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. = Zpe1 = Y we obtain

7).

By putting here #; = X, @ =

X=F(f(X,Y,..,Y),Y,..
From the hypothesis, f(X, Y, .., ¥)eA®) If we had /(X,Y,.., T)
= i(Y) with some h, then X = F(i(X), ¥, ..., ¥}—a contradiction;
hence f(X, Y, ..., ¥) = h(X) with a suitable / ¢ A®.

The 56t {f(2y, s Tus), Loy Bgy Bay -y D41} 18 independent in the
algebra A%V hence, as before, we obtain

By = G(f(wly Byy oy Br1)y Byy Loy -ony wlc+1)

with a suitable ¢ ¢ A%,

By putting here o, = X, 0, = ¥, @3 = ... = thgqy = Z we obtain
1 Y=6((X,Y,2,..,2),X,Z,..,7
From the hypothesis, /(X, Y, Z, ..., Z) e A®Y. If we had f(X, Y, Z, ..., Z)
=H(X), or {{(X,Y,Z, .., Z) = H(Z) with some H, then ¥ = ¢ [H(X),
X,%,..,2),0r Y=G(H(%),X,Z,.., Z) and this is impossible. Hence
HX,Y,Z,..,%) =H(Y) with a suitable H e¢A™ By setting here
Y=2% we obtain f/(X,Y,..,Y)=H(Y); but we obtained above
f(X,Y,..., Y) =h(X), whence H must be a constant function, H(Y) = ¢
for all ¥; but now from (1) we have Y = G(H(Y), X, Z,..., %)
=@Q(¢, X, Z, ..., Z)—a contradiction, because the right side of the last
equation does not depend on Y. Hence every function of A®™ depends
on at most % variables, and from the hypothesis it follows that every
function of A% depends on at most one variable, g.e.d.

The theorem just proved and theorem III of [3] imply the following

CorOLLARY. If U is an v*-algebra, AimA > 3, then W is decomposable
if and only if A® = A®D,

References

[1] E. Marczewski, A general scheme of the motions of independence in mathe-
matics, Bull. Acad. Pol. Sci., Sér. sci, math., astr. et phys. 6 (1958), pp. 731-736.

[2] — Independ and h rphisms in absiract algebras, Tund. Math. 50
(1961), pp. 45-61.

[8] W. Narkiewicz, Independence in a class of abstract algebras, Fund. Math. 50
(1962), pp. 333-340.

Regu par la Rédaction le 9. 5. 1962

A representation theorem for v*-algebras
by
K. Urbanik (Wroctaw)

By an algebra A we mean a pair (4, F) where 4 is a non-empty
set and F is a family of 4-valued functions of finitely many variables
running over A. Fis called the class of fundamental operations. The class 4
of algebraic operations is, by definition, the smallest class closed with
respect to composition, containing all fundamental operations and all
trivial operations defined by the formula

Ny, By ey ) =a (k=1,2,..,m; 0=1,2,..).

Two algebras (4, Fy) and (4, Fy) having the same class of algebraic
operations will be treated here as identical. In particular, we have the
equation (4, F) = (4, 4). Further, if the class of algebraic operations
on (A, F,) is contained in the class of algebraic operations on (4, F),
then we say that (4, F)) is a subsysiem of (4, F).

The subclass of all algebraic operations of # variables will be denoted
by A™ (n >1). Further, by A® we shall denote the set of all values of
constant algebraic operations. Elements belonging to A® will be called
algebraic constants. If 1 <k < n, then A™® ill denote the subclass
of A® consisting of all operations depending on at most % variables,
ie. f e A™® if there is an operation geA® guch that f(zy, sy .., Tn)
= g(%s,, By, - T) for a system of indices 4, 9s, ..., tx and for every
B, Zyy ey ne A. By A™ (n>1) we shall denote the subelass of 4™
containing all constant operations. The above definitions are given in
a more detailed form in [1], [2] and [4].

Following B. Marczewski [1], we say that elements of a set I (I C 4)
are independent if for each system of n different elements a, gy, ...; da
from I and for each pair of operations f, g e A™ the equation

Flary @ay ey @n) = (@5 Goy oovy )

implies that f and g are identical in . A set whose elements are nof in-
dependent will be called a set of dependent elements. An element a e A
is said to be self-dependent if the one-point set containing a is a set of
dependent elements.
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We say that an element a € A i8 generated by a set B (EC A4) if it is

the result of an algebraic operation applied to some elements in E. We

say that a set B (BC 4) is a basis of the algebra U if it is a set of inde-

pendent elements and every element from A4 is generated by B.
Following E. Marczewski we say that an algebra U is a v*-algebra

if it satisfies the following conditions:

(I) each self-dependent element is an algebraic constant,

(IT) if the elements @y, Ay, ..., an (1 = 1) are independent and the elements
Ayy oy vy oy Gpyy are dependent, then @,y 48 generated by ay, a,, ..., ay.

Condition (I) may be treated as a degenerated case (n = 0) of (IL).
The properties of v*-algebras were discussed by W. Narkiewicz [6], [7].
We note that the notion of v*-algebra is a generalization of the notion
-of Marczewski’s algebra (called by E. Marczewski v-algebra, [3], [8]). It
can be proved that every v*-algebra has a basis and all bases have the
same cardinal number, which is called the dimension of the algebra
(see [6]). In what follows by dim9% we shall denote the dimension of
a v*-algebra A.

The aim of the present paper is to give a complete description of
all v*-algebras of dimension > 3. Namely, we shall prove the following
Tepresentation theorem, which is a generalization of the representation
theorem for Marczewski’s algebras [8].

THEOREM. Let A = (4, F) be a v*-algebra of dimension > 3.

i) If A”£0 and A® = A®, then there is a field K such that A
18 a linear space over K and, further, there ewists a linear subspace A, of A
such that A is the class of all operations | defined as

n
f(mly Lay seny Bp) = Zlkwk-l— a,
i=1

where Ay Asy ey In €K and a e A,.

(i) If A9 =0 and A = A®D, then there is o field K such that A
48 a linear space over K and, further, there exists a linear subspace A, of A
such that A is the class of all operations f defined as

Fl@yy @y ooy @00) = Zlkmhﬂ' a,

k=1
n
awhere Ay, Aoy vy I €K, LE dr=1 and aed,.
=1

(iif) If A® = A, then there are a group Q of transjormations of the
set A and a subset A, of A containing all fiwed points of tramsformations

icm°®
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that are not the identity and invariant under all transformations from G
such that A is the class of all operations | defined as

P&, @y oy ita) = gl)  (1<j<<n)
or

where g €@ and a € A4,.

We note that every algebra of form (i) or (ii) is a Marczewski algebra.
Every algebra of form (iii) is a v*-algebra. Moreover, an algebra of form (iii)
is a Marczewski algebra if and only if every transformation from @ that
is not the identity has at most one fixed point in A. In particular, as
2 direct consequence of the representation theorem, we obtain the fol-
lowing corollary

() Every at least three-dimensional v*-algebra, with A® == A%V, is
a Marczewski algebra.

It should be noted that the assumption dim% > 3 of the repre-
sentation theorem is essential. Namely, for any integer & (k=0,1,2)
there exists a k-dimensional v*-algebra which is not of the form stated
in the theorem. Now we shall quote a few such counter-examples.

