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A theory of propositional types *

by
L. Henkin ** (Berkeley, Calif)

§ 1. Let D, be the set of the two truth values, T and F, and consider
the operation of passing from any two sets D. and D, to the set D
of all functions which map @ into D,. The family PIT of all sets generated
from D, by repeated application of this operation we call the family of
propositional types. Thus PIT is the least class of sets, containing D, as
an element, which is closed under passage from D, and Dy to Dyp-

In the ordinary propositional (or sentential) logic we have variables
which range over X, and a constant—the negation sign—which denotes
one of the 4 elements of Dg. We also have other constants, such as the
connective A for conjunction, which denote binary operations on Dy-
Such operations may be identified with elements of Dy in & familiar
way; for example, the operation A? denoted by the symbol A is described
by the equations (A2T)T =T, (AT)F =F, and (AF)z=TF for all
# € Dy. By means of formulas built up from propositional variables and
connectives we may refer to particular elements of the propositional
types Dy, Dyggr 7>((00)0)0, ‘D(((mw)o)u,

In the present paper we shall construct a theory with a distinet set
of variables for each propositional type D,. The theory will be couched
in a language which permits these variables to occur bound as well as free.

Theories of this kind were first studied by Leéniewski under the
name protothetic. An account of Lefniewski’s systems is given by Grze-
gorezyk in [3]. ,

In the systems of protothetic there is incorporated a rule of definition
which allows for the introduction of new symbols as names of arbitrary
elements of any propositional type. In the present system we start with
names for only a relatively few elements, but we allow for the econstruction
of new names by means of variables and the functional abstractor A.
We shall prove that each element possesses a name in our system.

* A portion of this work was supported by the U. 8. National Science Foundation
(Grant No. G14008).

** This paper was written while the author served as Fellow of the John Simon

Guggenheim Memorial Foundation at the Institute for Advanced Study, Princeton,
New Jersey.
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A theory of types which incorporates the abstractor 1 was first given
by Church in [1], and our present formulation owes much to his, We
depart from Church, however, in taking as our only primitive constants
the symbols Quq. which correspond, for each e, to the identity relations
over the propositional type @,. The fact that all of the ordinary proposi-
tional connectives can be defined in terms of Qo (the usual biconditional)
by means of quantified variables over )y, is due to Tarski in [5]. The
fact that the classical quantifiers themselves can be defined in terms
of the symbols Q,., With the aid of 4, does not seem to be stated explicitly
in the literature ().

Our theory is provided with a deductive apparatus consisting of
axioms and formal rules of inference. We have been at pains 7ot merely
to translate into our primitive notation one of the usual systems of axioms
and rules of inference governing sentential conmectives and quantifiers,
but to find a deductive bagis for our theory which seems to express in
& natural manner the fundamental properties of our primitive notions.

Our deductive formalization is complete, in the sense that if a for-
mula 4 has the value 7' for every assignment of values to its free variables,
then A is provable in our system (3). (Conversely, of course, only such
valid formulas can be proved.) The completeness of a theory of types
in terms of non-standard models was proved in [4], but this result does
not seem to imply our present completeness theorem. It is true that by
adding suitably to the earlier proof the present result can be obtained,
but such a proot would not have the constructive character possessed
by the usual completeness proofs for propositional logic, and we have
preferred therefore to indicate another method of proof which seems
more appropriate for a theory of types each of which is finite.

Our interest was drawn to a theory of propositional types by the
broblem of constructing non-standard models of a full theory of types.
Sinee many problems of ordinary predicate logic can be reduced to
questions about propositional logic (as in Herbrand’s theorem, for ex-
ample), our hope has been that insight into the totality of models for
& full theory of types could be obtained from & study of all models of

(*) (Added September, 1962) Mr. Peter Andrews has called my attention
to the paper by W. V. Quine, Unification of universes in set theory, Journal of Symbolic
Logic 21 (1956), pp. 267-279. On page 278 Quine does
and indeed the same definition which we emp

y number of inaccuracies in the original
version of my manuseript, and for other suggested improvements. A note by Mr. Andrews
is Qublished immediately after this paper, in which it is shown that three of the seven
Axioms given in Section 5.1 below can actually be derived from the remsaining ones.

(*) It is interesting to note Grzegorezyk’s remark in [3] that some of Legniewski’s

contemporaries considered that the nature of protothetic made any completeness proot
for this system impossible.
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the much simpler propositional type theory. We reserve for a fu:ﬁii
paper, however, a discussion of the models of our present system o
than the standard model BT of propositional types.

§ 2. We now deseribe the symbolism which underlies our theory.

2.1. The primitive symbols of our system cogsist of three symboli
which are called improper, namely the left and right paraentheses a.nl
the lower case Greek lambda, and an hlﬁnite. number of other syn}bo %1
(proper symbols), each of which is associated with one o? the ];)l‘oposmonaf
types D,. In fact, corresponding to each D, we 1‘)1*0v1de a sequ(%%ce or
proper symbols fu, fay Pe; Lay Yas Zay - called wvariables of type ,; at(of
simply of type a), and a single proper symbol Quua called a comstant o
type (0a)a.

2.2. Certain strings of primitive symbols are called formulas, and
each formula is associated with a unique type @,. In any formula ea.ch,
oceurrence of a variable is distiguished as free or bound. The rules for
constructing formulas and distinguishing between im.ae and bf)u.nd oc-
currences of variables are given inductively below with the aid of jﬁhe
symbols ‘X., ‘Y., ‘Z,°, which we use henceforth as metama,thema,tlcfiml
x;ariables ranging over the set of variables of .type a, and the symbols
‘A, ‘By, *C, which are used to range over arbitrary formulas of type a.

(i) A string consisting only of a proper symbol. of typfz ais a fowm;la
of type «; and if it is a variable, this occurrence is free in the formula.

(i) If Ao and B, are formulas of type of and B respectively, .‘ol%eln
the string (4.B;) is a formula of type a; and an occurence of a varia e
in this formula is free or bound according as it is free or bound in that
one of the formulas 4. or B in which it occurs.

(iii) If A, is any formula of type ¢ and X; is any variable of type f
then the string (AX;4,) is a formula of type aff; every occurence of the‘
variable X, is bound in this formula, and an occurrence o'f any other
variables is free or bound according as it is free or bpund in A,

A formula containing no free occurrence of a variable will be called
closed. ) . 1 ‘

In practice we shall often omit parentheses, in describing formulas,
in accordance with the following conventions. (a) Parentheses at the
beginning or end of a formula may be omitted. (b) A dot may replacej
a left parenthesis, and its mate will be suppressed, 1f.the 1:{13!56 comes
at the end of the formula. (¢) Parentheses may be omitted if their use
is to indicate association to the left in a sequence of three or more ex-
pressions. For example,

Ao 245 - Qotapriap Fas A2 (Jay @)
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will stand for
(}-«% (ﬂyﬁ((Q(o(aﬁ))@ﬁ)faﬁ) (13;3(9@%)‘)))) .

