{A}_0 , \mathfrak{A}_1 and \mathfrak{A}_2 are not of form (iii). We know that the algebra \mathfrak{A}_2 is a subsystem of the algebras \mathfrak{A}_0 and \mathfrak{A}_1 . Since every subsystem of two-element algebras of form (i) or (ii) is a Marczewski algebra, to prove our statement it suffices to show that \mathfrak{A}_2 is not a Marczewski algebra. Consider the equation $p^*(x,y,z)=x$ depending on the variable x. Since this equation holds whenever x=y or x=z, it cannot be equivalent to any equation of the form x=f(y,z), where f is an algebraic operation in \mathfrak{A}_2 . Thus \mathfrak{A}_2 is not a Marczewski algebra, which implies that the algebras \mathfrak{A}_0 , \mathfrak{A}_1 and \mathfrak{A}_2 are not of form (i) or (ii).

The idea of the proof of the representation theorem is similar to that in [8]. Before proving the theorem we shall prove some lemmas. If $\mathfrak{A} = (A, F)$ is an algebra, then by $\mathfrak{A}^{(n)}$ we shall denote the algebra $(A^{(n)}, F)$ of all n-ary algebraic operations on \mathfrak{A} (see [4], p. 48). In all further considerations the following statement proved in [6] plays a fundamental rôle:

If $\mathfrak A$ is a v^* -algebra and $1 \leqslant n \leqslant \dim \mathfrak A$, then $\mathfrak A^{(n)}$ is also a v^* -algebra.

In what follows by $\mathfrak{A}=(A,F)$ we shall denote a v^* -algebra of dimension $\geqslant 3$. Further, for simplicity in our considerations we shall often write x_k instead of the trivial operation $e_k^{(n)}$, so that $f(x_1, x_2, ..., x_n)$ $(f \in A^{(n)})$ treated as an element of $\mathfrak{A}^{(n)}$ will denote the composition $f(e_1^{(n)}, e_2^{(n)}, ..., e_n^{(n)})$.

For any $f \in A$ we denote by \hat{f} the operation belonging to $A^{(1)}$ defined as $\hat{f}(x) = f(x, x, ..., x)$. $\widetilde{A}^{(n)}$ $(n \ge 1)$ will denote the subclass of $A^{(n)}$ consisting of all operations f for which $\hat{f}(x) = x$. $\widetilde{A}^{(n,k)}$ will denote the intersection $\widetilde{A}^{(n)} \cap A^{(n,k)}$.

LEMMA 1. If
$$A^{(3)} \neq A^{(3,1)}$$
, then $\widetilde{A}^{(3)} \neq \widetilde{A}^{(3,1)}$.

Proof. First let us suppose that $A^{(2)} \neq A^{(2,1)}$. Let $f \in A^{(2)} \setminus A^{(2,1)}$. Since the operation f depends on both variables, the elements $f(x_1, x_2)$ and x_2 treated as elements of $\mathfrak{A}^{(2)}$ are independent and, consequently, form a basis of the algebra $\mathfrak{A}^{(2)}$. Thus, there exists an operation $g \in A^{(2)}$ such that

$$(1) x_1 = g(f(x_1, x_2), x_2).$$

Hence we get the equation

$$f(g(f(x_1, x_2), x_2), x_2) = f(x_1, x_2).$$

Taking into account the independence of $f(x_1, x_2)$ and x_2 we have the equation

$$f(g(x_1, x_2), x_2) = x_1.$$



Put $h(x_1, x_2, x_3) = f(g(x_1, x_2), x_3)$. From (1) we obtain the equation

$$h(f(x_1, x_2), x_2, x_3) = f(g(f(x_1, x_2), x_2), x_3) = f(x_1, x_3),$$

which shows that the operation h depends on at least two variables. By (2) we have the equation $\hat{h}(x) = x$. Thus $h \in \widetilde{A}^{(3)}(\widetilde{A}^{(3,1)})$.

Now let us suppose that $A^{(2)} = A^{(2,1)}$. Let $f \in A^{(3)} A^{(3,1)}$. Of course, the operation f depends on every variable. First we shall prove that \hat{f} is not constant. Contrary to this let us assume that for every x the equation

$$\hat{f}(x) = a$$

holds, where $a \in A^{(0)}$. Since there is no operation in $A^{(2)}$ depending on both variables, we have either $f(x_1, x_1, x_2) = f_1(x_1)$ or $f(x_1, x_1, x_2) = f_2(x_2)$, where f_1 and f_2 are operations from $A^{(1)}$. Putting $x_2 = x_1$ into $f(x_1, x_1, x_2)$ we get, by virtue of (3), $f_1(x_1) = a$ in the first case and $f_2(x_1) = a$ in the second case. Consequently,

(4)
$$f(x_1, x_1, x_2) = a \quad (x_1, x_2 \in A).$$

Further, since the operation f depends on every variable, the elements x_1, x_2 and $f(x_1, x_2, x_3)$ treated as elements of the algebra $\mathfrak{A}^{(3)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(3)}$. Thus, there exists an operation $g \in A^{(3)}$ such that

$$x_3 = g(x_1, x_2, f(x_1, x_2, x_3)).$$

Substituting $x_1 = x_2 = a$ into the last equation, we get, in view of (4),

$$x_3 = g(a, a, f(a, a, x_3)) = g(a, a, a),$$

which gives a contradiction. Thus we have proved the relation $\hat{f} \in A^{(1,0)}$. It is well known that any operation in $A^{(1)} A^{(1,0)}$ has an inverse in the sense of composition (see [6], Theorem 1), which is also an algebraic operation. In other words, there exists an operation $g_1 \in A^{(1)}$ such that

(5)
$$x = g_1(\hat{f}(x)) = \hat{f}(g_1(x))$$
.

Put $h(x_1, x_2, x_3) = g_1(f(x_1, x_2, x_3))$. From (5) it follows that the operation h depends on every variable and $\hat{h}(x) = x$. Thus, $h \in \widetilde{A}^{(3)}$ $\widetilde{A}^{(3,1)}$, which completes the proof.

An operation $s \in A^{(3)}$ is said to be quasi-symmetric if

(6)
$$s(x_1, x_2, x_1) = s(x_2, x_1, x_1) = x_2$$

for each $x_1, x_2 \in A$.

LEMMA 2. If $A^{(3)} \neq A^{(3,1)}$, then there exists a quasi-symmetric algebraic operation.

Proof. By Lemma 1 we may assume that $\widetilde{A}^{(3)} \neq \widetilde{A}^{(3,1)}$. First let ns suppose that $\widetilde{A}^{(2)} \neq \widetilde{A}^{(2,1)}$. Let $f \in \widetilde{A}^{(2)} \setminus \widetilde{A}^{(2,1)}$. Of course $f(x_1, x_2)$ and x_2 . treated as elements of the algebra $\mathfrak{A}^{(2)}$ are independent and, consequently. form a basis of $\mathfrak{A}^{(2)}$. Thus, there exists an operation $q_1 \in A^{(2)}$ such that

$$(7) x_1 = g_1(x_2, f(x_1, x_2)).$$

Hence

$$f(x_1, x_2) = f(g_1(x_2, f(x_1, x_2)), x_2)$$

and, by the independence of $f(x_1, x_2)$ and x_2 ,

(8)
$$x_1 = f(g_1(x_2, x_1), x_2).$$

Moreover, from (7) we obtain the equation

(9)
$$x_1 = g_1(x_1, \hat{f}(x_1)) = g_1(x_1, x_1).$$

Taking into account the independence of $f(x_1, x_2)$ and x_1 , we can prove in the same way the existence of an operation $g_2 \in A^{(2)}$ such that

$$(10) x_2 = g_2(x_1, f(x_1, x_2)).$$

Hence

$$f(x_1, x_2) = f(x_1, g_2(x_1, f(x_1, x_2)))$$

and, by the independence of $f(x_1, x_2)$ and x_1 ,

(11)
$$x_2 = f(x_1, g_2(x_1, x_2)).$$

Moreover, by (10),

(12)
$$x_1 = g_2(x_1, \hat{f}(x_1)) = g_2(x_1, x_1).$$

Setting $s(x_1, x_2, x_3) = f(g_1(x_3, x_1), g_2(x_3, x_2))$ we have, according to (8), (9), (11) and (12), the equations

$$\begin{split} s\left(x_{1},\,x_{2},\,x_{1}\right) &= f\left(g_{1}(x_{1},\,x_{1}),\,g_{2}(x_{1},\,x_{2})\right) = f\left(x_{1},\,g_{2}(x_{1},\,x_{2})\right) = x_{2}\;,\\ s\left(x_{2},\,x_{1},\,x_{1}\right) &= f\left(g_{1}(x_{1},\,x_{2}),\,g_{2}(x_{1},\,x_{1})\right) = f\left(g_{1}(x_{1},\,x_{2})\,,\,x_{1}\right) = x_{2}\;. \end{split}$$

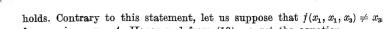
Consequently, s is a quasi-symmetric operation.

Now let us suppose that

$$\widetilde{\boldsymbol{A}}^{(2)} = \widetilde{\boldsymbol{A}}^{(2,1)}.$$

We shall prove that every operation belonging to $\widetilde{A}^{(8)} \setminus \widetilde{A}^{(8,1)}$ is quasisymmetric. To prove this it suffices to show that for every $f \in \widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,1)}$ and $x_1, x_3 \in A$ the equation

$$f(x_1, x_1, x_3) = x_3$$



for a pair $x_1, x_3 \in A$. Hence and from (13) we get the equation

$$f(x_1, x_1, x_3) = x_1.$$

Since, by (13), each operation from $\widetilde{A}^{(3)} \setminus \widetilde{A}^{(3,1)}$ depends on every variable, the elements x_1, x_2 and $f(x_1, x_2, x_3)$ treated as elements of the algebra $\mathfrak{A}^{(3)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(3)}$. Thus, there exists an operation $q \in A^{(3)}$ such that

$$x_3 = g(x_1, x_2, f(x_1, x_2, x_3))$$
.