Let T be the set consisting of two elements, 0 and 1. Put 0/ =1
and 1’ = 0. We define three families of fundamental operations on 7.
Let F, be the class of all T-valued operations of finitely many variables
defined on 7. By F; we denote the subclass of F, consisting of all opera-
tions f satisfying the condition

f(mir a}éy ey "”;b) =fl(w17 By eeey @n) -

Further, by F, we denote subclass of F; containing all operations f for
which the equation 7(0, 0, ..., 0) = 0 holds. Put A = (T, Fy) (k= 0,1,2).
First we shall show that %, %; and %, are v*-algebras. All elements in
the algebra %A, are self-dependent and are algebraic constants, which
implies that %, is a zero-dimensional v*-algebra. Further, there is no
algebraic constant in the algebras A, and .. Thus every one-point set
in these algebras is a set of independent elements. Since the operation
f(@) = «’ is algebraie in 2, we see that the elements 0 and 1 are dependent
and condition (IT) of the definition of v*-algebras holds. Thus ¥, is a one-
dimensional »*-algebra. Finally, it is very easy to verify that the only
operations of two variables in 2, are trivial ones. Thus the elements 0
and 1 are both independent (see [5], p. 291) and, consequently, U, is
a two-dimensional v*-algebra.

Now we shall prove that the algebras %, U, and U, are not of the
form stated in the theorem. It is very easy to verify that the operation p*
of three variables defined by the formula

pH, Y, 2) = oy +yz+az (mod2)
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is algebraic in %, (see [5], p. 292) and, consequently, in A, and ¥, . Since
the operation p* depends on every variable, the algebras %, 9 and 9,
are not of form (iii). We know that the algebra 2, is a subsystem of thé
algebras U, and U;. Since every subsystem of two-element algebras of
form (i) or (ii) is a Marczewski algebra, to prove our statement it suffices
to show that A, is not a Marczewski algebra. Consider the equation
pX(#,y,2) = & depending on the variable z. Since this equation holds
whenever & =y or & = 2, it cannot be equivalent to any equation of the
form & = f(y, 2), where f is an algebraic operation in ,. Thus 9%, is
not a Marczewski algebra, which implies that the algebras 9, U, and Ay
are not of form (i) or (ii).

The idea of the proof of the representation theorem is similar to
that in [8]. Before proving the theorem we shall prove some lemmas.
It A= (4, F) is an algebra, then by U™ we shall denote the algebra
(A("), F) of all n-ary algebraic operations on U (see [4], p. 48). In all further
c?fsiderations the following statement proved in [6] plays a fundamental
réle:

If A is a v*-algebra and 1 < n < dind, then U™ 4s also a v*-algebra.

In what follows by U = (4,F) we shall denote a v*-algebra of
dimension > 3. Further, for simplicity in our considerations we shall
often write x; instead of the trivial operation e(;?), so that f(@,, 2, ..., 24)
(f e 4™) treated as an element of U™ will denote the composition
FE™, e L, ™y,

_Forany fed we denote by 7 the operation belonging to 4 defined
as f(#) = f(z,®,...,2). A™ (n>1) will denote the subclass of 4™ con-
sisting oi all operations f for which f (z) = @. A™" will denote the inter-
section A™ ~ 4™,

IevMa 1. If A® # A%, then A® 2 400,

~ Proof. Rirst let us suppose that A% s A%V, Let feAP\A®Y.
Sinee the operation f depends on both variables, the elements 1@y, 25)
and #, treated as elements of A® are independent and, consequently,

form a basis of the algebra A®. Thus, there exists an operation geA®
such that

® " @y = g(f(m,, @), “‘2) .
Hence we get the equation
f(g(f(wl; @), wz); -75'2) = f{2y, 2,) .

Taking into account the independence of f(%y, 2;) and @, we have the
equation

(2) f(!](m]: %), 372) =& .

[S9]
©
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Put B (@, 2y, B5) = f(§{21, 3,), 7). From (1) we obtain the equation

h(f(fcn Ts)y Do, -T'a) = T(g(f(wu 332)7“/‘2) ’ a's‘) = f(zy, %) ,

which shows that the operation 7 depends on at least two wvariables.
By (2) we have the equation /() = . Thus he 4% 4%,

Now let us suppose that A® = 4%V, Let fe A 4% Of course,
the operation f depends on every variable. First we shall prove that i
is not constant. Contrary to this let us assume that for every x the
equation

(3) fl@y=1a

holds, where a ¢ A?. Since there is no operation in 4% depending on both
variables, we have either f(ay, 2y, @) = fi(®) or f(a, &, o) = fo@s),
where f, and f, are operations from AV, Putting , = 2, into f(ay, @1, @)
we get, by virtue of (3), fy(#;) = @ in the first case and folz;) = @ in the
second case. Consequently,

(4) ‘ f@y, @, 25) = @ (mlym:ZEA) .

Further, since the operation f depends on every variable, the elements
2y, 2, and f(m, @, v5) treated as elements of the algebra A® are inde-
pendent and, consequently, form a Dasis of A®. Thus, there exists an
operation g e 4® such that

&Ly = g(“'l: Zay [ (@1 T2, ma)) .
Substituting », = #, = @ into the last equation, we get, in view of (4),
T3 = g(a, a,f(a,a, ma)) =g(a,a,a),

which gives a contradiction. Thus we have proved the relation fed™®,
It is well known that any operation in 4® 4™ has an inverse in the
sense of composition (see [6], Theorem 1), which is also an algebraic
operation. In other words, there exists an operation g A" such that

(3) z = g(f(@) =7 (g(@) -

Put h(zy, 2., 25) = gl(f(ml, 2, Jcs)). From (5) it follows that the operation &
depends on every variable and fi(w)=z. Thus, he A® 4%V whieh
completes the proof.

An operation s e 4® is said to Dbe gquasi-symmetric if
{6) 5@y, By, 1) = ${@ay Tyy L1) = Lo

for each x;, z, e 4.
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Lewra 2. If A% = A%, then there ewists a quasi-symmetric alge-
braic operation.

Proof. By Lemma 1 we may assume that A® 5= A%V, TFirgt let
us suppose that A® == A%V, Let fe A® A%, Of course (2, #,) and a,,
treated as elements of the algebra AP are independent and, consequen’ﬁly:
form a basis of A®. Thus, there exists an operation g, ¢ 4® such that.

(7) #y = go(@y, f (21, @)
Hence
flay, 7)) = f(gl(mzz F@y, wz)): -"72)

and, by the independence of f(xy, @) and .,
(8) b = f(.%(mza ), "”2) .
Moreover, from (7) we obtain the equation

(9) @y = gy, F(@) = o, @) «

Taking into account the independence of f(z,, #,) and #;, we can prove
in the same way the existence of an operation g, e 4A” such that

(10)
Hence

Ty = gz(mlz (@, -772)) .

flag, @) = f‘mm 92(9517 fla, -’”2)))

and, by the independence of f(z,, x,) and =,

(11) Ly = f(fcu go(21, 372)) -
Moreover, by (10),
(12) &Ly = gE(mH f(ml)) = a1, %) .

Setting s{wy, 25, 23) = f(0u(ea, ,), ga(s, #,)) we have, according to (8),
(9); (11) and (12), the equations ’

8@y, 2y, 4) = j(gl(xlf 1), 9oy, me)) = f(wla Go(1, '-1»‘2)) = T ,

8(@y, @1y @) = Flgo(oy, 23), goley, @)} = 1 (gulwy, 2), o) =, .

Consequently, s is a quasi-symmetric operation.
Now let us suppose that

(13) AP = o0,

We shall prove that every operation belonging to A®\A® is quasi-

symmetrie. To prove this it suffices to show that for every fe Z(S’\Z‘S’l)

and 2, 2, ¢ 4 the equation

(14) Ho, oy, 25) = @y

icm°®
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holds. Contrary to this statement, let us suppose that f(@y, o1, %) 7 =
for a pair s, o5 ¢ A. Hence and from (13) we get the equation

(15) flwy, @y, a5) = 2y .