§ 8. We now deseribe an interpretation of our symbolism to indicate
how the formulas may be used to refer to elements of the types @,. Under
this interpretation each closed formula of type a will denote a unique
element of ,, but a formula of type a which contains free occurrences
of variables will only refer to a specific element of <), when values (of
appropriate type) are assigned to these variables.

3.1. By an assignment we mean a function ¢, having as its domain
the set of all variables of our system, such that to each variable X, of
type a the function ¢ assigns as value an element (pX,) of D,. With each
formula 4, and assignment ¢ we associate an element V (4., @) of Q,,
as follows. (i) If X, is any variable then V (X,, ¢) = (pX,). (ii) Independent
of @, V(Quaa; @) is the element f of D, such that for any «,ye D,
we have (fe)y =T if x =y and (fr)y=F if x#y. (ili) If 4, and B
are any formulas of type af and f respectively, then V{(A.B),¢q) is
the element of &, obtained by operating on the element V(Bg, p) of D,
with the function V (A, ¢) of Dys. (iv) If 4, is any formula of type a
and X, is any variable of type § then V((AX;4.), tp) is the function of Dy,
whose value, for any « e D, is the element V' (4,,¢,) of D,, where g, is
the assignment such that (p.Xp) = z and (¢, Y,) = (¢¥,) for all ¥, # X,.

3.2. It is easy to show by induction that if 4, is any formula, and
if  and y are any assignments such that (p.X;) = (p.X;) for every variable X,
which occurs free in A,, then V(4,, ) = V(4,, v). In particular, if 4,
is closed then V(4,, ¢) is independent of ¢; this element of 7, is then
called the denotation of A4, and we shall put (A4,)% =7V (4., ¢) in this
case. For example, (iz,2,)¢ is the identity function of @, such that
((Azsz)ly) =y for all y e D,.

A formula 4, is called valid if and only if V(4,, @)= T for all
assignments ¢. In particular, a closed formula 4, is valid if and only if
(4g)? = T.

§4. We now apply the rules of the preceding section to examine
the meaning of certain special formulas under our interpretation. In
particular, we shall associate, with each element z of an arbitrary type Da,
a closed formula 27 of type a such that (a7)? = a.

4.1. For any formulas 4, and B, of type a we let A, = B, be the
formula (Quanda) B, of type 0. Clearly V (4, = B,, ¢) is T or F according
a8 V(4a, ®) =V (B,, @) or V(4,, ®) # V(B ®).

42. We put I" = ((Anoi) = (Amomy)) and F" = ((Amey) = (A, I™)).
Clearly T" and F" are closed formulas of type 0, and we have (T™)%= T
and (F™)% = P,
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4.3. Let 71 = (MO(F"E a:,,)). Clearly 1 is a closed formula of type (00)
and denotes the negation operation: (71)¢T = F and {1)4F = T.

4.4, We set A\ = Ay Ay (lfoo(foo-% = ?/0)) = (Uoo(fnoTn))- Clearly A is
a closed formula of type (00)0. We shall show that (/)2 is the operation
of conjunetion, ie., that (A?T)T =T, (NT)F = F, (\NF)T =F, and
(AZF)VF = F.

Consider the four elements f', /2,73, and f* of Dy, where f* is the
identity function on D, f* is the negation function (1) of 4.3 above,
f8 is the function on D, with constant value T, and 4 is the function with
constant value F. We see at once that (lfoo(fmT"))d is the element ¢ of Do)
which produces the value 7' when acting on f* or /* and produces F when
acting on f2 or f ,

Now turn to the part (fo(fw® = %)) of the formula A. For any
assignment ¢, let g¢ be the function V((lfm(fwwo = yﬂ)), <p) of Dy. From
the definition of A, 4.1, and the rules of section 3.1, we see that
V(A Zolo, @) will be T or F according as g» =g or g¢ 7 g. S0 now we
compute.

We see that if (@) = (%) = T then (gof)) = (gmf*) =T and
(g7f2) = (g1f*) = F, so that grn =g and hence (A?T)T = T. If (paio) = T
and (¢.y0) = F then (g2f*) = (g7f*) = T and (g=f") = (¢7f°) = F, so that
g7 # g and hence (AT)F =0F. If (g.2) =F and (gy,) =1 then
(g7f) = (gmf’) = T and (g»f') = (¢%f*) = F, so that g7 == g and hence
(AF)T =F. Finally, if () = (ps¥o) =F, then (gnf") = (g"f) =T
and (g#f?) = (g=f%) = F, so that g» # ¢ and hence (AYF)F = F.

For any formulas 4, and B, of type 0 we shall write 4,A B, instead
of ((Ado)By).

45. Welet >= (Mo(lyo{(movyu) = mo))) and \/ = (Amo(}.yn (1) —>yo))).
Clearly these are closed formulas of type (00)0, and from 4.4 we
compute (4T)T =T, (4T)F =F, ()T =1T, (»*F)F=1T, and
(VT =T, (VI)F =T, (V)T =T, (VE)F = F.

For any formulas 4, and B, we write (4,->B,) and (4,V B,) in place
of {(—4¢)By) and ((\/ 4o)B,) respectively.

4.6. For any formula 4, and variable X, of indicated types, we put
(VEodo) = (AX.4y) = (AX,T") and (HX4,) = (VX(14,). ALl oc-
currences of X, are bounded in the formulas (VX.4,) and (HX,4,) (which
are of type 0), and if ¥y # X, then an occurrence of ¥, is free or bound
in either of these formulas according as it is free or bound in 4,. By 3.1
and 4.1 we see that for any assignment ¢ we have V{(VX,4.),¢) =T
(resp. V((HX,4,), ¢) = T) if and only if V(4y,v) = T) for all assign-
ments y (resp., some assignment ) such that (v¥;) = (pX,) for every
variable Y #= X;.
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4.7. Let A, be any formula of type 0 and X, any variable of type g,
and let ¥, be the first variable of type a not oceurring in 4,. We put
(H1XAy) = ((E{Y(VX (Ado= (Xa= Y. )))) All occurrences of X, or ¥,
are bound in the formula (H!X,4,) (which is of type 0), and an occurrence
of any other variable is bound or free in this formula according as it is
bound or free in 4,. By 3.1, 4.1, and 4.6 we see that for any assignment ¢
we have V((T!X.4,), @) = T if and only if there is exactly one assign-
ment p such that V(d,,p)=T and (yZs) = (pZ) for every variable
Zs #+ X,.

4.8. In order to obtain a neat treatment of the description operator
it is desirable first to fix one element of each type. This we do inductively
by setting @, = F and, for any « and B, taking aq, to be the function of 2,
such that (a.,e) = a. for allw e Dj.