Setting $x_2 = x_1$ and taking into account (15) we obtain the equation

$$x_3 = g(x_1, x_1, f(x_1, x_1, x_3)) = g(x_1, x_1, x_1),$$

which gives a contradiction. Formula (14) and, consequently, Lemma 2 are thus proved.

LEMMA 3. Let $A^{(3)} \neq A^{(3,1)}$, $3 \leq n \leq \dim \mathfrak{A}$ and $f, q \in A^{(n)}$. If the equation $f(x_1, x_2, ..., x_n) = g(x_1, x_2, ..., x_n)$ holds whenever $x_1 = x_2$ or $x_1 = x_3$, then f = g in \mathfrak{A} .

Proof. If operations t and q are both independent of the variable x_1 , then the assertion of the Lemma is obvious. Therefore we may suppose without loss of generality that the operation g depends on the variable x_1 .

First we shall prove that the operations f and g are dependent in the algebra $\mathfrak{A}^{(n)}$. Contrary to this, let us suppose that they are independent in $\mathfrak{A}^{(n)}$. Put

$$f_2(x_2, x_3, ..., x_n) = f(x_2, x_2, x_3, ..., x_n),$$

(17)
$$f_3(x_2, x_3, ..., x_n) = f(x_3, x_2, x_3, ..., x_n).$$

Consider first the following case.

I. At least one of the systems $f_2, x_3, x_4, \ldots, x_n$ and $f_3, x_2, x_4, \ldots, x_n$ is independent in A(n).

Without loss of generality we may assume that the system $f_2, x_3, x_4, \ldots, x_n$ is independent. If $f, g, x_3, x_4, \ldots, x_n$ are also independent in $\mathfrak{A}^{(n)}$, then they form a basis of the algebra $\mathfrak{A}^{(n)}$. Since, by Lemma 2, the class $A^{(3)}$ contains a quasi-symmetric operation s, we can find an operation $h \in A^{(n)}$ such that

$$(18) \quad s(x_2, x_3, x_1) = h(f(x_1, x_2, ..., x_n), g(x_1, x_2, ..., x_n), x_3, x_4, ..., x_n).$$

Substituting $x_1 = x_2$ into the last equation we get, in view of (6) and (16), the formula

$$x_3 = h(f_2(x_2, x_3, ..., x_n), f_2(x_2, x_3, ..., x_n), x_3, x_4, ..., x_n).$$

Since $f_2, x_3, x_4, ..., x_n$ are independent in $\mathfrak{A}^{(n)}$, we have the equation

(19)
$$x_3 = h(f_3(x_2, x_3, ..., x_n), f_3(x_2, x_3, ..., x_n), x_3, x_4, ..., x_n) .$$

Now substituting $x_1 = x_3$ into (18) we obtain, in view of (6) and (17), the equation

$$x_2 = h(f_3(x_2, x_3, ..., x_n), f_3(x_2, x_3, ..., x_n), x_3, x_4, ..., x_n),$$

which contradicts (19). Thus the operations $f, g, x_3, x_4, \ldots, x_n$ are dependent in $\mathfrak{A}^{(n)}$. Let k be the least integer ≥ 3 such that $f, g, x_3, x_4, \ldots, x_k$ are dependent and $f, g, x_3, x_4, \ldots, x_{k-1}$ are independent. Such an integer exists because of the independence of f and g. Since $\mathfrak{A}^{(n)}$ is a v^* -algebra whenever $n \leq \dim \mathfrak{A}$, we can find an operation $h_1 \in \mathcal{A}^{(k-1)}$ such that

$$x_k = h_1(f(x_1, x_2, ..., x_n), g(x_1, x_2, ..., x_n), x_3, x_4, ..., x_{k-1}).$$

Setting $x_1 = x_2$ into the last equation we obtain the following one:

$$x = h_1(f_2(x_2, x_3, ..., x_n), f_2(x_2, x_3, ..., x_n), x_3, x_4, ..., x_{k-1}),$$

which contradicts the independence of $f_2, x_3, x_4, ..., x_n$. Thus we have proved that case I is impossible.

Now consider the following case:

II. The systems $f_2, x_3, x_4, ..., x_n$ and $f_3, x_2, x_4, ..., x_n$ both consist of dependent elements of $\mathfrak{A}^{(n)}$.

If $f, g, x_3, x_4, ..., x_n$ are independent, then they form a basis of $\mathfrak{A}^{(n)}$. There is then an operation $h_2 \in A^{(n)}$ such that

$$x_2 = h_2(f(x_1, x_2, ..., x_n), g(x_1, x_2, ..., x_n), x_3, x_4, ..., x_n)$$

Substituting $x_1 = x_2$ into this equation we obtain the following one:

$$(20) x_2 = h_2(f_2(x_2, x_3, ..., x_n), f_2(x_2, x_3, ..., x_n), x_3, x_4, ..., x_n).$$

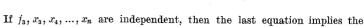
By II, $f_2, x_3, x_4, ..., x_n$ are dependent, which implies that the operation f_2 does not depend on the variable x_2 . Hence and from (20) we get a contradiction.

Now let us assume that the operations $f, g, x_3, x_4, \ldots, x_n$ are dependent. Since the operation g depends on the variable x_1 , the operations g, x_3, x_4, \ldots, x_n are independent. Hence it follows that there exists an operation $h_3 \in A^{(n-1)}$ such that

$$(21) f(x_1, x_2, ..., x_n) = h_3(g(x_1, x_2, ..., x_n), x_3, x_4, ..., x_n).$$

Substituting $x_1 = x_3$ into this equation we get the formula

$$f_3(x_2, x_3, ..., x_n) = h_3(f_3(x_2, x_3, ..., x_n), x_3, x_4, ..., x_n).$$



following one:

$$g(x_1, x_2, ..., x_n) = h_0(g(x_1, x_2, ..., x_n), x_2, x_3, ..., x_n)$$

which, by virtue of (21), contradicts the independence of f and g. Thus, $f_3, x_3, x_4, \ldots, x_n$ are dependent. On the other hand, by II, $f_3, x_2, x_4, \ldots, x_n$ are also dependent. Hence, by a simple reasoning we infer that the operation f_3 does not depend on the variables x_2 and x_3 . If $g, x_1, x_3, x_4, \ldots, x_n$ are dependent, then by virtue of the independence of g, x_3, x_4, \ldots, x_n , there is an operation $h_4 \in A^{(n-1)}$ such that

$$x_1 = h_4(g(x_1, x_2, ..., x_n), x_3, x_4, ..., x_n).$$

Substituting $x_1 = x_2$ into this equation we get the formula

$$(22) x_2 = h_4(f_2(x_2, x_3, ..., x_n), x_3, x_4, ..., x_n).$$

By II the operation f_2 does not depend on the variable x_2 . Thus, the right-hand side of (22) does not depend on x_2 , which gives a contradiction. Consequently, the operations $g, x_1, x_3, x_4, ..., x_n$ are independent and, consequently, form a basis of the algebra $\mathfrak{A}^{(n)}$. Let h_5 be an operation from $A^{(n)}$ such that

$$x_2 = h_5(g(x_1, x_2, ..., x_n), x_1, x_3, x_4, ..., x_n).$$

Substituting $x_1 = x_3$ into this equation we get the following one:

$$(23) x_2 = h_5(f_3(x_2, x_3, ..., x_n), x_3, x_3, x_4, ..., x_n).$$

Since f_3 does not depend on the variable x_2 , the right-hand side of (23) is also independent on x_2 , which is impossible. This completes the proof of the dependence of the operations f and g.

We have assumed that the operation g depends on the variable x_1 . Consequently, $g \in A^{(n,0)}$ and we can find an operation $h_6 \in A^{(1)}$ such that

(24)
$$f(x_1, x_2, ..., x_n) = h_6(g(x_1, x_2, ..., x_n)).$$

Setting $x_1 = x_2$ or $x_1 = x_3$ into the last equation we obtain the relation

$$f_j(x_2, x_3, ..., x_n) = h_0(f_j(x_2, x_3, ..., x_n))$$
 $(j = 2 \text{ or } 3),$

which implies $h_6(x) = x$ provided at least one of the operations f_2 and f_3 is not constant. Hence and from (24) we obtain the assertion of our Lemma in the case where at least one of the operations f_2 and f_3 is not constant.

Finally consider the case where the operations f_2 and f_3 are both constant. Since $A^{(3)} \neq A^{(3,1)}$ by Lemma 2, the class $A^{(3)}$ contains a quasisymmetric operation s. Putting

$$(25) f_0(x_1, x_2, ..., x_n) = s(f(x_1, x_2, ..., x_n), x_2, x_3),$$

(26)
$$g_0(x_1, x_2, ..., x_n) = s (g(x_1, x_2, ..., x_n), x_2, x_3)$$

we have the equation $f_0(x_1, x_2, ..., x_n) = g_0(x_1, x_2, ..., x_n)$ whenever $x_1 = x_2$ or $x_1 = x_3$. Moreover, $f_0(x_2, x_2, x_3, ..., x_n) = s(a, x_2, x_3)$, where $a = f_2(x_2, x_3, ..., x_n)$ is an algebraic constant. Hence, by (6), $f_0(x_2, x_2, a, x_4, ..., x_n) = x_2$, which shows that $f_0(x_2, x_2, x_3, ..., x_n)$ is not an algebraic constant. Thus, by the first part of the proof, $f_0 = g_0$. By virtue of (24), (25) and (26) this equation can be rewritten in the form

$$(27) s(h_6(g(x_1, x_2, ..., x_n), x_2, x_3)) = s(g(x_1, x_2, ..., x_n), x_2, x_3).$$

Since $g(x_1, x_2, ..., x_n)$ depends on the variable x_1 , the operations g, x_2 and x_3 are independent and, consequently, equation (27) yields

$$s(h_6(x_1), x_2, x_2) = s(x_1, x_2, x_3)$$
.