Since, by (13), each operation from A*N\A®" depends on every variable,
the elements @,, ¢, and f(a,, #,, z5) treated as elements of the algebra A
are independent and, consequently, form a basis of AP, Thus, there
exists an operation ¢ e A® such that

L3 =g(m19 Dy f(wly Loy a'a)) .
Setting @, = #, and taking into account (15) we obtain the equation
Ty = g(‘”u @y, fm1, 24, ws)) = g(%y, T1, 1) »

which gives a contradiction. Formula (14) and, consequently, Lemma.
2 are thus proved.

Leuma 3. Let A® = 4%Y, 3<n< &im¥N and f,g9cA™. If the
equation f(Ty, Ty vy Tn) = (D1, Bz «.vy Bn) holds whenever o, = @, 01 2 = 3,
then f =g in A

Proof. If operations f and g are both independent of the variable z,,
then the assertion of the Lemma is obvious. Therefore we may suppose
without loss of generality that the operation ¢ depends on the variable z, .

First we shall prove that the operations f and ¢ are dependent in
the algebra U™, Contrary to this, let us suppose that they are independent:
in A™. Put
(16)

an

Folas @y vy Tn) = (o) Toy Ty oovy Tn)
Falas @y ovy Bn) = f( @5y Bay B3y ooey Ln)

Consider first the following case.

I. At least one of the sysiems fa, Tg, sy vy Tn N foy Boy Byy ooey Tn I8
independent in A™.

Without loss of generality we may assume that the system
Fay @y By oo, Ty 18 independent. If 7, g, @4, 2y, -.., T are also independent
in Y™, then they form a basis of the algebra A™, Since, by Lemma 2,
the class 4® contains a quasi-symmetric operation s, we can find an

operation % e A™ such that
(18)  s(@n, 23, 1) = h(f(wu By ooy Tn)y G{Tyy Doy «oey Tu)y Ty Bay oovy w,.) .

Substituting ;, = «, into the last equation we get, in view of (6) and (16),
the formula

&g = h(fz(wz: Dy vy Bn)y folBoy Doy ooy T}y Loy Bas ooes 5”1!) .
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Sinee fa, &3, £y, -y @n arve independent in U™, we have the equation
19) 2 = B{fo(@s, Bay vors Bn); fo(@as Ty oy Tn) s By Bay eov Tn)
Now substituting @, = #, into (18) we obtain, in view of (6) and (17),
the equation

By = fo(®ay @y vees Bn), Folny Bay vovy Tn)y Dy Tay oney Tn)

which contradicts (19). Thus the operations f, g, @3, @4, ..., Tn are depen-
dent in A™. Let % be the least integer >3 such that 7, g, oy, ¥y, ...y 2x
are dependent and f, g, %5, %4, ..., ®x—1 are independent. Such an integer
exists because of the independence of f and g. Since A™ is a v*-algebra
whenever n < dim%, we can find an operation %, ¢ A% such that

Ty = hx(f(”u Ly veey Tn)y G(Zys Doy orvy Tn)y Loy By vens wk—l) .
Setting @, = x, into the last equation we obtain the following ome:
& = 7"1(fz(5'72; By eony Bn)y Fo(@oy Tay oy Tn)y Bay Bay vovy f"'k—l) )

which contradicts the independence of f,, @5, By, ..., . Thus we have
proved that case I is impossible.

Now consider the following case:

II. The systems fu, @gy Tyy ooy @n ONA f3, Loy By, ..., 2n Doth consist 'of
dependent elements of A,

I£ f, g, @y, @y, ..., ¥y are independent, then they form a basis of A,
There is then an operation h, ¢ 4™ such that

&Ly = hz(f(xn Doy ey )y G{@ry Loy ooy Tn)y By Xy, --':w%) .
Substituting «; = , into this equation we obtain the following one:
(20) Ly = hz(fz(mzy Dy eoey Tn) s [o(oy Bag ey Tn) s Lay Bay ovy .’L‘n) .

By II, f,, @3, @, ..., @» are dependent, which implies that the operation f,
does not depend on the variable #,. Hence and from (20) we get a con-
tradiction.

Now let us assume that the operations f, g, 2y, 24, ..., #x are depen-
dent. Since the operation g depends on the variable x,, the operations
gy &gy Dy, ..., Tn, are independent. Hence it follows that there exigts an
operation fy e A such that

(21) F(@yy Doy oy Tn) = hs(g(mu Doy ooy Bn)y gy Tay ooy wﬂ) .
Substituting @, = «; into this equation we get the formula

fo(@ay gy oy @n) = ha(fa(“’z; Dyy oy Bn)y By Lay voey wﬂ) .

icm°®
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If fa, @y, X4y ..., 2 ave independent, then the last equation implies the

Gy, Loy ooy iTp) = hs(!](l’u Lyy ey Tn)y Ly Ly oney ‘T%) ;

which, by virtue of (21), contradicts the independence of f and ¢. Thus,
fas T35 &y ooy Tn ave dependent. On the other hand, by II, f,, @y, %y, ...\ &0
are also dependent. Hence, by a simple reasoning we infer that the oper-
ation f; does not depend on the variables z, and a;. If ¢, a;, 2y, 2y, ..., 2y
are dependent, then by virtue of the independence of g, a3, 2y, ..., ¥,
there is an operation h, e A"V such that

Iy = hy(g (@ry By, ey Bn), s, g, >$ﬂ) .
Substituting x, = x, into this equation we get the formula

(22) &£y = 734(7‘2(‘1‘27 Lgy wey L)y Xy Ly, '-'741'11) -

By II the operation f, does not depend on the variable z,. Thus,
the right-hand side of (22) does not depend on z,, which gives a contra-
diction. Consequently, the operations ¢, x;, x5, #,, ..., 2, are independent
and, consequently, form a basis of the algebra ™. Let &; be an operation
from 4™ such that

&Ly = hs(g(-nn Day eeey Tn)y L1y Ly Lgy ony Iﬂ) -

Substituting x; = x, into this equation we get the following one:

(23) Ly = ha(fs(l’a: Lyy veny Tn)y Lyy Tyy Lyy oens ”"n) .

Since f, does not depend on the variable x,, the right-hand side of (23)
is also independent on &, which is impossible. This completes the proof
of the dependence of the operations f and g¢.

We have assumed that the operation g depends on the variable 2.
Consequently, g¢ 4™ and we can find an operation % e A” such that

(24) F@ys @y ooy @n) = (g (@15 @ay ooy 2a)) -
Setting x, = x, or », = a3 into the last equation we obtain the relation

Fi(day Lsy ooy Tn) = hs(fi(mzy Tgy eeesy 'Tn)) (j=2 or 3),

which implies f,(x) = & provided at least one of the operations 7, and f;
is not constant. Hence and from (24) we obtain the assertion of our
Lemma in the case where at least one of the operations f, and f; is not
constant.