4.9. For an arbitrary type o let #® be the function of Dyen such
that, for any f e Dos, (£) is the unique x e D, for which: (fz) = T, in
case there is such a unique x, or else (19f) = a, if there is no x, or if there
are more than one », such that (fz) = T. We shall show inductively that
for each a there is a closed formula tyom SuCh that (ie)? = {*). Then,
for any formula 4, and variable X, we shall set (1X.4,) = (tagoa{ A XaAy)) -
From the fact that (tm) = 1@ we easily infer that (1X.4,) is a formula
of type a such that, for any assignment @, V((1X.4,),®) is either the
unique % e D, such that V(dy, @) =T [where (p.X,) =2 and (p,Tp)

= (p¥,) for all ¥, # X,] if there is such a unique #, or else V((0X.A40), 9)
= a, in the contrary case.

We begin by taking tyq = (wa Too = (Am,) ) Clearly tyoo) 18 a closed
formula of type 0(00), and referrmg to the functions f*, ...,f* of Dy
(section 4.4), we see that (i) (1) = T and (i) (f*) = F for i=2,3,4.
Now there is exactly one z e, such that (f'z)= T (resp., (f*x)= T),

namely # = T (resp., # = F); hence ({9f}) = T and (19f2) =F. On the
other hand there are two e D, for which (fz) = T and no D, for
which (f*z) = T so that ({0f3) = ({9f%) = a, = F. Hence (iuqpy)? =1,
as claimed.

Proceeding by induction we now assume that sy, and hence (1.X.4,),
have been defined and have the required properties, and we set

Yap)(0(ap)) = (Uo(aﬂ) Mg 1Yo (T 2ap(foap) 28) ) (V~nﬂ Fotep)Bop > (Rup%p = ya))) .
Clearly uap) o) 15 @ closed formula of the indicated type, and it remains
to show that (L(ug)(o(aﬂ)))d = o),

To this end, suppose first that ¢ is any element of Dows such that
there is exactly one h e D,—say h*—such that (gh) = T. Now if ¢ is
any assignment such that (gfoep) = ¢, then

V([[H!zaﬁ(fo(aﬂ)zﬁ)] A [Vzap((fo(aﬁ)zaa) - ((2opp) = ya))]] ) q?)
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is I or F according as (py.) = h*(gxs) or (gy.) # h*{(pxs). Hence

V([W« ap(fotops2) 1A [ Vs ((fotaprap) > ((2a5) = yﬂ))]]: 99) = I*pxy)
and therefore ((eapr(owp))?g) = B* for this g.

On the other hand, suppose that g is any element of Dyqs for which
there is no h e Dy, or more than one h e Dgg, such that (¢h) = T. Then
for any assignment ¢ such that (pfoesn) = ¢ we have

V([[H!zaﬂ(fﬂ(aﬁ)zﬁ)l/\[Vzaﬂ((fﬂ(aﬁ)zﬂﬁ) > ((zapi) = yﬁ))m, lﬁ) =F.
Hence

V([’?/u' (! gl focapr28) 1A | Vap| (Foapap) > ((2ea ) = ?/a))]], qi) = da.

Using 4.8 we obtain ((tep(owen))?y) = ae for this g.
Thus for every ¢ e Doas We see that ((uap(oen))®y) = (1ePg), which
completes the demonstration that igp(oes) has the required property.

4.10. We are now ready to assign to each element z of any type s
a name, i.e., a closed formula z» of type o such that (27)¢ = #. Indeed,
if # is either of the two elements of D, this has already been done in 4.2.
Hence we may proceed by induction.

Suppose that ¥y, ..., Y, are distinct and are all of the elements of Dy,
and let us make the induction hypothesis that to every = of D, or of <D,
we have already assigned a name z%. Let f be any element of (D,. Then
we take

1" = [Ap12a- (2 = Y1) A (e = (F)")] A oo A [ (5 = = (fya)")]] -

Now consider any assignment ¢, and say (qamﬁ) = 9;. Clearly
V(@ = 47}), ¢) will be T or F according as j =4 or j # 4. Hence

V{2 [0 = Y1) A (e = (Fr0R)] A A2 = 92) A = (F90)")] ], ) = (9

so that ((/")"ys) = (fys)-
()% =1{, as claimed (3).

Since this is true for each ¢=1,...,q we get

§ 5. We turn now to the formulation of a formal deductive system,
based upon the symbolism of § 3 above, by providing axioms and rules
of inference.

5.1. Certain formulas of type 0 are called axioms. These are described
under seven headings, below, some of which comprise single axioms and

(®) In place of f* we could have used the simpler formula Aap= (llza,g(haqﬁ;l/lL
= (fy)") A .- A (hap¥a = (fya)")), Dut this would not be convenient for use in § 8 below.
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others infinitely many axioms grouped in a single schema. In formulating
schemata we use ‘a’, ‘f’, and ‘%’ to refer to arbitrary types, ‘4’, ‘B, ‘("
for arbitrary formulas whose type is indicated by means of a subscript,
and ‘X, ‘T7’, and ‘2’ for arbitrary variables (with a similar indication
of type).

5.1.1. Axton ScHEMA 1. A, = A,

5.1.2. Axion SCEEMA 2. (4,=T") = 4,.

5.1.3. Axiom 3. (T"AF") =F".

5.1.4. Axion SCEEMA 4. (gooT"AgeF™) = (V-Xo(foo Xo))-

5.1.5. AXIOM 5.

(@5 = Yp) > (Jupg = Gap) > (foss) = (G ¥p) -
5.1.6. Ax1oM SCHEMA 6.

(VEplfup X = Gap Xp)) > fop = Gep) -

5.1.7. AxioM SoEEMA 7. (AX3B.)Ag) = Cay where G, is obtained
from B, by replacing each free occurrence of X; in B, by an occurrence
of 4,, providing no such oceurrence of X is within a part of B, which is
a formula beginning ‘(1Y,” where Y, is a variable free in Ap.

5.2. By the Rule of Replacement we refer to the ternary relation on
formulas of type 0 which holds for (A3, Oy, Dy if and only if Ao= (4= B.)
for some formulas 4, and B, and D, is obtained from G, by replacing
one occurrence of A, by an occurrence of B,. When this relation holds
for (A, = Ba, Cy, Dpy we shall say that D, is obtained by Eule R from
A,= B, and C,.

5.3. By a formal proof we mean a finite column of formulas each
of which is either an axiom or else is obtained by Rule R from two earlier
formulas of the column. By a formal theorem we mean a formula which
iy the last line of some formal proof. We put A4, if and only if 4, is
a formal theorem.

5.4. Without altering the class of formal theorems, we may replace
the above list of axioms and Rule R by a longer list of axioms and rules
having a somewhat simpler character. These possibilities are described
below without proof of their equivalence.