Substituting $x_3 = x_2$ into this equation we obtain $h_6(x_1) = x_1$, which together with (24) completes the proof of the Lemma.

LEMMA 4. If $A^{(3)} \neq A^{(3,1)}$ then for any quasi-symmetric operation s and for all $x_1, x_2, x_3, x_4 \in A$ the following equations are true:

$$(28) s(x_1, x_2, x_3) = s(x_2, x_1, x_3),$$

(29)
$$f(s(x_1, x_2, x_3), x_3) = s(f(x_1, x_3), f(x_2, x_3), x_3)$$
 for any $f \in \widetilde{A}^{(2)}$,

(30)
$$f(x_1, x_2, x_3) = s(f(x_1, x_1, x_3), f(x_1, x_2, x_1), x_1)$$
 for any $f \in \widetilde{A}^{(3)}$,

$$(31) s(s(x_1, x_2, x_3), x_4, x_3) = s(x_1, s(x_2, x_4, x_3), x_3).$$

Proof. From formula (6) it follows that equation (28) holds whenever $x_3 = x_1$ or $x_3 = x_2$. Thus, by Lemma 3, it holds for all $x_1, x_2, x_3 \in A$. Further, from the equations

$$\begin{split} f\left(s\left(x_{1},\,x_{2},\,x_{1}\right),\,x_{1}\right) &= f\left(x_{2},\,x_{1}\right)\,,\\ s\left(f\left(x_{1},\,x_{1}\right),\,f\left(x_{2},\,x_{1}\right),\,x_{1}\right) &= s\left(x_{1},\,f\left(x_{2},\,x_{1}\right),\,x_{1}\right) = f\left(x_{2},\,x_{1}\right)\,,\\ f\left(s\left(x_{1},\,x_{2},\,x_{2}\right),\,x_{2}\right) &= f\left(x_{1},\,x_{2}\right)\,,\\ s\left(f\left(x_{1},\,x_{2}\right),\,f\left(x_{2},\,x_{2}\right),\,x_{2}\right) &= s\left(f\left(x_{1},\,x_{2}\right),\,x_{2},\,x_{2}\right) = f\left(x_{1},\,x_{2}\right)\,,\end{split}$$

where $f \in \widetilde{A}^{(2)}$, it follows that equation (29) holds for $x_3 = x_1$ and $x_3 = x_2$, which implies, in view of Lemma 3, that it holds for all x_1 , x_2 and x_3 .

Further, taking into account formula (6), we have, for every $f \in \widetilde{A}^{(8)}$, the equations

$$s[f(x_2, x_2, x_3), f(x_2, x_2, x_2), x_2] = f(x_2, x_2, x_3),$$

$$s[f(x_3, x_3, x_3), f(x_3, x_2, x_3), x_3] = f(x_3, x_2, x_3),$$

which show that equation (30) holds for $x_1 = x_2$ and $x_1 = x_3$. Thus, by Lemma 3, equation (30) holds for all x_1 , x_2 and x_3 .

In the proof of equation (31) we distinguish two cases. First let us assume that $\dim\mathfrak{A}\geqslant 4$. Taking into account formula (6) we have the equations

$$\begin{split} s\left(s\left(x_{1},\,x_{2},\,x_{2}\right),\,x_{4},\,x_{2}\right) &= s\left(x_{1},\,x_{4},\,x_{2}\right)\,,\\ s\left(x_{1},\,s\left(x_{2},\,x_{4},\,x_{2}\right),\,x_{2}\right) &= s\left(x_{1},\,x_{4},\,x_{2}\right)\,,\\ s\left(s\left(x_{1},\,x_{2},\,x_{4}\right),\,x_{4},\,x_{4}\right) &= s\left(x_{1},\,x_{2},\,x_{4}\right)\,,\\ s\left(x_{1},\,s\left(x_{2},\,x_{4},\,x_{4}\right),\,x_{4}\right) &= s\left(x_{1},\,x_{2},\,x_{4}\right)\,, \end{split}$$

which imply that equation (31) holds for $x_3 = x_2$ and $x_3 = x_4$. Hence, by Lemma 3, we get equation (31) for all x_1, x_2, x_3 and x_4 .

Finally let us suppose that $\dim \mathfrak{A} = 3$. If x_3 is not an algebraic constant in \mathfrak{A} , then we have one of the cases

$$x_1 = f_1(x_2, x_3, x_4), \quad x_2 = f_2(x_1, x_3, x_4), \quad x_4 = f_4(x_1, x_2, x_3),$$

where $f_1, f_2, f_4 \in A^{(8)}$ and equation (31) can be written in one of the following forms:

$$(32) \quad s(s(f_1(x_2, x_3, x_4), x_2, x_3), x_4, x_3) = s(f_1(x_2, x_3, x_4), s(x_2, x_4, x_3), x_3),$$

$$(33) \quad s(s(x_1, f_2(x_1, x_3, x_4), x_3), x_4, x_3) = s(x_1, s(f_2(x_1, x_3, x_4), x_4, x_3), x_3),$$

$$(34) \quad s(s(x_1, x_2, x_3), f_4(x_1, x_2, x_3), x_3) = s(x_1, s(x_2, f_4(x_1, x_2, x_3), x_3), x_3).$$

From (6) we get the equations

$$\begin{split} s\left(s\left(f_{1}(x_{2},\,x_{2},\,x_{4}),\,x_{2},\,x_{2}\right),\,x_{4},\,x_{2}\right) &= s\left(f_{1}(x_{2},\,x_{2},\,x_{4}),\,x_{4},\,x_{2}\right),\\ s\left(f_{1}(x_{2},\,x_{2},\,x_{4}),\,s\left(x_{2},\,x_{4},\,x_{2}\right),\,x_{2}\right) &= s\left(f_{1}(x_{2},\,x_{2},\,x_{4}),\,x_{4},\,x_{2}\right),\\ s\left(s\left(f_{1}(x_{2},\,x_{4},\,x_{4}),\,x_{2},\,x_{4}\right),\,x_{4},\,x_{4}\right) &= s\left(f_{1}(x_{2},\,x_{4},\,x_{4}),\,x_{2},\,x_{4}\right),\\ s\left(f_{1}(x_{2},\,x_{4},\,x_{4}),\,s\left(x_{2},\,x_{4},\,x_{4}\right),\,x_{2},\,x_{4}\right),\,x_{2},\,x_{4}\right), \end{split}$$

which show that (32) holds for $x_3 = x_2$ and $x_3 = x_4$. Applying Lemma 3 we infer that (32) holds for all x_2 , x_3 and x_4 .

Further, from (6) we obtain the equalities

$$s(s(x_1, f_2(x_1, x_4, x_4), x_4), x_4, x_4) = s(x_1, f_2(x_1, x_4, x_4), x_4),$$

$$s(x_1, s(f_2(x_1, x_4, x_4), x_4, x_4), x_4) = s(x_1, f_2(x_1, x_4, x_4), x_4),$$

$$s(s(x_1, f_2(x_1, x_1, x_4), x_1), x_4, x_1) = s(f_2(x_1, x_1, x_4), x_4, x_1),$$

$$s(x_1, s(f_2(x_1, x_1, x_4), x_4, x_1), x_1) = s(f_2(x_1, x_1, x_4), x_4, x_4),$$

which show that (33) holds for $x_3 = x_4$ and $x_3 = x_1$. Consequently, by Lemma 3, it holds for all x_1 , x_3 and x_4 .

Finally, by (6), we have the equations

$$\begin{split} s\left(s\left(x_{1},\,x_{2},\,x_{2}\right),\,f_{4}(x_{1},\,x_{2},\,x_{2}),\,x_{2}\right) &= s\left(x_{1},\,f_{4}(x_{1},\,x_{2},\,x_{2}),\,x_{2}\right),\\ s\left(x_{1},\,s\left(x_{2},\,f_{4}(x_{1},\,x_{2},\,x_{2}),\,x_{2}\right),\,x_{2}\right) &= s\left(x_{1},\,f_{4}(x_{1},\,x_{2},\,x_{2}),\,x_{2}\right),\\ s\left(s\left(x_{1},\,x_{2},\,x_{1}\right),\,f_{4}(x_{1},\,x_{2},\,x_{1}),\,x_{1}\right) &= s\left(x_{2},\,f_{4}(x_{1},\,x_{2},\,x_{1}),\,x_{1}\right),\\ s\left(x_{1},\,s\left(x_{2},\,f_{4}(x_{1},\,x_{2},\,x_{1}),\,x_{1}\right),\,x_{1}\right) &= s\left(x_{2},\,f_{4}(x_{1},\,x_{2},\,x_{1}),\,x_{1}\right),\\ s\left(x_{1},\,s\left(x_{1},\,x_{2},\,x_{1}\right),\,x_{1}\right) &= s\left(x_{2},\,f_{4}(x_{1},\,x_{2},\,x_{1}),\,x_{1}\right),\\ s\left(x_{1},\,x_{2},\,x_{1}\right),\,x_{1}\left(x_{1},\,x_{2},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2},\,x_{1}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\,x_{2}\left(x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,x_{2}\right),\\ s\left(x_{1},\,$$

which show that (34) holds for $x_3 = x_2$ and $x_3 = x_1$. Consequently, by Lemma 3, it holds for all x_1 , x_2 and x_3 . Thus we have proved equation (31) if x_3 is not an algebraic constant.