Fundamenta Mathematicae, T. LII 20
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Finally consider the case where the operations f, and f, are both

icm°®

constant. Since A® # 4% by Lemma 2, the class 4® contains g quasi- |

symmetric operation s. Putting
(25) fol@ey @25 -

(26)

s &n) = S(f(w“ Dy eoey wﬂ):”z:%) 3

Gol @1y Doy ey Bn) = § (g(wli Byy eery Tn)y Bay “73)

we have the equation fy(®y, %2, ...y Zn) = Go(®1, L2, ..., Z) Whenever o, = a,
OF @ = ;. MoTeover, fo(y, %ay Tay -, @n) = 8(@, Ta, &), Where a = fo(m,, 2y,
...y %) is an algebraic constant. Hence, by (6), fo(@s, @, a, %4, ..., &) = z,,
which shows that fy(2,, @, @5, ..., #s) is not an algebraic constant. Thus,
by the first part of the proof, f, = ¢,. By virtue of (24), (25) and (26)
this equation can be rewritten in the form

(27 S(hs(g(-”u Tyy eovy n)y Doy 5’73)) = 3(9(”17 Doy weey Tn)y Loy wa) .

Since g (@, , @y, ..., #n) depends on the variable z;, the operations g, #, and ,
are independent and, consequently, equation (27) yields
s(hs(ml); L2y ma) = S(mla @y Bg) -

Substituting @, = 4, into this equation we obtain he(®,) = z,, which
together with (24) completes the proof of the Lemma.

Lemwia 4. If A® 32 4% then for any quasi-symmetric operation s
and for all @, oy, %3, 2, € A the following equations are true:

(28) Sy, By, ) = 8 (g, 2y, 3)

(29) 1 (s(o0y B2, 20}, @) = $(F (21, @), F(@a, @), @)  for any fed®
(80) flay, ay @) = s(f @y, @1, @a), [y, @, 0), 1) for amy  fe A,
(31) s(s (@, @, @), 34, @) = 8 (@, (5 Fay @), ) «

Proof. From formula (6) it follows that equation (28) holds whenever
ZTy= % Or % = &,. Thus, by Lemma 3, it holds for all z, @, 2 € A.
Further, from the equations

f(s (1) Tay @), w}) = (@, 21) ,

S(f(mu o), f &2, 2), 93'1) = '5'(“'17 flwa, @), Wl) = f(@s, #1)
Fs(my, 2, ), @) = f (e, @) ,

$(f (), F (@, @), o) = s (f (21, ), 25, @) = f (@, @p)

thare 7‘ € 2(2), it follows that equation (29) holds for #, = @, and 2 = s,
which implies, in view of Lemma 3, that it holds for all =, #, and .
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Further, taking into account formula (6), we have, for every f ¢ A7,
the equations
8(f (@0, @p, @), (@, 2y, ) ) ) =

(f(may @3, 3), [ (5, Fay Ts)s s)

@2y @2y 25)

@ @,y 23)

which show that equation (30) holds for #;, = @, and =,
Lemma 3, equation (30) holds for all @, #, and a,.

In the proof of equation (31) we distinguish two cases. First let us
assume that dim? > 4. Taking into account formula (6) we have the
equations

= ;. Thus, by

S(S(mu Byy Ba) s By mz) = 8(®1, B4y ) ,
8(931,8(11;:,,56‘4,35‘2), ") 8 (@1, @y, @
(8(501,932,.2‘4 Ty 4) =8($1,£qu, 4

8(‘”17 LG AN ﬂb‘4)

)
2) 5
)
8(®y, o, Ta)
which imply that equation (31) holds for x; = #, and x; = »,. Hence,
by Lemma 3, we get equation (31) for all z;, ,, 2; and 2,.

Finally let us suppose that dimW = 3. If x; is not an algebraic con-
stant in 9, then we have one of the cases

Ty = foltey Tay Ta) s T =Tal, By @), = ful@, 4y 1),

where f,, fa, /1 € A% and equation (31) ean be written in one of the follow-
ing forms:

(32) S(S(fx(wza D3y &)y Tay 373); Ly 933) = 3(f1(w27 Byy Ty) s $(ay Ty @), “'a) ’

(33) 3(3(561; o1y %3, 24), 1’3)7 Ty ws) = 5(9717 'g(fz(wly Bgy W)y By, ma), a’s) s

(34) 3(3(371’ &gy Xg) y falr, oy 3) ix’s) = 3(”1: 3(4’3'2: Tul@y, @,y 23), ﬁa): ma) .
From (6) we get the equations

3(3 Fuliay 2y @), 95'2"’”2);“'4:% 8

o

JELEN AT ws) y
fl(“‘za @,y 9’74); Ly 2) )
Fu(@s, @4y @), By, md) )

Ful@s, Dyy B) s Bay 1’4) y

vv

[

8

o

S(f Dy By X4) 5 S (Lay Ty La) 5 B

8

sy

S( (fx Ty Bay La)y Tay -’1"4) Lyy Ty

S(fl(m” Dy L)y §(Tay Ta; Ta) s T,

L_,
I

=38

—

which show that (32) holds for #; = x, and #; = #,. Applying Lemma 3
we infer that (32) holds for all #,, z; and .

20*
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Further, from (6) we obtain the equalities

S‘S(wufz @1y B, Ba)y )y B, md’ = 8 (@1, fol@y, @0, 00) s 25)
3(9317 S(f (@15 Tay Ba) 5 Dy, %): %) = S(‘”n Tl @y, @y ), %) ’
( (1'1,7‘2(“'175017 ), ml)’ Ty W1) = S(fz(mu D1y By), La, 55'1) ’
(‘Tu S(fz(-’vu Ty, @), Ly ml), w1) I 3(f2($1; D1y X))y Xy ml) ]

which show that (33) holds for w3 = @, and @, = ;. Consequently, by
Lemma 3, it holds for all #, 25 and .
Finally, by (6), we have the equations
3(3(”1: Ty @), Fo®y, B3, Ba), 5”2) = 3(391: fol#s, @4, 25), mz) )
3(971, Tay fol®ys T2y @), -772): wz} = 5'(991; fl @1, @, 25) mz)
3(3 @1y By T1) s ol @1y Tay ),y -W1) = 5‘(-7”2, Tl @y, 22y 2,) 001)
8(-7“17 5’72’ fal@1s @y @), wl) ml) 3('7/'27 ful@yy 22y 21), w,) )

which show that (34) holds for #; =, and 2, = #,. Consequently, by
Lemma 3, it holds for all #;, z, and @;. Thus we have proved equation (31)
if 2, is not an algebraic constant.

Now let us suppose that z, is an algebraic constant. Then equation (31)
can be written in the form

(35) 3(8(3”1;4”2:0)11‘4’0) ='5‘($173(wz: %yc):“):

where ¢ e A, Let us consider an auxilliary equation
(36) "’(6’(‘”17 Ly &3) 5 & ws) = 3(991, (g @py Ty) s wa) .
From (6) we get the formmulas

3(8(-’”1’ Tyy )y Tay w1) = §(@s, &z, 1) ,

8("1‘” 8(ay, @y @), 901) = 8{@y, 2, 1) ,

8(8(.%'1, Tyy @)y gy wz) )

3("/’1’ (@5 @, @), "172) =y,

which show that (36) holds for #; = #, and @, = #,. Hence, by Lemma 3,
we infer that (36) holds for all #,, 2, and z,. From (28) and (36) we obtain
the equations

8(3(”71150276)1 @1y c) = s(ml’ 8§(®yy 21, €) 4 G),

8(3(“717wu )y Ty 0) = 8("‘”1» 8(&yy @, €), 0)’
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which imply that (35) holds for 4, = #, and =, = ,. Consequently, by
Lemma 3, equation (35) holds for all 4y, #, and «,. Thus (31) holds also
for three-dimensional algebras, which completes the proof of the Lemma.

In the sequel we shall denote by X the class A®. Elements of K will
be denoted by small Greek letters: i, u,,...