5.4.1. Axiom 5 may be replaced by:

AxioM 5.1, (5 = yp) > (foss = fap¥p); and

AXIOM B.2. (fop = Gop) ~(faps = Jap%s)-

5.4.2. Axiom Schema 7 may be replaced by:

Axzom ScEEMA 7.1. ((AXpXp) Ay) = Ag;

Axton ScHEMA 7.2 {(AX,Y.)4g) = ¥, if X5 # Y3
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AXI0M SCHEMA T7.3. {(AXﬁ(Ba,D,,)) Aﬁ) = (((ZX,gBay) Ag)((AX,D,) A ﬁ));
Axtom ScEMA T.4. ((AX4(AX;B.) 4g) = (2X;Ba); and

Axron SCHEMA 7.5. ((AX(AY,Ba)}4p) = (A7,((AXpB) 4j)) if ¥, # Xa
and ¥, does not occur free in 4,.

5.4.3. Rule R may be replaced by:

Rure Rl. From A, = B, and A, to obtain By

RULE R2. From Ag = B to obtain (AepCh) = (BapCh);
RULE R3. From Ag = By to oblain (C.pds) = (CusBs); and.
Rure R4. From A,= B, to obtain (1Xpd,) = (AX;B,).

§ 6. To jusfity consideration of the system of axioms and rules of § 5
we wish to show that every formal theorem is valid. By 5.3 a simple
inductive argument reduces the problem to that of showing that every
axiom is valid, and that Rule R preserves validity.

6.1. With the aid of 3.1, 4.4, 4.5, and 4.6 it is a trivial matter to
verify the validity of all axioms falling under headings 1 through 6. In
particular it will he observed that: Axiom Schema 1 expresses the most
basie law of equality; Axiom Schema 2 is a simple identity involving the
biconditional operation on truth values; Axiom 3 is an entry from the
usual table of values for A; Axiom 4 is a way of expressing that D, contains
the elements 7', F, and no others; Axiom 5 expresses the substitutivity
property of the identity relation; and Axiom 6 states the- principle of
extensionality.

Axiom Schema 7 gives the fundamental property of the functional
abstractor, 4. Because of the relative complexity of its formulation, verifi-
cation of the validity of its axioms by 3.1 is not as simple as in the pre-
ceding cases. The simplest way to proceed is to show (by induction on
the length of B;) that any instance of Axiom Schema 7 can be obtained
by @ succession of applications of Rule R to instances of Schemata 7.1-7.5
in 5.4.2 above. The validity of each instance of these schemata is a gimple
matter to establish by 3.1 and 3.2.

6.2. The preservation of validity by Rule R is most easily established
Dby first showing that any application of Rule R can be effected by a suc-
cession of applications of Rules R1-R4. (This is shown by induction on
the length of ¢, in the application of Rule R.) That Rules R1-R4 preserve
validity may be shown directly from 3.1 and 3.2. These rules (and indeed
Rule R itself) express a form of the well-known substitutivity principle
for the identity relation. Despite the fact that Rule R and Axiom 5 largely
overlap in their intuitive meanings, neither one seems to be digpensable
in our deductive system.

Fundamenta Mathematicae, T, LII 22


GUEST


332 L. Henkin

§ 7. We now show how the usual theorems and rules involving
propositional connectives and quantifiers may be derived within our
deductive system. As in the preceding section, A, B,, and O, (resp.,
X,, Y, Z.) are understood to be arbitrary formulas (resp., variables)
of indicated type.

7.1. RULE oF BicoNDITIONAL (RULE B): If -4, and -4,= B,
then —B,. This is immediate by Rule R (5.2) and the definition of | (5.3).

7.9. EQUIVALENCE RULES (B-RULES): (i) If 44 % Bg then =B, = 4,,
and (i) If —A4,= B, and B, = O, then A4, = Ca. These are derived
in a familiar way by Axiom 1 (5.1.1) and Rule R.

7.3. RULE T: A, if and only if A4, = T The proof is by Axiom 2
(5.1.2), Rule B, and the E-rules. :

7.4. RULE OF GENERALIZATION (RULE G): If 4, then —(VX.4,).
Proof.

. Suppose —A4,.

. F4y,=T" by T-Rule (7.3).

. (AX,4,) = (AX.A,); Axiom 1.

. F(AX.4,) = (AX,T™); by Rule R applied to lines 2 and 3.

5. (VX,4,); by line 4 and the definition of V (4.6).

7.5. RULE oF SPECIALIZATION (Ruie S): If —(VX,B,) then 0,
where C, results from substituting some formula A, for all free occurrences
of X, in By, providing no such ocourrence of X, is in a part of By which
is a formula beginning with the symbols (AY,, where ¥, is a variable oc-
curing free in A,.

B W b =

Proof.

1. Suppose that By, X,, 4., and C, are related as above, and that
(VX By).

2. -(AX,B,) = (41X, T™); by line 1 and definition of V (4.6).

3. —(AX,B,) A, = (AX.B,) A Axiom 1.

4. H(AX,By) A, = (AX,T") A,; by Rule R from lines 2 and 3.

5. H(AX,T" A, = T" by Axiom 7 and definition of T™ (4.2).

6. -(AX,By) 4, = T" by B-Rules from lines 4 and 5.

7. +(AXB,)4e; by T-Rule from line 6.

8. H{AX,B)) A, = Cy; by line 1 and Axiom 7.

9. |-Cy; by Rule B (7.1) from lines 7 and 8.

7.6. RULE OF SUBSTITUTION FOR FREER VARIABLES (RULE Sub): If
%30, X, Aoy amd O, are related as in the hypothesis of Rule S (7.5), and
if =B, then |-U,. This is proved by combining Rule G with Rule S.
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7.7. THEOREM. —(T"AT") = T™

Proof.

L (I T") = ((HolfaT™ = T%) = (MalfoT™)); by definitions of 7"
(4.2) and A (4.4), Axioms 1 and 7 and Rule R.

2. (fooI" = T") = (fooI"); Axiom 2.

3. H(I"AT") = ((MolfwI™) = (HulfoI™)); by E-Rules (7.2) from
lines 1 and 2. .

4. )—((Afoo(fmT“)) = (sz(fmT"))) = T" by Axiom 1 and Rule T.

5. —(T"AT") = T"; by E-Rules from lines 3 and 4.

7.8. RULE oF CoNJUNCTION (RULE C): If A4, and =B, then —(AgABy).

Proof.

. Suppose 4, and |-B,.

A, = T" and B,= TI"; by Rule T from line 1.

. (4oAB,) = (4,ABy); Axiom 1.

. (4oABy) = (T"AT"; by Rule R from lines 2 and 3.

. -{4eABy) = T"; by E-Rules from line 4 and Theorem 7.7.

6. —(4,ABy); by Rule T from line 5.