Now let us suppose that x_3 is an algebraic constant. Then equation (31) can be written in the form

$$(35) s(s(x_1, x_2, c), x_4, c) = s(x_1, s(x_2, x_4, c), c).$$

where $c \in A^{(0)}$. Let us consider an auxilliary equation

$$(36) s(s(x_1, x_2, x_3), x_2, x_3) = s(x_1, s(x_2, x_2, x_3), x_3).$$

From (6) we get the formulas

$$\begin{split} s\left(s(x_1,\,x_2,\,x_1),\,x_2,\,x_1\right) &= s(x_2,\,x_2,\,x_1)\;,\\ s\left(x_1,\,s(x_2,\,x_2,\,x_1),\,x_1\right) &= s(x_2,\,x_2,\,x_1)\;,\\ s\left(s(x_1,\,x_2,\,x_2),\,x_2,\,x_2\right) &= x_1\;,\\ s\left(x_1,\,s(x_2,\,x_2,\,x_2),\,x_2\right) &= x_1\;, \end{split}$$

which show that (36) holds for $x_3 = x_1$ and $x_3 = x_2$. Hence, by Lemma 3, we infer that (36) holds for all x_1 , x_2 and x_3 . From (28) and (36) we obtain the equations

$$s(s(x_1, x_2, c), x_1, c) = s(x_1, s(x_2, x_1, c), c),$$

$$s(s(x_1, x_2, c), x_2, c) = s(x_1, s(x_2, x_2, c), c),$$

which imply that (35) holds for $x_4 = x_1$ and $x_4 = x_2$. Consequently, by Lemma 3, equation (35) holds for all x_1 , x_2 and x_4 . Thus (31) holds also for three-dimensional algebras, which completes the proof of the Lemma.

In the sequel we shall denote by \mathcal{K} the class $\widetilde{A}^{(2)}$. Elements of \mathcal{K} will be denoted by small Greek letters: λ , μ , ν ,...

LEMMA 5. If $A^{(3)} \neq A^{(3,1)}$, then ${\mathfrak K}$ is a field with respect to the operations

(37)
$$(\lambda + \mu)(x_1, x_2) = s(\lambda(x_1, x_2), \mu(x_1, x_2), x_2),$$

(38)
$$(\lambda \cdot \mu)(x_1, x_2) = \lambda (\mu(x_1, x_2), x_2),$$

where s is a quasi-symmetric algebraic operation.

Proof. First of all we remark that the existence of an algebraic quasi-symmetric operation follows from Lemma 2.

We define the zero-element and the unit element by the following formulas

$$0(x_1, x_2) = x_2, \quad 1(x_1, x_2) = x_1.$$

Obviously, $0 \neq 1$. From (6) and (37) it follows for every $\lambda \in \mathcal{K}$ that

$$(\lambda+0)(x_1, x_2) = s(\lambda(x_1, x_2), x_2, x_2) = \lambda(x_1, x_2).$$

Thus $\lambda + 0 = \lambda$ for every $\lambda \in \mathcal{K}$. Further,

$$(\lambda \cdot 1)(x_1, x_2) = \lambda(x_1, x_2) = (1 \cdot \lambda)(x_1, x_2)$$

which implies $\lambda \cdot 1 = 1 \cdot \lambda = \lambda$ for every $\lambda \in \mathcal{K}$.

The following formula is a direct consequence of (38)

$$\lambda \cdot (\mu \cdot \nu) = (\lambda \cdot \mu) \cdot \nu \quad (\lambda, \mu, \nu \in \mathcal{K}).$$

Since, by (6), the operation $s(x_1, x_3, x_2)$ depends on the variable x_3 , the operations x_1, x_2 and $s(x_1, x_3, x_2)$ treated as elements of $\mathfrak{A}^{(8)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(8)}$. Thus there exists an operation $q \in A^{(8)}$ such that

(39)
$$x_3 = g(x_1, x_2, s(x_1, x_3, x_2)).$$

Hence we get the equation

$$s(x_1, g(x_1, x_2, s(x_1, x_3, x_2)), x_2) = s(x_1, x_3, x_2),$$

which, by the independence of x_1, x_2 and $s(x_1, x_3, x_2)$, implies

$$(40) s(x_1, g(x_1, x_2, x_2), x_2) = x_2.$$

By (39) $\hat{g}(x) = x$, i.e. $g \in \widetilde{A}^{(3)}$. Given $\lambda \in \mathcal{H}$, we put $-\lambda(x_1, x_2) = g(\lambda(x_1, x_2), x_2, x_2)$. Taking into account (40) we have the equation

$$s(\lambda(x_1, x_2), -\lambda(x_1, x_2), x_2) = x_2,$$

which, by (37), implies $\lambda + (-\lambda) = 0$ for every $\lambda \in \mathcal{K}$.

Let $\lambda \neq 0$, i.e. let $\lambda(x_1, x_2)$ depend on the variable x_1 . Then the operations $\lambda(x_1, x_2)$ and x_2 treated as elements of the algebra $\mathfrak{A}^{(2)}$ are independent and, consequently, form a basis of $\mathfrak{A}^{(2)}$. Thus there is an operation $\lambda^{-1} \in \mathcal{A}^{(2)}$ such that

(41)
$$x_1 = \lambda^{-1}(\lambda(x_1, x_2), x_2).$$

Setting $x_2 = x_1$ into the last equation we obtain the formula $x_1 = \lambda^{-1}(x_1, x_1)$ which shows that $\lambda^{-1} \in \mathcal{K}$. Further, from (41) we get the equation

$$\lambda(x_1, x_2) = \lambda(\lambda^{-1}(\lambda(x_1, x_2), x_2), x_2)$$

which, by the independence of $\lambda(x_1, x_2)$ and x_2 implies

$$x_1 = \lambda(\lambda^{-1}(x_1, x_2), x_2).$$

This equation and (41) can be written in the form $\lambda^{-1} \cdot \lambda = \lambda \cdot \lambda^{-1} = 1$. Taking into account assertions (28), (29) and (31) of Lemma 4, we have the equations

$$\begin{split} (\lambda + \mu)(x_1, x_2) &= s \left(\lambda(x_1, x_2), \, \mu(x_1, x_2), \, x_2 \right) \\ &= s \left(\mu(x_1, x_2), \, \lambda(x_1, x_2), \, x_2 \right) = (\mu + \lambda)(x_1, x_2), \\ \left((\lambda + \mu) + \nu \right)(x_1, x_2) &= s \left(s \left(\lambda(x_1, x_2), \, \mu(x_1, x_2), \, x_2 \right), \, \nu(x_1, x_2), \, x_2 \right) \\ &= s \left(\lambda(x_1, x_2), \, s \left(\mu(x_1, x_2), \, \nu(x_1, x_2), \, x_2 \right), \, x_2 \right) = (\lambda + (\mu + \nu))(x_1, x_2), \\ \left(\lambda \cdot (\mu + \nu) \right)(x_1, x_2) &= \lambda \left[s \left(\mu(x_1, x_2), \, \nu(x_1, x_2), \, x_2 \right), \, x_2 \right) \\ &= s \left(\lambda(\mu(x_1, x_2), \, x_2), \, \lambda(\nu(x_1, x_2), \, x_2), \, x_2 \right) = (\lambda \cdot \mu + \mu + \lambda \cdot \nu)(x_1, x_2), \end{split}$$

which imply

$$\lambda + \mu = \mu + \lambda$$
, $(\lambda + \mu) + \nu = \lambda + (\mu + \nu)$, $\lambda \cdot (\mu + \nu) = \lambda \cdot \mu + \lambda \cdot \nu$

for every $\lambda, \mu, \nu \in \mathcal{K}$.

Finally the following equations are a direct consequence of definitions (37) and (38)

$$\begin{aligned} \left((\mu + \nu) \cdot \lambda \right) (x_1, x_2) &= s \left(\mu \left(\lambda(x_1, x_2), x_2 \right), \nu \left(\lambda(x_1, x_2), x_2 \right), x_2 \right) \\ &= (\mu \cdot \lambda + \nu \cdot \lambda) (x_1, x_2). \end{aligned}$$

Thus $(\mu + \nu) \cdot \lambda = \mu \cdot \lambda + \nu \cdot \lambda$ for every $\lambda, \mu, \nu \in \mathcal{K}$, which completes the proof.

LEMMA 6. If $A^{(3)} \neq A^{(3,1)}$, then A is a linear space over $\mathcal K$ with respect to the operations

$$x+y = s(x, y, \Theta) \quad (x, y \in A),$$

$$\lambda \cdot x = \lambda(x, \Theta) \quad (\lambda \in \mathcal{K}, x \in A),$$

where Θ is an element of $A^{(0)}$ if $A^{(0)} \neq 0$ and is an arbitrary element of A if $A^{(0)} = 0$.

Proof. The element θ is the zero-element of A. In fact, according to (6), $x+\theta=s(x,\,\theta,\,\theta)=x$ for every $x\in A$. Further, we have, in virtue of Lemma 4, the equations

$$\begin{split} x+y &= s(x,\,y,\,\Theta) = s(y,\,x,\,\Theta) = y+x\,,\\ (x+y)+z &= s\big(s(x,\,y,\,\Theta),\,z,\,\Theta\big) = s\big(x,\,s(y,\,z,\,\Theta),\,\Theta\big) = x+(y+z)\,,\\ \lambda\cdot(x+y) &= \lambda(s(x,\,y,\,\Theta),\,\Theta) = s\big(\lambda(x,\,\Theta),\,\lambda(y,\,\Theta),\,\Theta\big) = \lambda\cdot x + \lambda\cdot y \end{split}$$

for any $x, y, z \in A$ and $\lambda \in \mathcal{K}$. Moreover, we have the equations

$$\begin{split} \lambda \cdot (\mu \cdot x) &= \lambda \big(\mu(x,\,\Theta),\,\Theta \big) = (\lambda \cdot \mu) \cdot x\,, \\ 1 \cdot x &= x\,, \\ (\lambda + \mu) x &= s \big(\lambda(x,\,\Theta),\,\mu(x,\,\Theta),\,\Theta \big) = \lambda \cdot x + \mu \cdot x \end{split}$$

for any $x \in A$ and λ , $\mu \in \mathcal{K}$. Hence, setting -x = (-1)x, we get the equation $x + (-x) = 0 \cdot x = \Theta$. The Lemma is thus proved.