LevmA 5. If A® =A™, then K is a field with respect to the oper-
ations

(37) (A p) (@, @) = 5‘(}*(‘31: @)y 1 {2y, L), i’”g) s
(38) (- ) (@, y) = l(:u’(mlr a3), 1‘2) ’

where 8 18 a quasi-symmetric algebraic operation.

Proof. First of all we remark that the existence of an algebraic
quasi-symmetric operation follows from Lemma 2.

We define the zero-element and the unit element by the following
formulas

0wy, @) =@y 12y, @) = ;.
Obviously, 0 52 1. From (6) and (37) it follows for every A¢°K that
(A+0)(my, ) = S()*(-Tn 23) 5 Ta, -752) = Ay, ) -
Thus 240 = 4 for every Ae“X. Further,
(A1) (5 @) = Ay, @) = (1-2) (24, @)

which implies 1-1 =1-1= 1 for every 1e%X.
The following formula is a direct consequence of (38)

Aur)=(A-p)r (A, pyveX).

Since, by (6), the operation s(z,, z5, 2,) depends on the variable x;, the
operations #,, s, and $(z, &, ;) treated as elements of AP are inde-
pendent and, consequently, form a basis of A®. Thus there exists an
operation g e A® such that

(39) ¥y = ‘(](-1?1, X3, 8(y, T3, 95'2)) .
Hence we get the equation

5‘(5’71; g(a‘u Lgy 8(Tyy T3, 1‘2))1 1’2, = §(@y, %5, La) ,
which, by the independence of =, 2, and s(¥, %, #,), implies

(40) 3(1’15 g(zy, sy Zn), mz) =Dy .
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By (39) ji() =, 1.e. g A, Given LK, we put —A (a1, @) = g(A (@1, 2), 05, @5).
Taking into account (40) we have the equation

8(/1(“71, 5!«'2), — A2y, mz), 332) =,

which, by (37), implies A+ (—2) = 0 for every e K.
Let 4 # 0, i.e. let A(x,, #,) depend on the variable z,. Then the oper-
ations A(xy, %,) and , treated as elements of the algebra A® ave inde-

pendent and, consequently, form a basis of %®. Thus there is an operation

A7 e A® guch that
(41) wy = AT A (g, @), )

Setting @, = , into the last equation we obtain the formula ; = A" Yz, x,)
which shows that A~ ¢ . Further, from (41) we get the equation

My m0) = 227 (May, 32), @) 5 @)
which, by the independence of A(x;, ®,) and z, implies
@ = (A7 @y, @), ) -
This equation and (41) can be written in the form 2™ A—=1.A"=1.
Taking into account assertions (28), (29) and (31) of Lemma 4, we have
the equations
() (@, %) = 8 (A1, 02), (21, ), @)
= 8 (u (e, @)y M@y, 22), @) = (u+2) (@1, @)
(A4 p) +9) (@0, 2,) = s(s (M@, @)y @y, 22), ), v (@1, @), mz)
= s{@r, 25), 8 (@, @), (@1, @), ), 3) = (A4 (e +9)) (21, 20)
(A (s +9) (21, @) = As{p(ar, @), (@1, 22), 33), )
= s(i{uiay, @), @), A(v(2y, 22), o) @) = (A pt o+ A-v) (2, @)
which imply
Atp=p+1,

for every 2, u,veX.

Finally the following equations are a direct comsequence of defini-
tions (37) and (38)

Gtw)+r=2A+(p+v), A{p+»)=2L-pt+iv

((/"‘L'”)'Z) (1, 1) = s(ﬂ(l(mn @s) $2) s "’(Z(wu @s) s mz); mz)
=(p-2+v-2) (@, @) .

’.[‘husf (u+2)-A= p-2+v-4 for every 1,u,»eK, which completes the
proof.

iom°
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Learma 6. If A® = 4% then A is a linear space over K with respect
to the operations
z+y=3s(=,y, 0)
Ao = Az, O)

(®,yed),

(leK,zed),

where @ is an element of A® if A® == 0 and is an arbitrary element of A
if A% =0.

Proof. The element O is the zero-element of 4. In faet, according
to (6), z+ O = s(z, O, O) = 1 for every x ¢ A. Further, we have, in virtue
of Lemma 4, the equations

z+y=s(x,y,0)=sy,2,0)=y-+z,
(z+y)t+z= (3(‘77: ¥, 0),2, 0) = 8("”73(3/: 2, 0), @) =z+(y+2),
7-(37—}-(!/) = ;'(S(‘,'vi Y, @)7 @) = S(l(wz @)5 /-"(yi @)7 @) = l-w+z~y
for any #,y,%#e¢ A and 1e°K. Moreover, we have the equations
A(pew) = 2(p(x, 0), 0) = (A-p)-@,
lz=uw,
(A+p)x = s(Mz, 0), u(z, 6), 6) = L-s+pu-

for any = ¢ 4 and 1, u € K. Hence, setting —z = (—1)&, we get the equa-
tion @4 (—x) = 0-2 = 0. The Lemma is thus proved.

LeMyma 7. Let A® =2 A®Y and the addition in K be defined by an
operation s. If the field K has the characteristic 2, then
(42) 8(3;153('”2) 563,$4),904) = S(wl,.l‘g,l’a)
for all 2, 25, x5, Xy € A.

Proof. First of all we shall prove that the operation s is symmetric,
ie. that

(43) 8 (&1, @y L) = 8(Tuyy Liyy Bsy)
for every permutation i, 4,,4s of indices 1,2, 3. To prove this, in view
of formula (28) of Lemma 4, it suffices to show that for every system
Ty, &y, %3 € A the equation s(ay, xp, 2) = s(@y, s, 72) holds. In other
words, according to Lemma 4, it sufficies to show that the operation
So(yy @y, L) = §(5, Ty, By) Is quasi-symmetric. We have, according to
the definition of addition in X, the equation

Sol By, oy &) = 8(y, By, @) = (1+1) (2, @) = 01, Tp) = &,
and, accordnig to (6), the equation

18o( gy B1y B1) = §(By, Loy T1) = Las

which imply the guasi-symmetry of s, and, consequently, the symmetry
of the operation s.
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Now let us suppose that dim%U > 4. From (6) and (43) we get the
equations
3(9017 8(izy g, 2y), “/'z) = 8(y, @3, Ba) = 8(By, T, ) ,

3(3317 $ (@ @3, 24), 51"3) = 8(&y, Bay By) 4

which imply that equation (42) holds for #, = #, and =z, = ;. Applying
Lemma 3 we obtain (42) for all zy, @,, @, 2, € 4.

Finally let us suppose that dim% = 3. If &, is not an algebraic con-
stant, then we have one of the cases

Ty = [i(ay Ty, W), T = Foly, @, @), Xy = folmy, @y @) ,

where fy, fa, fs € A% and equation (42) can be written in one of the fol-
lowing forms:

(44) S(fl(wza Lgy Zy)y §(Tay By, 24), '1’4) = 5'(f1(m2: Xyy By), Lo, "‘Us) ;
(43) S(mu S(fz(wu Lgy By)y Ty, 1'4): 934' = 3(‘”1.7 fol2y, 25, ) mﬂ) y
(46) 5'(3717 5‘(502; fa(@y, @ay ), “/'4): $4) = 3(1’1; Ty, fol @y, @, m4)) -

From (6) and (43) we get the equations
s(fl(xzi gy B), 8 (o, Xy, ), xe) = 3(f1(972: Xy, &La), T, mz)
= S(fl(”"h @y L3), Ta, $3) ?
s(fl(mzy Ty, ), 8 (dy 5 @y, ms)y 'T’a) = S(fl(atg, X3, &3) Za, m3) ’

which show that (44) holds for x, = , and &4 = 3. Thus, by Lemma 3,
(44) holds for all @,, x, and a,.