7.9. RULE oF (PROPOSITIONAL) CASES: If A, is any formula of type 0,
if X, is any variable of type 0, if A; and A are obtained from A by sub-
stituting T" and F™ respectively for all free occurrences of X, in Ay, and
if A and AT, then also |—A4,.

Proof.

1. Suppose that 4,, X,, 4§, and Ay are related as above, and that

—A{ and A7,
2. - ((AXode) T%) = Ay and | ((AX,4,)F") = Af; Axiom Schema 7,
by line 1.
3. {(AX,do) T") A{(AXo40) F"); by Rule C (7.8) and line 1, then
Rule R and line 2.
4. ((AXodo) T A (AT, A0 F")) = (VXO((ZXOA.,)XO)); by Rule Sub
(7.6) from Axiom Schema 4.
. VX, (AX,4,) X,; by Rule M (7.1) from lines 4 and 3.
. H{(AXo40) Xg) = Ap; Axiom 7.
. H(VX,4,); by Rule R from lines 6 and 5.
8. —A4,; by Rule S (7.5) from line 7.

7.10. THEOREM: (I™AXp) = .

Proof. By Rule of Cases (7.9) from Theorem 7.7 and Axiom 3.
7.11. THEOREM SCHEMA: —(I"—B,) = B,.

Proof.

1. H(T"—B,) = (T" > By); Axiom 1.

B 0 0 =
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2. (T">By) = (lxo(lyo(mo Ao = mo))) T"By; from line 1 by definition

of - (4.5).

3. -(T"=By) = ((IT"ABy) = T™; by B-Rules from line 2 and Axiom
Schema 7.

4. —(T">B,) = By; by Rule T and E-Rules from line 3 and Theo-
rem 7.10.

7.12. Ruie oF Mopus Ponens (RULE MP). If —A4, and —(4,~By)
then +DBy.
Proof.
1. Suppose 4, and - (A4o—By)-
2. (4o = T™); by Rule T from line 1.
3. -(T">B,); by Rule B from lines 2 and 1.
4. —(T"—>B,) = B,; Theorem Schema 7.11.
5. By; by Rule B from lines 4 and 3.
7.13. THEOREM SOHEMA. —(F"—>A4,).
Proof.
1 (Ao = Ag) > ((me@0) = (o T™) - ((Agas) Ao) = (22, T") 4o); by
Rule Sub from Axiom 5.

2.+ ((Amyo) = (Ao T™)) . ((Aoo) Ao) = (AmT™) A,); by Rule MP
(7.11) from Axiom 1 and line 1.

3. LF"s(4, = T"); from line 2 by definition of F" (4.2), Axiom 7,
and Rule R.

4. —F">4,; by Axiom 2 and Rule B from line 3.

7.14. THEOREM. —(T">T") = T*, —(IT"->F") =", ("> =T"
and —(F"—F") = T

Proof. By Theorems 7.11 and 7.13 and Rule T.

7.15. THEOREM. (1T =F" and ( 1F")=1"; also —(T"vT") = T",
—(I"VE") = T", —(F"vI") =T and —(F"VF")=F".

Proof. Using the definitions of ~1 (4.3) and of v (4.5), these
results follow easily by Axioms 1 and 7, Rules R and T, and
Theorem 7.14.

7.16. THEOREM. (F"AT™ =F", (F"AF") = Fn», —(1"AT") = 1",
and —(T"AF") = Fn.

Proof. We have —(F"—=T") = ((F”/\ ™) EF"); by Axioms 1 and 7
and definition of — (4.5). Hence |(F"AT")=F" by Theorem 7.14,
E-Rules, and Rule T. Similarly —(F"~>F") = (F"AF") = F"), and hence
|-(F"AF™ = F". The remaining parts of the theorem come from 7.10.

717, TEEOREM. (T" = T")=T" - (F"=T" =F", -(F"=F")=1"
and —(IT" =F") =F".

©
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Proof. The first two of these results are instances of Axiom
Schema 2, and the third is obtained from Axiom 1 by Rule T. To obtain
the last, we first notice that

(T" = F™) . ((zxo(F" = @)} = (Ao (F" = a:o)))—>.
Ay (F™ = ) T = (g (B™ = )} F™.

by Axiom 5 and Rule Sub. Using Axiom 1, Rule R, and Theorem 7.11
we can simplify this to

(T = F") . (fay(F" =) T == (Ao (F™ = ap)) F™
Then, by Axiom 7 and Rule R are obtain from this:
(T =F"—. (F'=T"=(F"=F").

Using the parts of Theorem 7.17 already established, and Rule R, we
get from this, in turn:
‘_(Tn EF")—)-F".

TUpon applying the definition of — (4.5), Axiom 7, and Rule B, this
leads to
}—((T”EF’”‘)/\FL) = (TnEFn) .

But (4 AF") =F" as we see from Theorem 7.16 and the Rule of
Cases (7.9), so that, taking 4, to be (I"=ZF") and using Rule R we

obtain
Rt = (T"=F").

The desired result now follows by E-Rules.

7.18. We now consider those formulas of our system which correpond
to formulas of the ordinary propositional logic. We define the class of
P-formulas to be least class of formulas containing T", F", and each
variable X, of type 0 as members, which is such that whenever A, and B,
are in the class then 5o also are 144, AgABs, AoV By, 49—>B,, and A,= B,.
A P-formula which is valid (3.2) is called a tautology.

7.19. TueorEM. Every tautology is a formal theorem.

The proof is by induction on the number of free variables in the
given tautology. If 4, is a tautology containing no free variables then
we easily show 4, = T" by Axioms 1 and 2 and Theorems 7 14-7.17;
and then A4, by Rule T. If 4, contains some free variable, say X,, we
let A% and A% be the formulas obtained from 4, by substituting T™ and F™
respectively for all free occurrences of X, in A,. Tt is easily seen that Ag
and Ay are themselves tautologies, since for any assignment ¢ we have
V(di,9) = V(dy, ) =T and V(45,¢) =V (4, ¢") =T, where (¢'Xy)
=T, (¢’ X,) =F, and (¢' Y} = (¢"' ¥p) = (p¥p) for all variables Y5 # X,.
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By induction hypothesis, therefore, we obtain (-4 and —Ay. But then
-4, by the Rule of Cases (7.9).

7.20. THEOREM. If A, is a tautology and B, is obtained from A, by
simultaneous substitution of arbitrary formulas of type 0 for the free variables
of Aq, then B, is called a tautological formula. Clearly by Kule Sub and 7.19
we have B, for each such B,.

Having shown how the ordinary theorems of ﬁl‘olaositional logic are
included among ours we turn to theorems of predicate logic (with equality).

7.21. THEOREM ON CHANGE OF BOUND VARIABLES. Suppose that 4,
and B, are formulas, and X; and Y, are variables, such that B, is obtained
by replacing all free occurrences of Xg in A, by Ys, and A, is obtained by
replacing all free ocourrences of Yg in B, by Xp. Then —(AXpd.) = (AY,B,).