Lemma 7. Let $A^{(8)} \neq A^{(9,1)}$ and the addition in $\mathcal K$ be defined by an operation s. If the field $\mathcal K$ has the characteristic 2, then

$$(42) s(x_1, s(x_2, x_3, x_4), x_4) = s(x_1, x_2, x_3)$$

for all $x_1, x_2, x_3, x_4 \in A$.

Proof. First of all we shall prove that the operation s is symmetric, i.e. that

$$(43) s(x_1, x_2, x_3) = s(x_{i_1}, x_{i_2}, x_{i_3})$$

for every permutation i_1 , i_2 , i_3 of indices 1, 2, 3. To prove this, in view of formula (28) of Lemma 4, it suffices to show that for every system $x_1, x_2, x_3 \in \mathcal{A}$ the equation $s(x_1, x_2, x_3) = s(x_1, x_3, x_2)$ holds. In other words, according to Lemma 4, it sufficies to show that the operation $s_0(x_1, x_2, x_3) = s(x_3, x_1, x_2)$ is quasi-symmetric. We have, according to the definition of addition in \mathcal{K} , the equation

$$s_0(x_1, x_2, x_1) = s(x_1, x_1, x_2) = (1+1)(x_1, x_2) = 0(x_1, x_2) = x_2$$

and, according to (6), the equation

$$(s_0(x_2, x_1, x_1) = s(x_1, x_2, x_1) = x_2,$$

which imply the quasi-symmetry of s_0 and, consequently, the symmetry of the operation s.

Now let us suppose that $\dim \mathfrak{A} \geqslant 4$. From (6) and (43) we get the equations

$$\begin{split} s \left(x_1, \, s \left(x_2, \, x_3, \, x_2 \right), \, x_2 \right) &= s \left(x_1, \, x_3, \, x_2 \right) = s \left(x_1, \, x_2, \, x_3 \right), \\ s \left(x_1, \, s \left(x_2, \, x_3, \, x_3 \right), \, x_3 \right) &= s \left(x_1, \, x_2, \, x_3 \right), \end{split}$$

which imply that equation (42) holds for $x_4 = x_2$ and $x_4 = x_3$. Applying Lemma 3 we obtain (42) for all $x_1, x_2, x_3, x_4 \in A$.

Finally let us suppose that dim $\mathfrak{A}=3$. If x_4 is not an algebraic constant, then we have one of the cases

$$x_1 = f_1(x_2, x_3, x_4)$$
, $x_2 = f_2(x_1, x_3, x_4)$, $x_3 = f_3(x_1, x_2, x_4)$,

where $f_1, f_2, f_3 \in A^{(3)}$ and equation (42) can be written in one of the following forms:

$$(44) s(f_1(x_2, x_3, x_4), s(x_2, x_3, x_4), x_4) = s(f_1(x_2, x_3, x_4), x_2, x_3),$$

$$(45) s(x_1, s(f_2(x_1, x_3, x_4), x_3, x_4), x_4) = s(x_1, f_2(x_1, x_3, x_4), x_3),$$

$$(46) s(x_1, s(x_2, f_3(x_1, x_2, x_4), x_4), x_4) = s(x_1, x_2, f_3(x_1, x_2, x_4)).$$

From (6) and (43) we get the equations

$$\begin{split} s\left(f_{1}(x_{2},\,x_{3},\,x_{2}),\,s\left(x_{2},\,x_{3},\,x_{2}\right),\,x_{2}\right) &= s\left(f_{1}(x_{2},\,x_{3},\,x_{2}),\,x_{3},\,x_{2}\right) \\ &= s\left(f_{1}(x_{2},\,x_{3},\,x_{2}),\,x_{2},\,x_{3}\right), \\ s\left(f_{1}(x_{2},\,x_{3},\,x_{3}),\,s\left(x_{2},\,x_{3},\,x_{3}\right),\,x_{3}\right) &= s\left(f_{1}(x_{2},\,x_{3},\,x_{3}),\,x_{2},\,x_{3}\right), \end{split}$$

which show that (44) holds for $x_4 = x_2$ and $x_4 = x_3$. Thus, by Lemma 3, (44) holds for all x_2 , x_3 and x_4 .

Further, according to (6) and (43), we have the equations

$$\begin{split} s\left(x_{1}, s\left(f_{2}(x_{1}, x_{3}, x_{1}), x_{3}, x_{1}\right), x_{1}\right) &= s\left(f_{2}(x_{1}, x_{3}, x_{1}), x_{3}, x_{1}\right) \\ &= s\left(x_{1}, f_{2}(x_{1}, x_{3}, x_{1}), x_{3}\right), \\ s\left(x_{1}, s\left(f_{2}(x_{1}, x_{3}, x_{3}), x_{3}, x_{3}\right), x_{3}\right) &= s\left(x_{1}, f_{2}(x_{1}, x_{3}, x_{3}), x_{3}\right), x_{3}, \end{split}$$

which show that (45) holds for $x_4 = x_1$ and $x_4 = x_3$. Thus, by Lemma 3, equation (45) holds for all x_1 , x_3 , and x_4 .

Finally, from (6) and (43) we get the equations

$$s(x_{1}, s(x_{2}, f_{3}(x_{1}, x_{2}, x_{1}), x_{1}) = s(x_{2}, f_{3}(x_{1}, x_{2}, x_{1}), x_{1})$$

$$= s(x_{1}, x_{2}, f_{3}(x_{1}, x_{2}, x_{1})),$$

$$s(x_{1}, s(x_{2}, f_{3}(x_{1}, x_{2}, x_{2}), x_{2}) = s(x_{1}, f_{3}(x_{1}, x_{2}, x_{2}), x_{2})$$

$$= s(x_{1}, x_{2}, f_{3}(x_{1}, x_{2}, x_{2})),$$



which show that (46) holds for $x_4 = x_1$ and $x_4 = x_2$. Consequently, by Lemma 3, it holds for all x_1 , x_2 and x_4 . Thus we have proved equation (42)if x_i is not an algebraic constant.

Now let us suppose that x_4 is an algebraic constant. Then equation (42) can be written in the form

$$(47) s(x_1, s(x_2, x_3, c), c) = s(x_1, x_2, x_3),$$

where $c \in A^{(0)}$. From (6), (31) and (43) we obtain the equations

$$s(x_1, s(x_1, x_3, c), c) = s(s(x_1, x_1, c), x_3, c) = s(c, x_3, c) = x_3 = s(x_1, x_1, x_3),$$

$$s(x_1, s(x_3, x_3, c), c) = s(x_1, c, c) = x_1 = s(x_1, x_3, x_3),$$

which show that (47) holds for $x_2 = x_1$ and $x_2 = x_3$. Consequently, by Lemma 3, it holds for all x_1, x_2 and x_3 . Thus (42) holds also for threedimensional algebras, which completes the proof of the Lemma.

LEMMA 8. If $A^{(3)} \neq A^{(3,1)}$, then all operations f defined as

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k,$$

where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathcal{K}$ and $\sum_{i=1}^n \lambda_i = 1$ belong to $\widetilde{A}^{(n)}$ (n = 1, 2, ...). Moreover, each operation λ from $A^{(2)}$ is of the form

(48)
$$\lambda(x_1, x_2) = \lambda x_1 + (1 - \lambda) x_2.$$

Proof. We prove our Lemma by induction with respect to n. For n=1 the assertion is obvious. To prove our assertion for n=2 it suffices to prove formula (48). Setting $f(x_1, x_2, x_3) = \lambda(x_2, x_3)$ into formula (30) of Lemma 4 we infer that

(49)
$$\lambda(x_2, x_3) = s(\lambda(x_1, x_3), \lambda(x_2, x_1), x_1)$$

for every $x_1, x_2, x_3 \in A$. Replacing in the last formula x_2 and x_3 by x_1, x_2 by x_0 we obtain the equation

$$x_1 = s(\lambda(x_2, x_1), \lambda(x_1, x_2), x_2)$$
.

Hence, according to the definition of the unit element and addition in \mathcal{K} , we have the equation

$$\lambda(x_2, x_1) = (1 - \lambda)(x_1, x_2).$$

Setting $x_1 = \theta$ into (49) and replacing x_2 by x_1 and x_3 by x_2 we infer that

$$\lambda(x_1, x_2) = s(\lambda(\Theta, x_2), \lambda(x_1, \Theta), \Theta) = \lambda \cdot x_1 + (1 - \lambda)x_2,$$

which completes the proof of (48).

Now let us suppose that $n \geqslant 3$ and that the assertion of our Lemma is true for indices less than n. Let us consider an operation

$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k,$$

where $\sum_{k=1}^{n} \lambda_k = 1$.