Further, according to (6) and (43), we have the equations
s(ml, (cvl,%, @), &y, 2y), acl) = s{fo(m1, @3, T1), ©s, )
= ‘(xl,fg @y, By, 3,) 5 )
s(:z;l, s{falr, @y, @)y 5, s}, ma) = sy, folwy, 75, 25), ) ,

which show that (45) holds for @, = @, and , = z,. Thus, by Lemma 3,
equation (45) holds for all =,, oy, and x,.

Finally, from (6) and (43) we get the equations
s(xl, 8 (s, falmy, 2y, ), @), wl) = 8{ty, fol@y, 2, @), )
= 8y, @, Fo(ty, @y, 2, )
s(a;l, 8 (@, fol@y, 2, ), ) wg) = 8{vy, folmy, 22y 1), @)
)

8(’”1’ Ty, foly s @y 2,)) 5
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which show that (46) holds for #, = x, and x, = z,. Consequently, by
Lemma 3, it holds for all &, %, and x,. Thus we have proved equation (42)-
if #, is not an algebraic constant.

Now let us suppose that x, is an algebraic constant. Then equation (42)
can be written in the form

(47) s{ry, 8(xy, @3, €), €) = 82y, 25, 29)

where ¢ ¢ A%, From (6), (31) and (43) we obtain the equations

8(yy 8 (21, B2, €)y €) = 8(8(ty; By, 6), Bay ¢ = 8(0y 2y 0) = Ty = $(21, Ty, T5) »
8{wy, 52, 13, 6), 6) = 8(2y, ¢, 6) = 2 = (w1, X3, T3)

which show that (47) holds for z, = x, and x, = z;. Consequently, by
Lemma 3, it holds for all #;, #, and x3. Thus (42) holds also for three-
dimensional algebras, which completes the proof of the Lemma.

Lemma 8. If A® == A®Y, then all operations | defined as
n
Fly, sy oony tn) = Z}“k"tki
=

n
where Ay Ay, oy I € K and X Ay = 1 belong to A™ (n = 1,2, ...). Moreover,
F=1
each operation i from A® is of the form
(48) My, @) = Amy+(1—2) 2, .

Proof. We prove our Lemma by induction with respect to n. For
n = 1 the assertion is obvious. To prove our assertion for n = 2 it suffices
to prove formula (48). Setting f(z, €., ¥3) = A(®,, x3) into formula (30)
of Lemma 4 we infer that

(49) A(@ay @) = §(A(2y, 23), A(2s, 71), 3,)

for every xy, &, @3 € 4. Replacing in the last formula 2, and »; by @, o,
by @, we obtain the equation

&Iy = 5‘(} (wgy @y)y (21, ), We) .

Hence, according to the definition of the unit element and addition in X,

we have the equation
My y) = (1—2) (21, 22)

Setting @, = O into (49) and replacing 2, by iy and r; by #, we infer that
Iy, @) = $(1(0, 1,), My, O), 9) =l-o+1—-A)x,

which completes the proof of (48).
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Now let us suppose that » > 3 and that the assertion of our Lemma
is true for indices less than . Let us consider an operation

n
f(mlj Tgy evey wﬂ) = Z;Lkmk,

k=1
n
where 3 Ap=1.
k=1 .
First we assume that there is an index k, (1 <k, << n) for which
Ax, # 1. Of course, without loss of generality we may suppose that &, = 1.

Put
9(@, @) = (L —Ay) o+ As

n
B, @, ooy Xn) = ) Al — Do) "'
k=1

By the induction assumption ged® and hedA™™. It is easy to
verify that f(ay, @, ..., @) = g(h (2, @, ..., ¥a), @), Which implies 7 ¢ 4™,
Now let us assume that 4, = 4, = ... = 4, = 1 and that the field K

has a characteristic different from 2. Since 1 £ 0 and n-1 = Zn' =1,
we have the inequality (n—2)-1 % 0. Put =

D@1y B3) = 20 + (N —2)m,,

9o, @) = 87w+ 27y,

l\ﬂs

Gs(%35 Byy very Tn) = (n—2)""wy.

k=1
By the induction assumption, g;, g, ¢ A® and g, ¢ A" . Since

F(@y Bay eney @n) = 91‘(92(501, @a) s §s( @y Tay ouey wﬂ)) ’
we have fe A™,
Finally let us assume that 4, = A, = ... = 1, = 1 and that the field K
has the characteristic 2. Since (n—2)-1=mn.1=1, by the induction
assumption the operation

n—~2

3
Tol@y, @3, vy Lpp) = Z L

o1
belongs to A™®, Using Lemma 7 we infer that
Ty Boy vony a) = foly, Dy very Tna) + Tny + T
= S(fn(mly Loy eery Bnm2)y 8(Tn—1, Tn,y O), @)
= 5‘(70(9”1: Lyy eony Bpms)y T, wn) )

which implies fe 4™, The Lemma is thus proved.

icm
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LEMMA 9. If A® == A%, then the set
(30) Ao = {f(0): feA™}

is a linear subspace of A. Moreover, for every f e A® there ewists an element
2 €K such that
(51) f(2) = 2w +1(6)
for any we A.

Proof. First we shall prove formula (51). By Lemma 8 the oper-
ation g defined by the formula

g(mu £ {Es) = By — Ty T %
belongs to A®. Given feA™, we put
(52) @y, ) = g(f(%): f(@s), wz) = f(@) —f (@) + 2.

Obviously, A(z, #) = & and, consequently, 2 € A9, By the definition of
sealar-multiplication in 4 we have

iz, 0) = lz.
On the other hand, from (32) we get the equation
Mz, @) =[(z)—f(0).

Hence equation (51) follows.
Consider an arbitrary pair f,, f, of operations from 4™ and an arbi-
frary pair 4, 2, of elements of . By Lemma 8, the operation

{33) Ty, @2y @) = gy + Doty -+ (1 — 20— A3} s

belongs to A®. Consequently, the operation fyz)=h (i), fol®), @)
belongs to A™. From (53) we get the equation

fa(@) = Alfl(@)+;~2f2(@) ’
which shows that 4, is a linear subspace of A.
»
TEamra 10, et A® = A%Y  aqnd lot f(@y, Tay ooy @) = O M-+,
E=1

where Ay, Ayy ey e K and a e Ay If Fe AD, then feA™.
Proof. First we assume that [ ¢ 4™ 4™ and, consequently, 7 gener-
ates all operations in A%, Thus there is an operation g e 4® such that

(54) g

z))
Hence we get the equation f(z) = f(g(f(a;)}), which implies the formula
)

=.

(55)

~hy

=x.

(7
)
(9(z
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By Lemma 9, there are elements 4 and b belonging to °K and 4, respecti-
vely such that g(z) = Az-+b. Put

By, @2y ovey @) = G(f (@1 Bay oovy @) = lekwk+la+b.
k=1

Taking into account formula (54) we have the equation

(X 21) o210 +b = (@) = g(}(a)) = o,

k=1
which implies Y1y =1 and la-+b = 6. Thus, by Lemma 8, h ¢ A™.

k=1 .