Proof. By Axiom 7 and our hypothesis we have |- ((/IXﬂAa)Xﬂ) = A,
and - ((A¥3Bo) Xp) = Ao, so that VX ((AXp4s) Xp) = (AY,B.) X5) by
E-Rules and Rule G (7.4). We then obtain | (1Xz4.) = (1Y,;B,) by
applying Rule Sub to Axiom 6 and using Rule MP.

7.22. Suppose that C, results from substituting some formula A, for
all free ocourrences of X, in By, and that no such occurrence of X, is in a part
of By which is a formula beginning with the symbols (1Y, where Y, is a vari-
able oceurring free in A,. Then —(VX,B,)—~0,.

Proof. We have

F((AXaBo) = (AX.T™)} = ((AX.Bo) Ao = ((AXT") A

by Rule Sub applied to Axiom 5, followed by Rule MP with Axiom 1.
From this we obtain —(VX,B,) >, by definition of V (4.6), Axiom 7,
E-Rules, and Rule R.

7.23. THEOREM. If the wvariable X, does mot ocour free im B,, then
(VXA By Co) > (Bo—>(VX,Ch))).

Proof. We have (VX (F"—0,))— (F"—(VX,C,) since this for-
mula is tautological (7.20). We also have  (VX(T"— Co) > (T" > (VX,Cy)),
since this can be obtained by Rule R and Theorem 7.11 from the tauto-
logical formula (VX.0p)—>(VX,0;). Hence by Rule of Cases (7.9) we
get l—(VXu( Y0—>O’o)) (¥, >(X.0,)}, where ¥, is a variable other than X,
which does not occur in C,. The desired result now follows by Rule Sub.

7.24. THEOREM. Suppose that B, is obtained from A, by replacing one free
occurrence of Xy by a free ocourrence of ¥p. Then 1~ ((Xp = ¥p) (4o = Ba)).

The proof is by induction on the length of 4,. If A, is a variable
(namely, Xj), the formula involved is tautological. If A, has the form
(4447) we carry through the induction step with the aid of Axiom 5
and Rules Sub and MP. Thus it remains only to consider the case where

©
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A, = (AZ,0,), with X, Z,+# Y. From the induction hypothesis
(X = Y;)—(Cs = Dy)), where D, arises from C, by replacing one
free occurrence of X with a free occurrence of ¥,, and we then obtain
(X; = Yp)~>(VZ,(0s=Dy)) by Rule G and Theorem 7.23. Bub
- ((AZ,05)%,) = Cs and - ((4Z,Ds)Z,) =D, by Axiom 7. Hence by
Rule R we obtain +(VZi(C, = Ds)) > ((42,0s) = (1%,Dy)) from Axiom
Schema 6 (using Rule Sub). By use of Rule MP and a suitable tauto-
logical formula we now combine the above results to obtain —(X; = ¥j)
->((22,05) = (AZ,Ds)), which completes our inductive proof.

7.25. Theorems 7.20-7.24, together with Rules G and MP, show
that all of the usual formal theorems involving propositional connectives,
quantifiers, and the equality sign are available in our system (*). In the
sequel we shall make free use of such theorems with the simple reference
“by predicate logic”.

7.26. By induction we define for our system a relation of formal
consequence which holds between a finite set I' of formulas of type 0,
and a single formula 4,, as follows. If I' is empty then I'-4, if and only
if -4y If I' is non-empty then I'—4, if and only if, for every B, el
we have I'~{By}(B,—>4,), where I'~{B,} is the set obtained from I'
by removing the element B,. We list below some basic properties of this
relation, all of which are easily proved by induction on the size of I' (with
the aid of the observation of 7.25).

(i) It I'-4, and I'C 4 then A4,

(i) ¢ I'4, and I't-(4,—B,) then I'—B,. .

(iil) T I'—A4, and X,is not free in any formula of T'then I'— (VX A,).

(iv) If I'+(4, = B,), if I'—0C,, it D, is obtained by replacing one
oceurrence of 4, in ¢, by an oeccurrence of B,, and if no part of 0, con-
taining this occurrence of 4, is a formula beginning with the symbols
(1Y 3, where Y, is a variable free in (4, = B,) and in some formula of I,
then I'—D,.

We can paraphrase the content of (ii)-(iv) by saying that Rule MP,
Rule G, and Rule R are valid for deductions from a set I'y providing
cerbain restrictions on the binding of variables are observed. The property
of the consequence relation that whenever I'—A, we have also I'~{By}
|—{B,—~>4,), which is immediate from our definition of this relation, is
known in the literature as the Deduction Theorem.

§ 8. In this section we develop our completeness result for the theory
of propositional types by generalizing our method of proof of Theorem 7.19.

(*) Compare Sections 30 and 48 of [2].
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8.1. Consider the following four closed formulas of type (00):
B = (hmymo)s F=1= (Mo(ﬁm = wo))’ P = (Jx,I"), and E'= (AzgF™).
‘We first establish some simple formal theorems about these.

8.1.1. THEOREM. We have H(E'T™)=1" (E'F")=F" ..,
(BF") = F*. More precisely, for each i=1,..,4 and each w <Dy we
have (E'2™) = (fz)", where f*, ..., ¢ are the elements of Dy specified
in 4.4.

Bach part of this theorem is established with the aid of Axiom 7.
In the case of F, an additional step is needed, using Axiom 1 or Axiom 2.

8.1.2. TaEOREM. For i #j we have — 1(E' = B), 1<, j < 4.

To indicate the proof for one part of this theorem, take the case
§=1, j=4. From 811 we have —(FT")=1T" and —(F'T") =F"
Hence by predicate logic (in fact, by propositional logic), we get
((B*T™) = (B*T™). The desired result, — 1(E" = E'), now follows
by predicate logic from Axiom 6.

8.1.3. THEOREM. FV{u-(Joo = EY) V(g = E2)V (g = E?)V(ge = E).
Proof. The formula

(g™ = T")A (o F™ = TV (#ooT™ = T™ A (goo ™ = F™)]v
Vg T" = F") AlgooF™ = T™) 1V [(dooT" = F") A (gooF" = F")]
is tautologous, and hence is a formal theorem (7.20). Using 8.1.1 and
Rule B we get
F{(goT" = B°T™) A (gooF" = EFMIV ...V [(goT" = B*T™ A (g™ = EF™)].
Using Axiom 7 and Rule R this leads to

[ (Aol gooms = Ew0)) T) A (2 goo = BPa)) B |
V[ (22 goa0 = Bao) T A (A gooo = B*2)) F")] .