First we assume that there is an index k_0 $(1 \le k_0 \le n)$ for which $\lambda_{k_0} \ne 1$. Of course, without loss of generality we may suppose that $k_0 = 1$. Put

$$g(x_1, x_2) = (1 - \lambda_1) x_1 + \lambda_1 x_2 ,$$

$$h(x_2, x_3, ..., x_n) = \sum_{k=1}^{n} \lambda_k (1 - \lambda_1)^{-1} x_k .$$

By the induction assumption $g \in \widetilde{A}^{(2)}$ and $h \in \widetilde{A}^{(n-1)}$. It is easy to verify that $f(x_1, x_2, ..., x_n) = g(h(x_2, x_3, ..., x_n), x_1)$, which implies $f \in \widetilde{A}^{(n)}$. Now let us assume that $\lambda_1 = \lambda_2 = ... = \lambda_n = 1$ and that the field \mathcal{K}

has a characteristic different from 2. Since $1 \neq 0$ and $n \cdot 1 = \sum_{k=1}^{n} \lambda_k = 1$, we have the inequality $(n-2) \cdot 1 \neq 0$. Put

$$\begin{split} g_1(x_1,\,x_2) &= 2x_1 + (n-2)x_2\,,\\ g_2(x_1,\,x_2) &= 2^{-1}x_1 + 2^{-1}x_2\,,\\ g_3(x_3,\,x_4,\,\dots,\,x_n) &= \sum_{k=1}^n \,(n-2)^{-1}x_k\,. \end{split}$$

By the induction assumption, $g_1, g_2 \in \widetilde{A}^{(2)}$ and $g_3 \in \widetilde{A}^{(n-2)}$. Since

$$f(x_1, x_2, ..., x_n) = g_1(g_2(x_1, x_2), g_3(x_3, x_4, ..., x_n)),$$

we have $f \in \widetilde{A}^{(n)}$.

Finally let us assume that $\lambda_1 = \lambda_2 = \dots = \lambda_n = 1$ and that the field $\mathcal K$ has the characteristic 2. Since $(n-2) \cdot 1 = n \cdot 1 = 1$, by the induction assumption the operation

$$f_0(x_1, x_2, ..., x_{n-2}) = \sum_{k=1}^{n-2} x_k$$

belongs to $\widetilde{A}^{(n-2)}$. Using Lemma 7 we infer that

$$\begin{split} f(x_1, x_2, \dots, x_n) &= f_0(x_1, x_2, \dots, x_{n-2}) + x_{n-1} + x_n \\ &= s \left(f_0(x_1, x_2, \dots, x_{n-2}), s(x_{n-1}, x_n, \Theta), \Theta \right) \\ &= s \left(f_0(x_1, x_2, \dots, x_{n-2}), x_{n-1}, x_n \right), \end{split}$$

which implies $f \in \widetilde{A}^{(n)}$. The Lemma is thus proved.

LEMMA 9. If $A^{(3)} \neq A^{(3,1)}$, then the set

(50)
$$A_0 = \{ f(\Theta) \colon f \in A^{(1)} \}$$

is a linear subspace of A. Moreover, for every $f \in A^{(1)}$ there exists an element $\lambda \in \mathcal{K}$ such that

(51)
$$f(x) = \lambda x + f(\Theta)$$

for any $x \in A$.

Proof. First we shall prove formula (51). By Lemma 8 the operation g defined by the formula

$$g(x_1, x_2, x_3) = x_1 - x_2 + x_3$$

belongs to $\widetilde{A}^{(3)}$. Given $f \in A^{(1)}$, we put

(52)
$$\lambda(x_1, x_2) = g(f(x_1), f(x_2), x_2) = f(x_1) - f(x_2) + x_2$$

Obviously, $\lambda(x,x)=x$ and, consequently, $\lambda\in\widetilde{A}^{(2)}$. By the definition of scalar-multiplication in A we have

$$\lambda(x,\,\Theta)=\lambda x\,.$$

On the other hand, from (52) we get the equation

$$\lambda(x, \Theta) = f(x) - f(\Theta)$$
.

Hence equation (51) follows.

Consider an arbitrary pair f_1, f_2 of operations from $A^{(1)}$ and an arbitrary pair λ_1, λ_2 of elements of \mathcal{K} . By Lemma 8, the operation

(53)
$$h(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + (1 - \lambda_1 - \lambda_2) x_3$$

belongs to $\widetilde{A}^{(3)}$. Consequently, the operation $f_3(x) = h(f_1(x), f_2(x), x)$ belongs to $A^{(1)}$. From (53) we get the equation

$$f_3(\Theta) = \lambda_1 f_1(\Theta) + \lambda_2 f_2(\Theta)$$
,

which shows that A_0 is a linear subspace of A.

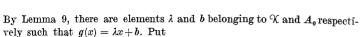
LEMMA 10. Let $A^{(3)} \neq A^{(3,1)}$ and let $f(x_1, x_2, ..., x_n) = \sum_{k=1}^{n} \lambda_k x_k + a$, where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathcal{X}$ and $a \in A_0$. If $\hat{f} \in A^{(1)}$, then $f \in A^{(n)}$.

Proof. First we assume that $\hat{f} \in A^{(1)} A^{(1,0)}$ and, consequently, \hat{f} generates all operations in $A^{(1)}$. Thus there is an operation $g \in A^{(1)}$ such that

$$g(\hat{f}(x)) = x.$$

Hence we get the equation $\hat{f}(x) = \hat{f}(g(\hat{f}(x)))$, which implies the formula

$$\hat{f}(g(x)) = x.$$



$$h(x_1, x_2, ..., x_n) = g(f(x_1, x_2, ..., x_n)) = \sum_{k=1}^n \lambda \lambda_k x_k + \lambda a + b.$$

Taking into account formula (54) we have the equation

$$\left(\sum_{k=1}^{n}\lambda\lambda_{k}\right)x+\lambda a+b=h(x)=g\left(\hat{f}(x)\right)=x,$$

which implies $\sum_{k=1}^{n} \lambda \lambda_k = 1$ and $\lambda a + b = \Theta$. Thus, by Lemma 8, $h \in \widetilde{A}^{(n)}$. Further, from (55) it follows that

$$f(x_1, x_2, ..., x_n) = f(g(f(x_1, x_2, ..., x_n))) = f(h(x_1, x_2, ..., x_n)),$$

which implies $f \in A^{(n)}$.

Now let us suppose that f is an algebraic constant. Of course, in this case $\Theta \in A^{(0)}$ and $a = \hat{f}(\Theta) \in A^{(0)}$. Put

$$f_0(x_1, x_2, \ldots, x_n, x_{n+1}) = \sum_{k=1}^n \lambda_k x_k + \left(1 - \sum_{k=1}^n \lambda_k\right) x_{n+1}.$$

By Lemma 8, the operation f_0 belongs to $\widetilde{A}^{(n+1)}$. Since, by the definition of addition in A.

$$f(x_1, x_2, ..., x_n) = s(f_0(x_1, x_2, ..., x_n, \Theta), a, \Theta),$$

the operation f belongs also to $A^{(n)}$. The Lemma is thus proved.

LEMMA 11. If $A^{(3)} \neq A^{(3,1)}$, then each operation g in $\widetilde{A}^{(3)}$ is of the form

$$g(x_1, x_2, x_3) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$$
,

where λ_1 , λ_2 , $\lambda_3 \in \mathcal{K}$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$.

Proof. First we shall prove the equation

$$s(x_1, x_2, x_3) = x_1 + x_2 - x_2.$$

By Lemma 8, the operation $x_1 + x_2 - x_3$ belongs to $\widetilde{A}^{(3)}$. Taking into account formula (6) it is very easy to verify that equation (56) holds for $x_3 = x_1$ and $x_3 = x_2$. Thus, by Lemma 3, it holds for all $x_1, x_2, x_3 \in A$. Let $g \in \widetilde{A}^{(3)}$. By Lemma 8 we have the equations

$$g(x_1, x_1, x_3) = \lambda x_1 + (1 - \lambda) x_3,$$

 $g(x_1, x_2, x_1) = \mu x_1 + (1 - \mu) x_2.$

Hence and from (30) and (56) we obtain the equation

$$\begin{split} g(x_1, \, x_2, \, x_3) &= s \big(g(x_1, \, x_1, \, x_3), \, g(x_1, \, x_2, \, x_1), \, x_1 \big) \\ &= \lambda x_1 + (1 - \lambda) \, x_3 + \mu x_1 + (1 - \mu) \, x_2 - x_1 \\ &= (\lambda + \mu - 1) \, x_1 + (1 - \mu) \, x_2 + (1 - \lambda) \, x_3 \,, \end{split}$$

which completes the proof of the Lemma.

LEMMA 12. Let dim $\mathfrak{A} = n$ $(n \ge 3)$ and $A^{(3)} \ne A^{(3,1)}$. It all operations from $A^{(n)}$ are of the form $\sum_{k=1}^{n} \lambda_k x_k + a$, where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathcal{K}$ and $a \in A_0$,

then all operations from $A^{(n+1)}$ are also of the form $\sum_{k=1}^{n-1} \lambda_k x_k + a$, where $\lambda_1, \lambda_2, \ldots, \lambda_{n+1} \in \mathcal{K} \text{ and } a \in A_0.$

Proof. Let $f \in A^{(n+1)}$. For each pair $i \neq j$ (i, j = 1, 2, ..., n+1)setting $x_i = x_i$ into $f(x_1, x_2, ..., x_{n+1})$ we obtain the operation $f_{ij} \in A^{(n)}$ of the form

$$\sum_{\substack{k=1\\k\neq 1}}^{n+1} \lambda_k(i,j) x_k + a(i,j) .$$

First we shall prove that there exist a system $\lambda_1, \lambda_2, \dots, \lambda_{n+1}$ of elements of \mathcal{K} and an element a of A_0 such that