Further, from (53) it follows that

f(mly Dyy eey Xn) = f(g(f(mu Loy eery 'En))) = f(h(mly Day veey m%)) 1

which implies f ¢ 4™.
Now let us suppose that f is an algebraic constant. Of course, in this
case O ¢ A” and a = {(0) e 4°. Put

n n
Fol®yy Bos oey @ny Tpa) = Zlkmk + (1_ Zlk) Pp41 .
k=1 k=1

By Lemma 8, the operation f, belongs to A™™Y. Since, by the definition
of addition in 4,

f(mu Ty ey Tn) = 8(f0($17 By very Tny O), @, 0) ’

the operation f belongs also to A™. The Lemma is thus proved.
LEdua 11. If A 3 A% then each operation g in A® is of the
form ’
9(@y, Bay Bg) = Iy + Aoty + Ay, ’
where Ay, hay dge K and Ay +2,+ 2 = 1.
Proof. First we shall prove the equation
(56) 3(@yy B,y 03) = 4Dy — 5 .

By Lemma 8, the operation 2, -, — =, belongs to 4®. Taking into account
formula (6) it is very easy to verify that equation (56) holds for #; = x;
a.nd~<£3 =&;. Thus, by Lemma 3, it holds for all m,2,, s ¢ 4. Leb
ged”. By Lemma 8 we have the equations

9(@1, @1y @5) = Aoy + (L— )z, ,

9@y, @y #) = py 4 (1— p) m, .
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Hence and from (30) and (56) we obtain the equation

gy, By Xg) = 3(9(33'1, Ty L)y G(Lyy Loy 1),y 5’31)
=y (L= Dty i+ (L — ) 1y — 2,
= (b p= D)zt (L) + (L= Ay,

which completes the proof of the Lemma.
Leava 12, Let dimA = n (n > 3) and A® =2 4%V, Ij all operations

»n
from A™ are of the form 3 Aywp-+a, where A, ks, ..., ine K and a e Ay,
k=1

n+1
then all operations from A™ are also of the form }{21@,,—1— a, where
=1

Iy Ay ey Apr1 €K and a e 4.
Proof. Let feA™™. For each pair i=£j (i,j=1,2,..,n+1)
setting @; = #; into f(@, &, ..., &pe1) We obtain the operation f;; e 4™

of the form

ntl

D) iy fentali, ) -

k=1

k#1
First we shall prove that there exist a system 2y, 4, ..., 4,21 of elements
of X and an element a of 4, such that

(57) A, ) =4 (k#1,j; 4,5,k=1,2,..,n+1),
{(38) Aty §) = A + 2 (t,§=1,2,...,n+1)

and
" (39) a(i,j)=a (i,j=1,2,..,0+1).

To prove (57) it suffices to show that x4, §) = Ax(r, 8§) whenever
k#4,§,7,8 Setting @m =0 (m £ k;m=1,2,...,0+1) into f; and f,s
we obtain identical expressions Ax(%,§)@r-+a(4,§) and 2Ax(r,s)zp+a(r,s)
respectively. Hence we get the equation A%, §) =2 (r,s) and, conse-
quently, formula (57). Thus each operation f; is of the form

n+1
D) hatont 2406, )+ als, ) .
Ky
Since n > 3, we can find a pair of indices 4y, j, in such a way that 4, 5= 4, §
and j, # 4, §. Setting x; = «; into f;;, and x;, = w;, into f;; we get identical
expressions
n+l

D Mtont (i 29) @5+ Al o) o+ alias o)
k=1
Ek#4,3,00, 50
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and
i+l
D It (gt An) s+ Aili, ) s +ad, §)
k;—"i’fzémi'o

Hence equation (58) follows.

Finally, setting @, = &, = ... = @41 = 0 into f; we obtain identical
expressions a(4, j), which ecompletes the proof of (59). Thus each oper-
ation f;; is of the form

n+1

E A+ (At A e +a,
P

k1,7

(60) fﬁ(“&: Doy seny Li—1y Lif1y ey wn-)—l) =
where, of course, ae 4,.

Consider an arbitrary system @, @, ..., Z,+1 0f elements of A. Since
dim¥ = n, at least one of these elements is generated by the remaining
ones. Without loss of generality we may suppose that z,.. is generated

by @y, Zay oey Tny 184
k3

Z,urmrJl‘b‘)

r=1

(61) Tpr1 =

where iy, foy ey pine X and be 4, To prove our Lemma it suffices to

show that
n+1
(62) (@00, Ty eory s = D, Mgnta,
k=1
where 4;, Asy ..y Ant1 and a are defined by formula (60) and ,11 satisfies
n+1
condition (61). We note that operation Y A,z -+a is equal to fi;(w). Thus,
k=1
n+1

by Lemma 10, the operation Z Axr+a belongs to AT,
k=1
Put

(63) Fl@s By ooy @) = F (1 @y cres ny D) 0 +D) .
r=1

To prove (62) it is sufficient to prove the equation of two algebraic oper-
ations of » variables

(64) Jolyy @y - Z (A Anar o) T+ 0 4 Anga b«
=1

From (60) and (63) we get the equations
(A 2o+ Zna phy -+ Doyr pha) 2+

Tol@wes @, 25, weey ) =

+ Z(Ak‘i* Apyapir) e+ @+ Anya b,
k=3
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Tol@ss oy By eees @n) = (At Ao+ Anr s+ Angs fha) B3+

y (A Anga i) Tx+ @+ Apsn b
=
which show that (64) holds for x, = @, and 2, = ;. Hence, by Lemma 3.
we obtain equation (64) for all z,, «,, ..., #,. Equation (62) is thus proved.
LemyA 13. Given fwo ordered pairs of positive integers <i,§>, {r,s
and an integer s, satisfying the conditions ¢+, r 8, S % 8, and | == &,

there exists a chain of pairs of positive integers <{i1,§;>, {fs,fady ey {Iny iny
1< n<4) such that
Sy fop =y Lnyfnd = {1y 80,
ir < max(4,%,§,7,8), Jr<max(4,4,j,7,8) (k=1,2,..,n),

(k=1,2,..,n),

(k=1,2,..,0—1).

i 7 ik

41 F ks Jrt1 7 Gy Ry So

Proof. Put N =max(4,4,7,7,s). Without loss of generality we
may assume that {¢,j> = {1,2> and, consequently, s, == 2.

If »r+#2 and s 1,2, then the chain (1,2), {r,8) satisfies the
assertion of the lemma.

Let r=2 and s #1,2. If 5,51, then we denote by p an integer
satisfying the conditions p = s, 3 < p < N. It is easy to verify that the
chain

(65) A, 2), <80 PY 5 2,15, 2,8

satisfies the assertion of the lemma. If s, = 1, then by ¢ we denote an
integer satisfying the conditions ¢ % s, 3 < ¢< N. The chain <1, 2>,
4, q>, <2, ) satisfies the assertion of the lemma.

Further, let » = 2 and s = 1. Then of course s, # 1, 2 and the sub-
chain <1, 2}, {8y, »), <2,1)> of chain (65) satisfies the assertion of the
lemma.

Now let us suppose that r 22 and s = 1. If 5, # », then we take
chain <1, 2>, <1, 7), {80, 2, <r,1>. If s, =7, then we take the chain
<1, 2, <Lr,ty, {r, 1), where { is an integer satisfying the conditions ¢ - 7,
3K N.

Finally, let r = 2 and s = 2. If r = 1, then the chain {1, 2) satisfies
the assertion of the lemma. Therefore we may assume that r 7= 1, 2.
If s =1 or s, = r, then we take the chain <1, 2>, <r, ), {r, 2), where ¥
is an integer satisfying the conditions ¢ %7, 3 <t << N. If 5, #1, 7, then
the chain <1, 2}, <8g, 7>, {So, 1D, <7, 2> satisfies the assertion of the
lemma, which completes the proof.
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Lesnia 14 Let dm¥ =n (n>3) and A" = A, Thep 40D
— A('/H‘Ll).