Then, by Axiom 4 and Rule R, followed by Axiom 7 and Rule R again,
we obtain :
[Va(gooo = 201V ... V[Vo( gooto = Er)l.
Finally, using Axiom 6 with Rule Sub and Rule R we get |—(gy = EH)V...
..V (g = E*) and the theorem follows by Rule G.
8.14. THEOREM. |- ((Elay(B'z) A (B'TY), (e ao( o) A BF"),
B (Elag(Bwy)), and - 7 (Al a(B'a,)) -

.Each of these formal theorems is established by combining 8.1.1,
Axiom 4, and predicate logic.
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8.9. THEOREM. We turn now to the formulas tuo, tntroduced in 4.9,
and shall show by induction on o that
(1) I_‘Vgoﬂ' (H!ma(g&xﬁn)) ")'(goa(ta(ﬂa)gnu)) -

We remark that once we have established this theorem for some a
we may employ predicate logic, the definition (4.10) of (1X.4,), and
Axiom 7 to obtain
(I1) (T X, ) > (AXod o) (1Xady))
for any formula 4,.

8.2.1. Since w0 = (Huolfoo = (Aryro))), We see by definition (8.1) of oa
and Axiom 7 that for i = 1,2 we have - (iwE’) = (B’ = E'). Using 8.1.2
we then obtain (uenE")=I" and (oo B*) = F™. We can then
infer from Theorems 8.1.4, 81.3, and 8.1.1 again, by predicate logic,
that |—V.‘]oo-(F—[!mo(goo%))"(goo(ln(oo)goo)): as required.

8.9.2. We now make the induction hypothesis that

0] -V ou - (B! Bal Joae) = (Goal tatoer9o) »
so that, by the remark following 8.2(1), we have
(II) (! X dy) > (A Xado) (1Xodo))
for any formula A,. And we seek to prove that
(IIT) Vo« (T 2ap(GotaprZes)) > (Goas) app(ote) Joces)) -
From the definition (4.9) of tepues) and Axiom 7 we obtain
- aprtota) Jocasy) = (A5 - 1 - (! 2l Gocarr2an)) A (V2as - Goaprap —> (2epp = Ya))] -
Hence, by predicate logie,

@IV) (Tl 2w Goepran) >
(Cecopr(otam) Gocam)) = (48579 V 2ap - GotapZen = (2epp = Ye)) -

However, again by predicate logic,
(T 2ap( Gotar)2ep)) = « A1 Y- V2ap - Joiep)Pop — - ZopBla = Ya -
From this, using (II) above, and Axiom 7, we get

= (H!zuﬂ(go(aﬂ)zaﬂ)) > . Veus+ oup)Zap —> - Rap¥p
= (1a. Vag- Joiap)%up = + Buplp = Ya) -

By predicate logic, Axiom 6, and Axiom 7 this, in turn, leads to

(B! 2l Gotapy2ap)) = V2o - Yotap)¥ap > - 2 = (Mg 1YV Za- JotapyFup = - Rupp = Ya) -
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When this is combined with (IV) we get

(& 20 Goapr?ap)) =+ V2us - Gotamus = - 2ap = Uap(o(ap) Jotef)
from which the desired (III)

=V gosy - (A ! 2ap( GoiemZas)) = - Gotap) as)(otam) Gotom)

follows by elementary predicate logic.
This completes our inductive proof of Theorem 8.2.

8.3. Using the result of the preceding section that
- (E! Xod) > (A Xadg) (1Xod,))

we turn now to some formal theorems invblving the formulas #* (for
every element z of any propositional type ¢),) which were defined in 4.10.
In fact, if @, is any propositional type and 2, ...,%p are distinet and
include all elements of ©D,, we shall show (by induction on y) that:

(In)

1) }"1(2?52?) if i #4,,
2) FVa,.(z, = Z?)V-..\/(my = z;) ’
(3) if y=(ap) then for any y e Dy we have (Z7y") = (2:y)".

For the case where y =0 we have p =2 so there is just one for-
mula (1) and this is a tautology; the formula (2) is obtained by Rule G
From another tautology; and (3) holds vacuously.

Proceeding by induction, let us now assume that y = (af), and that
fiy ey Ip 18 @ list of the distinet elements of X, while ¥y, ..., ¥, is a list
of the distinet elements of Q.

We first give a proof of (3). From the definition (4.10) of /7 and
Axiom 7 we have

= (FY7) = 12a.(1F = 9 now = (Fan)") VoV (V= Wi A2 = (Fi)") -

"Then, using part (1) of our induction hypothesis concerning D, we have
(Y7 = y%) for j # %, s0 we obtain

) FTY7) = 12020 = (i)™ .

But by predicate logic we know H!2,.2, = (f;y,)", and hence by (II)
above

= ((A2a-20 = (fsy)") (1220 = (Fis)")
which in turn yields
(12020 = (fiys)") = (fiys)m
by Axiom 7. Combining this with () above we get the desired
) = (Y7) = (fays)" -

icm
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Turning next to a proof of (1), we observe that if ¢ £ j (1 <4, < P)
then for some k =1, ..., ¢ we have (fiyx) # (f;yx). Hence by part 1 of
our induction hypothesis (concerning P,) we know

B T (Faye)” = (Fryn)n) -
Combining this with (3), which has just been proved, we obtain
=T ((FyR) = (7)) -

Finally, using this with Axiom 5, we get the desired I—‘”‘l(ﬂ‘z 1) by
predicate logic.

Tt remains only to establish (2). For this purpose we note that part (2)
of our induction hypothesis (concerning the types D, and ) implies
by predicate logic that the disjunction of all formulas

()

where w0y, ..., w, are all elements of D, and ky, ..., kg are arbitrary in-
tegers between 1 and » inclusive, is & formal theorem. But for each sequence
% = (ky, ..., by there is a unique f; € Dgs such that (fs.9;) = ws, for each
j=1,..,q and hence by (3), which was proved above, we have

((myy{b) = ’w;h) /\"'/\((myyg) = w%g) ’

= (fyt = wh) A ALY = wiy) -
From this and (x+) we see that the disjunction of all formulas

((2d) = Fayd) A n ((@50) = FR30) 5
for all f;, € Dog, is a formal theorem, and so by another use of Part (2)
of our induction hypothesis (concerning Ds) we see that

(s, yp = F29p) V-V (Vus(@, 9 = F395)) -

When this is combined with Axiom 6 we obtain the desired

(2)
by predicate logic.
8.4. We have now developed all of the machinery needed for our
completeness proof. In this section we shall establish the following result.
TEMMA. Let A, be any formula and @ any ossignment. Let AD be
the formula obtained from A, by substituting, for each free occurrence (:Lf
any variable Xy in Aq, the formula (pXp)". Then =AY = (V(4a, 9))™
In particular, if 4, is closed we have AP = 4,, and if 4, is valid
we have V (4o, ) = T (for any ¢), so for closed, valid formulas A_0 the
lemma gives 4, = 7" from which -4, is obtained at once by Axiom 2
and Rule R. For valid 4, which are not closed we then infer easily that

FVaz,.@=fAV..ve =1
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{4, must also hold by considering the closure V.Xj,....VXp,. 4., where
Xp,y ..r) Xp, are all of the variables occwrring freely in A4,. Thus the
completeness proof is completed.