(57)
$$\lambda_k(i,j) = \lambda_k \quad (k \neq i,j;\ i,j,k=1,2,...,n+1),$$

(58)
$$\lambda_{j}(i,j) = \lambda_{i} + \lambda_{j} \quad (i,j=1,2,...,n+1)$$

and

(59)
$$a(i,j) = a \quad (i,j=1,2,...,n+1).$$

To prove (57) it suffices to show that $\lambda_k(i,j) = \lambda_k(r,s)$ whenever $k \neq i, j, r, s$. Setting $x_m = \theta$ $(m \neq k; m = 1, 2, ..., n+1)$ into t_{ij} and t_{rs} we obtain identical expressions $\lambda_k(i,j)x_k + a(i,j)$ and $\lambda_k(r,s)x_k + a(r,s)$ respectively. Hence we get the equation $\lambda_k(i,j) = \lambda(r,s)$ and, consequently, formula (57). Thus each operation f_{ij} is of the form

$$\sum_{\substack{k=1\\k\neq i,j}}^{n+1} \lambda_k x_k + \lambda_j(i,j) x_j + a(i,j) .$$

Since $n \ge 3$, we can find a pair of indices i_0, j_0 in such a way that $i_0 \ne i, j$ and $j_0 \neq i, j$. Setting $x_i = x_j$ into $f_{i_0 j_0}$ and $x_{i_0} = x_{j_0}$ into f_{ij} we get identical expressions

$$\sum_{\substack{k=1\\k\neq i,j,i_0,j_0}}^{n+1} \lambda_k x_k + (\lambda_i + \lambda_j) x_j + \lambda_{j_0}(i_0,j_0) x_{j_0} + a(i_0,j_0)$$

and

$$\sum_{\substack{k=1\\k\neq i,j,i_0,j_0}}^{n+1} \lambda_k x_k + (\lambda_{i_0} + \lambda_{j_0}) x_{j_0} + \lambda_j(i,j) x_j + a(i,j) .$$

Hence equation (58) follows.

Finally, setting $x_1 = x_2 = ... = x_{n+1} = \theta$ into f_{ij} we obtain identical expressions a(i, j), which completes the proof of (59). Thus each operation f_{ij} is of the form

(60)
$$f_{ij}(x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_{n+1}) = \sum_{\substack{k=1 \ k \neq i,j}}^{n+1} \lambda_k x_k + (\lambda_i + \lambda_j) x_j + a$$
,

where, of course, $a \in A_0$.

Consider an arbitrary system $x_1, x_2, ..., x_{n+1}$ of elements of A. Since $\dim \mathfrak{A} = n$, at least one of these elements is generated by the remaining ones. Without loss of generality we may suppose that x_{n+1} is generated by $x_1, x_2, ..., x_n$, i.e.

(61)
$$x_{n+1} = \sum_{r=1}^{n} \mu_r x_r + b ,$$

where $\mu_1, \mu_2, ..., \mu_n \in \mathcal{K}$ and $b \in A_0$. To prove our Lemma it suffices to show that

(62)
$$f(x_1, x_2, ..., x_{n+1}) = \sum_{k=1}^{n+1} \lambda_k x_k + a,$$

where $\lambda_1, \lambda_2, \dots, \lambda_{n+1}$ and a are defined by formula (60) and x_{n+1} satisfies condition (61). We note that operation $\sum_{k=1}^{n+1} \lambda_k x + a$ is equal to $\hat{f}_{ij}(x)$. Thus, by Lemma 10, the operation $\sum_{k=1}^{n+1} \lambda_k x_k + a$ belongs to $A^{(n+1)}$.

Put

(63)
$$f_0(x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n, \sum_{r=1}^n \mu_r x_r + b).$$

To prove (62) it is sufficient to prove the equation of two algebraic operations of n variables

(64)
$$f_0(x_1, x_2, \dots, x_n) = \sum_{k=1}^n (\lambda_k + \lambda_{n+1} \mu_k) x_k + a + \lambda_{n+1} b.$$

From (60) and (63) we get the equations

$$\begin{split} f_0(x_2,\,x_2,\,x_3,\,\dots,\,x_n) &= (\lambda_1 + \lambda_2 + \lambda_{n+1}\,\mu_1 + \lambda_{n+1}\,\mu_2)\,x_2 + \\ &\quad + \sum_{k=n}^n (\lambda_k + \lambda_{n+1}\,\mu_k)\,x_k + a + \lambda_{n+1}\,b \;, \end{split}$$

which show that (64) holds for $x_1 = x_2$ and $x_1 = x_3$. Hence, by Lemma 3, we obtain equation (64) for all $x_1, x_2, ..., x_n$. Equation (62) is thus proved.

LEMMA 13. Given two ordered pairs of positive integers $\langle i,j \rangle, \langle r,s \rangle$ and an integer s_0 satisfying the conditions $i \neq j, r \neq s, s \neq s_0$ and $j \neq s_0$, there exists a chain of pairs of positive integers $\langle i_1, j_1 \rangle, \langle i_2, j_2 \rangle, ..., \langle i_n, j_n \rangle$ $(1 \leq n \leq 4)$ such that

$$\begin{split} \langle i_1,j_1\rangle &= \langle i,j\rangle \,, \qquad \langle i_n,j_n\rangle = \langle r,s\rangle \,, \\ i_k \leqslant \max(4,i,j,r,s) \,, \quad j_k \leqslant \max(4,i,j,r,s) \quad (k=1,2,...,n) \,, \\ i_k \neq j_k \quad (k=1,2,...,n) \,, \\ i_{k+1} \neq j_k \,, \quad j_{k+1} \neq i_k, j_k, s_0 \quad (k=1,2,...,n-1) \,. \end{split}$$

Proof. Put $N = \max(4, i, j, r, s)$. Without loss of generality we may assume that $\langle i, j \rangle = \langle 1, 2 \rangle$ and, consequently, $s_0 \neq 2$.

If $r \neq 2$ and $s \neq 1, 2$, then the chain $\langle 1, 2 \rangle$, $\langle r, s \rangle$ satisfies the assertion of the lemma.

Let r=2 and $s\neq 1,2$. If $s_0\neq 1$, then we denote by p an integer satisfying the conditions $p\neq s_0,\ 3\leqslant p\leqslant N$. It is easy to verify that the chain

(65)
$$\langle 1, 2 \rangle, \langle s_0, p \rangle, \langle 2, 1 \rangle, \langle 2, s \rangle$$

satisfies the assertion of the lemma. If $s_0 = 1$, then by q we denote an integer satisfying the conditions $q \neq s$, $3 \leq q \leq N$. The chain $\langle 1, 2 \rangle$, $\langle 1, q \rangle$, $\langle 2, s \rangle$ satisfies the assertion of the lemma.

Further, let r=2 and s=1. Then of course $s_0 \neq 1, 2$ and the subchain $\langle 1, 2 \rangle$, $\langle s_0, p \rangle$, $\langle 2, 1 \rangle$ of chain (65) satisfies the assertion of the lemma.

Now let us suppose that $r \neq 2$ and s = 1. If $s_0 \neq r$, then we take chain $\langle 1, 2 \rangle$, $\langle 1, r \rangle$, $\langle s_0, 2 \rangle$, $\langle r, 1 \rangle$. If $s_0 = r$, then we take the chain $\langle 1, 2 \rangle$, $\langle r, t \rangle$, $\langle r, 1 \rangle$, where t is an integer satisfying the conditions $t \neq r$, $3 \leq t \leq N$.

Finally, let $r \neq 2$ and s = 2. If r = 1, then the chain $\langle 1, 2 \rangle$ satisfies the assertion of the lemma. Therefore we may assume that $r \neq 1, 2$. If $s_0 = 1$ or $s_0 = r$, then we take the chain $\langle 1, 2 \rangle$, $\langle r, t \rangle$, $\langle r, t \rangle$, where t is an integer satisfying the conditions $t \neq r, 3 \leq t \leq N$. If $s_0 \neq 1, r$, then the chain $\langle 1, 2 \rangle$, $\langle s_0, r \rangle$, $\langle s_0, 1 \rangle$, $\langle r, 2 \rangle$ satisfies the assertion of the lemma, which completes the proof.

LEMMA 14. Let dim $\mathfrak{A} = n$ $(n \ge 3)$ and $\mathbf{A}^{(n)} = \mathbf{A}^{(n,1)}$. Then $\mathbf{A}^{(n+1)} = \mathbf{A}^{(n+1,1)}$.

Proof. Let $f \in A^{(n+1)}$. For each pair (i, j) $(i \neq j; i, j = 1, 2, ..., n+1)$ and each operation $h \in A^{(1)}$ setting $x_j = h(x_i)$ into $f(x_1, x_2, ..., x_{n+1})$ we obtain an operation f_{ij}^h of one variable.

First let us suppose that for every operation $h \in A^{(1)}$ and for every pair $\langle i,j \rangle, f_{ij}^h$ is an operation of the variable x_i . Let $\langle i_1, j_1 \rangle, \langle i_2, j_2 \rangle$ be pairs satisfying the conditions $i_2 \neq j_1$ and $j_2 \neq i_1, j_1$. Setting $x_{j_2} = h_2(x_{i_2})$ into $f_{i_1j_1}^{h_1}$ and $x_{j_1} = h_1(x_{i_1})$ into $f_{i_2j_2}^{h_2}$ we get identical expressions. Thus

$$f_{i_1j_1}^{h_1}(x_{i_1}) = f_{i_2j_2}^{h_2}(x_{i_2}).$$

Since $n+1\geqslant 4$, by Lemma 13, every two pairs $\langle i,j\rangle, \langle r,s\rangle$ $(i\neq j,r\neq s;i,j,r,s=1,2,...,n+1)$ can be connected by a chain $\langle i_1,j_1\rangle, \langle i_2,j_2\rangle,...$..., $\langle i_m,j_m\rangle$ satisfying the inequalities $i_k\neq j_k,\ i_{k+1}\neq j_k,\ j_{k+1}\neq i_k,j_k,$ $1\leqslant i_k,j_k\leqslant n+1\ (k=1,2,...,m)$. Consequently, equation (66) holds for all operations $h_1,h_2\in A^{(1)}$ and all pairs $\langle i_1,j_1\rangle, \langle i_2,j_2\rangle$. Hence we infer that there exists an algebraic constant c such that

$$f_{ij}^h(x) = c$$

for any $h \in A^{(1)}$ and any pair $\langle i, j \rangle$.