Proof. LetfeA™Y. For each pair <&,j> (6 #j; 4, =1,2, .., n+1)
.and each operation & e AV setting @; = h(z;) into f(z, oy .oy Turs) We
.obtain an operation fi; of one variable. o

First let us suppose that for every operation 7 e A. :fmd f.or .evel‘y

pair <'£,7‘>,]‘f,- is an operation of the variable - 'Let {iy ) 12y iy Go) Dbe
pairs satisfying the conditions 4, # j; and i # oy, i Setting &jy = Bo(22z,)
into ﬁfh and x;, = hy{x;) into ﬂljj, we get identical expressions. Thus
(66) Fiilan) = fifn(an) -
‘Since n+1 > 4, by Lemma 13, every two pairs {t, j>., <r,. s)~ (% ;é.j, r 83
i,§,7,8=1,2,..,m+1) can be connected by a c.ha,ln <1‘1, 71?, {is, ;;‘2>,._,,
veey (imy jm) satisfying the inequalities ¢z # jr, tr+1 # Juy G iy i,
1<ip, o<+l (B=1,2,..,m). Consequently, equ?,t19n (66) holds
for all operations T, by e A” and all pairs iy, 1D, <y o). Hence we
infer that there exists an algebraic constant ¢ such that

(67) film) =¢
for any b e AV and any pair (i, ). ' '
Consider a system @, @y, ..., #ny1 Of elements of 4. Since dimY = n,

«certainly one of these elements is generated by the remaining ones. If
is such an element, then #; = h{w;) for an index 4 different from j because
.of the equation A™ = A™". Thus, by virtue of (67),

3/
F(@1s @ay ooy Tnga) = foilws) = ¢,

which shows that f is a constant operation.

Now let us suppose that there exist an operation ke and a pair (i, jo)
such that jﬁ",-,, depends on a variable @,,, where s, % i,. Let <i, j> be a pai}f
satistying the condition 4 7 §y, § % 4, Jo, So. Setting @, = he(w;,) into fi
and ;= h(x;) into 2% we get identical expressions. Thus 1% depends
.only on the variable z, and, consequently, o= f?o",-o. Since n+1 >4,
by Lemma 13, every two pairs i, ), ¢r,s)> satisfying the inequalities
4%, r#8, j,8#8 can be connected by a chain (iy; 1>, (s jads -
eey {bm, jmpy with following properties @n # ji, fws1 7 Jrs 1 7 b iy
T8, L<ipk<n+l (k=1,2,..,m). Consequently, for all oper-
ations he AY and all pairs <, ), with § s s,, the operation #3; depends
-only on the variable x,, and
(68) fisle) = g(a),
where g(z) = fif(@).

Now consider the operations fi,. Let ﬁsn be an operation of the
-variable x;, where of course % = s,. Since -1 >4, we can find a pair
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iy jy, with j 4, %, 8. Setting @; = h(w) into 7k, and a,, = () into 1%
we get identieal expressions. But this substitution does not change the
operation fis,. Thus, by (68), fh(@x) = g(h(2:)) and, consequently, 7%, is
an operation of the variable x; satisfying the equation

(69) fla@) = g (h(2)) .

Now we shall prove that

(70) Ty @y ey Tungr) = G(2s,)

In the same way as in the first part of the proof we show that for any
system Zy, Zsy ..., To+1 Of elements of A there are indices 4,5 (7 # §)
and an operation % eA® such that x; = h(w). Hence and from (68)
and (69) by simple reasoning we get equation (70). The lemma is thus
proved.

Proof of the Theorem.
(i) Let A9 = 0 and 4® = 4®", By Lemma 5 and 6, there is a field %
such that 4 is a linear space over (. Now we shall prove by induction

with respect to # that the class A™ consists of all operations f of the
form

[\d =

(71) F(2y, Bay ooey Tn) = Axwr+a,

k

I
-

where A, Asy ooy An €N, @ € A4, A, is defined by formula (50) of Lemma 9.
Tt should be noted that in this case we have @ ¢ A” and, consequently,
by the definition of addition and sealar-multiplication in 4, all operations
of form (71) are algebraic.
Let n=3 and feA®. By Lemma 9, f(z) = iw+a, where 1%
and a e 4,. Since each operation of form (71) is algebraic, the operation

(72) 9( @1y @5y Tp) = [(21, Lo, T5) + (L — A2y —0

is also algebraic. Moreover, ﬁ(m) = f(m)+(1—z)w—a =g and, con-
sequently, g e A®. Thus, by Lemma 11 and formula (72), the operation f
ig of the form (71).

Now let us suppose that » > 3 and all operations in 4™ are of the
form (71). Consider the algebra U™ of all n-ary algebraic operations.
Taking into account (71) we infer that A™ is a v*-algebra of dimension n.
Thus, by Lemma 12, all operations from 4™ are of form (71), which
completes the proof.

(i) Let 4” =0 and 4® 2 4®", By Lemmas 5 and 6, there is
a field °K such that A4 is a linear space over 9. Now we shall prove by
Fundamenta Mathematicae, T. LII 21
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induction with respect to » that the class A™ consists of all operations f

of the form

n
f( @1y By veny @n) = Izlkﬂfk +a,
=1

(78)

where Ay, Agy eevs An € K, > =1, acd,, A, is defined by formula (50)
k=1

of Lemma 9. ) @ . )
First we shall prove that each operation 1 € 4™ is of form (73), i.e.

(74) h(x)=o+a, where aed,.
From Lemmsa 9 we obtain the formula k(z) = Az-+a, where 1 and

aed,. If Ast1, then, by Lemma 8, the operation
Moy @) = (1—A) e —A(1—2) 0,

belongs to A®. Thus the composition hq(h(x), ¥) is an algebraic operation.
But this composition is equal to (1—A)""a, which contradicts equation
A® — 0. Consequently, cach operation heA™ is of form (74). Hence
and from Lemma 8 we infer that all operations of form (73) are algebraie.

Let n = 3 and ¢ A®. Since a = f(0) ¢ 4, and 4, is a linear subspace
of A, the operation h(x) = #—a belongs to A®. Consequently, the oper-
ation

(75)

G(yy Ty y) = [ (B, Bay &a) — 0

belongs to A®, Moreover, g}(@) = f(0)—a = O and, consequently, by (74),
¢(z) = x, which implies g e A®, Thus, from Lemma 11 and formula (75)
we infer that operation f is of form (73).

Now let us suppose that m >3 and all operations in 4™ are of
form (73). Considering as in part (i) of the proof the algebra A of n-ary
algebraic operations and applying Lemma 12 we infer that all operations
in A are of the form

w1
F(®yy @oyony Bpg1) = 2 M +a,
k=1
n+1
where @ ¢ A,. Since, by (74), f(¢) = x+a, we have k%'llk: 1, which
completes the proof of assertion (ii).

(ii) Let A® = A®". First we shall prove by induction with respect

to n that

(76) A(ﬂ) — A®D .

icm®
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For n = 3 it is supposed. Let n >3 and let equation (76) be fulfilled.
Considering, as previously, the algebra A™ and applying Lemmsa 14,
we get the equation 4™ = A™Y, Thus (76) holds for all integers n.

Now our assertion is a direct consequence of (76) and a theorem
of Narkiewicz [7]. The Theorem is thus proved.
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