The lemma is proved by induction on the length of 4,. Indeed, if 4,
is a variable then A = (V(4q, ¢))", 50 AP = (V(44, ¢))" is an instance
of Axiom 1.

Next consider the case where A, is @y, and suppose that y,, ..., y,
are all of the elements of @,. For 1 < i, j < ¢ we have (Quy),¥iy7) = I
if ¢ # j, by 8.3(1) and definitions of = and 1, and we have —(Qw,,y7v})
= T" by Axioms 1 and 2 and definition of =. But if f is the element
(Qun)* of Dyoyyy We also have |(f*y7yf) =F" if & #§ and = (fiyiy?) = T"
by 8.3(3). Thus we obtain, for each i =1, ..., g,

(@ y2yd) = (FYEyD) Ao A Qo 43 97) = (Y7 2))
and then
V2, Qo ¥izy) = (f"yiz,) ,
by using 8.3(2), and finally (Qu,¥:) = (f*y7) by Axiom 6. Since this
hol.ds for each i=1,..., ¢, we repeat the same pattern of argument to
artive at the conclusion —Quy, = " Since Q&) = Quny ad ¥V (Quyy, @) =7,
the lemma is seen to hold in this case.
Turing to the case where 4, has the form (B,;0s), we make the in-

duction hypothesis that

B = (V(Bas; )"
and

= 01(3@) = (V(Oh ‘7’))% .
Using 8.3(3) we then conclude that

=B ) = (V (B, 9)V (Cs, 9)" -

But by definition of 4% we have (B C0F) = (BuCp)"”, and by definition
of V we have (V(Bu,#)V(Cs, 9)) =V ((BusCp); ¢), 50 that | (Be0p)®
= (V{(BuCp), ¢))", as needed to establish the lemma in this case.

Finally we take up proof of the lemma for the case where A, has
the form (AX,0p), so that a = (fy). Let us suppose that ¥y, ..., y, are all
of the elements of 7, By induction hypothesis we have | O’ = (ff(Cp )"
for every assignment . ’

Now given any assignment ¢ and any y; € D,, we known from Axiom 7
and the definition of (1X,05)® that (AX,05) %" = O, where g;(X,) = 1
and ¢d{Zs) = p(Z;) for every wvariable Z; # X,. But V(Oﬁ:w) =
= (V((leGﬂ),(p)yi) by definition of ¥ and the fact (Section 4) that
V(i ¢) = (4)" = y;. Hence our induction hypothesis yields

H(X,C0) %yt = (V((AX,05), ¢) )" .
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Using 8.3(3) we therefore get
(X, 0y = (V((2X,C), )" -

Since this is true for each 4 =1,...,7 we can use 8.3(2) and Axiom 6
to obtain
- (AX, 0 = (V((4X,0p), 9))"

which completes the inductive proof of our lemma.

Remark. It is easy to see that while our completeness proof (§ 8)
depends in an esvential way on the restriction of our system to the
clags of propositional types, PT, the essential features of our semantical
and syntactical development of propositional and predicate logie (§4—§7)
can be carried through for a system of the full theory of types based
on the same primitive notions. To obtain such a system, following
Church [1], we deal with a class T of finite types obtained by starting
from @, and from an arbitrary set @; (whose elements are called 4ndi-
viduals), and generating all further types obtained by passing from any
{Da and (Dﬂ to (Duﬂ.

Now consider a symbolism ¢ obtained from our present symbolism
(§2) simply by adding variables X, and constants Qe 0f the new types
to those of the old. The definitions of propositional connectives and
quantifiers (4.1-—4.7) obviously remain valid for this symbolism d.
Turthermore, if we adopt the same axiom system (§ B), it is clear that
the derivation of the basic rules of predicate logic, consisting of sections
7.20 —7.24, 5.1.1, 7.4, and 7.12, will all continue to hold in the new
gystem.

However, the system obtained in this way does not seem to be
a really adequate formulation of type-theoretic predicate logic, since it
does not seem possible to prove such a formula as

(+) (@ = ) > (Hfyy) (futs = Yy A fulth = 9y) -

To remedy this defect it is necessary to add to the system J a new
primitive constant gy, to enable us to extend 4.9 by introducing de-
seription-formulas e,y for all aeFT. We musb then add to our axiom
fystem an

Axron 8. .
(H!@y) (for®y) = for(aonfor) 5

which will enable us to extend Theorem 8.2 to the new system. With
the help of this we can easily prove such formulas as ().

Added October 15, 1962. The referee has just called to my attention the paper
S8t. Leéniewski’s prolothetics by Jerzy Stupecki, Studia Togica, vol 1 (1953), pp. 44-111.
This paper, constituting a reconstruction of Teéniewski’s work based upon notes which
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he left, presents three formulations of the theory of propositional types, one of which
is based upon equivalence. A proof of completeness is given. However, the systems
differ from ours in various ways, principally-in a rule of definition allowing the intro-
duction of names for arbitrary elements of the hierarchy of propositional types.
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A reduction of the axioms
for the theory of propositional types

by
P. Andrews* (Princeton, N.J.)

Throughout this paper we shall follow the notation used by Henkin
in his paper 4 theory of propositional types (this Volume, pp. 323-342),
hereafter referred to as [H]. Reference numbers followed by ‘H’ refer to
gections of that paper. (*)

Henkin’s paper is of particular interest in that it takes symbols
for the identity relation as the sole primitive constants. That there is
ample historical precedent for special interest in such a system is attested
by the following passage from Ramsey’s article, The Foundations of
Mathematics:

“The preceding and other considerations led Wittgenstein to the
view that mathematics does not consist of tautologies, but of what he
called ‘equations’, for which I should prefer to substitute “identities’. ...
(It) is interesting to see whether a theory of mathematics could not be
constructed with identities for its foundation. I have spent a lot of time
developing such a theory, and found that it was faced with what seemed
to me insuperable difficulties.” (%)

The full beauty of Henkin’s theory of propositional tiypes can perhaps
best be appreciated when the system of axioms in gection 5.1H is simpli-
fied somewhat. Therefore let us replace this system of axioms by the
following

AXIOMS.

(1) (oo T™ A goo ™) == V0o Jontko) -

Graduate Fellowship while working on this paper.

) I wish to express my appreciation to Professor Henkin for the privilege of
reading his paper before publication, and for his many helpful suggestions, comments,
and criticisms during the writing of the present paper.

(¢) F. P. Ramsey, The Foundations of Mathematics, Proceedings of the London
Mathematical Society, series 2, 25 (1926), p. 350.
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