Consider a system $x_1, x_2, ..., x_{n+1}$ of elements of A. Since dim $\mathfrak{A} = n$, certainly one of these elements is generated by the remaining ones. If x_j is such an element, then $x_j = h(x_i)$ for an index i different from j because of the equation $A^{(n)} = A^{(n,1)}$. Thus, by virtue of (67),

$$f(x_1, x_2, ..., x_{n+1}) = f_{ij}^h(x_i) = c$$
,

which shows that f is a constant operation.

Now let us suppose that there exist an operation h_0 and a pair $\langle i_0, j_0 \rangle$ such that $f_{i_0j_0}^{h_0}$ depends on a variable x_{s_0} , where $s_0 \neq i_0$. Let $\langle i, j \rangle$ be a pair satisfying the condition $i \neq j_0$, $j \neq i_0$, j_0 , s_0 . Setting $x_{j_0} = h_0(x_{i_0})$ into $f_{ij}^{h_0}$ and $x_j = h(x_i)$ into $f_{ij_0}^{h_0}$ we get identical expressions. Thus f_{ij}^{h} depends only on the variable x_{s_0} and, consequently, $f_{ij}^{h} = f_{i_0j_0}^{h_0}$. Since $n+1 \geq 4$, by Lemma 13, every two pairs $\langle i, j \rangle$, $\langle r, s \rangle$ satisfying the inequalities $i \neq j$, $r \neq s$, j, $s \neq s_0$ can be connected by a chain $\langle i_1, j_1 \rangle$, $\langle i_2, j_2 \rangle$,, $\langle i_m, j_m \rangle$ with following properties $i_k \neq j_k$, $i_{k+1} \neq j_k$, $j_{k+1} \neq i_k$, j_k , $j_k \neq s_0$, $1 \leq i_k$, $j_k \leq n+1$ (k=1,2,...,m). Consequently, for all operations $h \in \mathcal{A}^{(1)}$ and all pairs $\langle i, j \rangle$, with $j \neq s_0$, the operation f_{ij}^h depends only on the variable x_{s_0} and

$$f_{ij}^{h}(x) = g(x),$$

where $g(x) = f_{i_0 j_0}^{h_0}(x)$.

Now consider the operations $f_{is_0}^h$. Let $f_{is_0}^h$ be an operation of the variable x_k , where of course $k \neq s_0$. Since $n+1 \geqslant 4$, we can find a pair

 $\langle i,j \rangle$, with $j \neq i, k, s_0$. Setting $x_j = h(x_i)$ into $f_{is_0}^h$ and $x_{s_0} = h(x_i)$ into f_{ij}^h we get identical expressions. But this substitution does not change the operation $f_{is_0}^h$. Thus, by (68), $f_{is_0}^h(x_k) = g(h(x_i))$ and, consequently, $f_{is_0}^h$ is an operation of the variable x_i satisfying the equation

(69)
$$f_{is_0}^h(x) = g(h(x)).$$

Now we shall prove that

$$f(x_1, x_2, ..., x_{n+1}) = g(x_{s_0}).$$

In the same way as in the first part of the proof we show that for any system $x_1, x_2, ..., x_{n+1}$ of elements of A there are indices $i, j \ (i \neq j)$ and an operation $h \in A^{(1)}$ such that $x_j = h(x_i)$. Hence and from (68) and (69) by simple reasoning we get equation (70). The lemma is thus proved.

Proof of the Theorem.

(i) Let $A^{(0)} \neq 0$ and $A^{(3)} \neq A^{(3,1)}$. By Lemma 5 and 6, there is a field $\mathcal K$ such that A is a linear space over $\mathcal K$. Now we shall prove by induction with respect to n that the class $A^{(n)}$ consists of all operations f of the form

(71)
$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k + a,$$

where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathcal{H}$, $a \in A_0$, A_0 is defined by formula (50) of Lemma 9. It should be noted that in this case we have $\Theta \in A^{(0)}$ and, consequently, by the definition of addition and scalar-multiplication in A, all operations of form (71) are algebraic.

Let n=3 and $f \in A^{(3)}$. By Lemma 9, $\hat{f}(x) = \lambda x + a$, where $\lambda \in \mathcal{K}$ and $a \in A_0$. Since each operation of form (71) is algebraic, the operation

(72)
$$g(x_1, x_2, x_3) = f(x_1, x_2, x_3) + (1 - \lambda)x_1 - a$$

is also algebraic. Moreover, $\hat{g}(x) = \hat{f}(x) + (1-\lambda)x - a = x$ and, consequently, $g \in \widetilde{A}^{(3)}$. Thus, by Lemma 11 and formula (72), the operation f is of the form (71).

Now let us suppose that $n \ge 3$ and all operations in $A^{(n)}$ are of the form (71). Consider the algebra $\mathfrak{A}^{(n)}$ of all n-ary algebraic operations. Taking into account (71) we infer that $\mathfrak{A}^{(n)}$ is a v^* -algebra of dimension n. Thus, by Lemma 12, all operations from $A^{(n+1)}$ are of form (71), which completes the proof.

(ii) Let $A^{(0)}=0$ and $A^{(3)}\neq A^{(3,1)}$. By Lemmas 5 and 6, there is a field $\mathcal K$ such that A is a linear space over $\mathcal K$. Now we shall prove by Fundamenta Mathematicae, T. LII

induction with respect to n that the class $\boldsymbol{A}^{(n)}$ consists of all operations f of the form

(73)
$$f(x_1, x_2, ..., x_n) = \sum_{k=1}^n \lambda_k x_k + a,$$

where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathcal{K}$, $\sum_{k=1}^n \lambda_k = 1$, $a \in A_0$, A_0 is defined by formula (50) of Lemma 9.

First we shall prove that each operation $h \in A^{(1)}$ is of form (73), i.e.

(74)
$$h(x) = x + a$$
, where $a \in A_0$.

From Lemma 9 we obtain the formula $h(x) = \lambda x + a$, where $\lambda \in \mathcal{K}$ and $a \in A_0$. If $\lambda \neq 1$, then, by Lemma 8, the operation

$$h_0(x_1, x_2) = (1 - \lambda)^{-1} x_1 - \lambda (1 - \lambda)^{-1} x_2$$

belongs to $\widetilde{A}^{(2)}$. Thus the composition $h_0(h(x), x)$ is an algebraic operation. But this composition is equal to $(1-\lambda)^{-1}a$, which contradicts equation $A^{(0)}=0$. Consequently, each operation $h \in A^{(1)}$ is of form (74). Hence and from Lemma 8 we infer that all operations of form (73) are algebraic.

Let n=3 and $f \in A^{(3)}$. Since $a=\hat{f}(\Theta) \in A_0$ and A_0 is a linear subspace of A, the operation h(x)=x-a belongs to $A^{(1)}$. Consequently, the operation

(75)
$$g(x_1, x_2, x_3) = f(x_1, x_2, x_3) - a$$

belongs to $A^{(3)}$. Moreover, $\hat{g}(\theta) = \hat{f}(\theta) - a = \theta$ and, consequently, by (74), $\hat{g}(x) = x$, which implies $g \in \tilde{A}^{(3)}$. Thus, from Lemma 11 and formula (75) we infer that operation f is of form (73).

Now let us suppose that $n \geqslant 3$ and all operations in $A^{(n)}$ are of form (73). Considering as in part (i) of the proof the algebra $\mathfrak{A}^{(n)}$ of n-ary algebraic operations and applying Lemma 12 we infer that all operations in $A^{(n+1)}$ are of the form

$$f(x_1, x_2, ..., x_{n+1}) = \sum_{k=1}^{n+1} \lambda_k x_k + a,$$

where $a \in A_0$. Since, by (74), $\hat{f}(x) = x + a$, we have $\sum_{k=1}^{n+1} \lambda_k = 1$, which completes the proof of assertion (ii).

(iii) Let $A^{(3)} = A^{(3,1)}$. First we shall prove by induction with respect to n that

$$A^{(n)} = A^{(n,1)}.$$

For n=3 it is supposed. Let $n \ge 3$ and let equation (76) be fulfilled. Considering, as previously, the algebra $\mathfrak{A}^{(n)}$ and applying Lemma 14, we get the equation $A^{(n+1)} = A^{(n+1,1)}$. Thus (76) holds for all integers n.

Now our assertion is a direct consequence of (76) and a theorem of Narkiewicz [7]. The Theorem is thus proved.

References

[1] E. Marczewski, A general scheme of the notions of independence in mathematics, Bulletin Acad. Pol. Sci., Série Sc. Math., Astr. et Phys. 6 (1958), pp. 731-736.

[2] — Independence in algebras of sets and Boolean algebras, Fund. Math. 48 (1960), pp. 135-145.

[3] — Independence in some abstract algebras, Bulletin Acad. Pol. Sci., Série Sc. Math., Astr. et Phys. 7 (1959), pp. 611-616.

[5] E. Marczewski and K. Urbanik, Abstract algebras in which all elements, are independent, Bulletin Acad. Pol. Sci., Série Sc. Math., Astr. et Phys. 8 (1960). pp. 291-293.

[6] W. Narkiewicz, Independence in a certain class of abstract algebras, Fund. Math. 50 (1961), pp. 333-340.

[7] — A note on v*-algebras, Fund. Math. this volume, pp. 289-290.

[8] K. Urbanik, A representation theorem for Marczewski's algebras, Fund. Math. 48 (1960), pp. 147-167.

WROCŁAW UNIVERSITY, INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 9. 5. 1962