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On the structure of homogroups with applications to
the theory of compact connected semigroups

by
R. P. Hunter * (University Park, Pennsylvania)

This work is, for the most part, devoted to the study and application
of a certain type of semigroup called a homogroup. By a homogroup,
we mean a semigroup having a two-sided minimal ideal which is a group.

In the first part, we obtain some conditions under which certain
semigroups become homogroups, and introduce the notion of maximal
sub-homogroup and other notions which will be useful in what follows.

In the second part, we apply these results to the study of topological
semigroups. In particular, we shall study the structure of certain compact
connected semigroups. The results in this arvea quite naturally depend
upon the nature of the canonical endomorphism associated with a homo-
group. Under suitable conditions, this endomorphism, in the topological
case, is a monotone. As we shall see, this fact enables one to construct
various sub-semigroups including arcs. In this connection we shall show
that a compact connected abelian semigroup (which is not a group),
having an identity 1 contains a non-degenerate compact connected sub-
semigroup whose intersection with the maximal subgroup at 1 is pre-
cisely 1. :

Another application of this canonical endomorphism is a natural
description of certain semigroups as coordinate ‘bundles with connected
fibres.

§ 1. Homogroups. The term homogroup was introduced by
G. Thierrin [29] who studied their regular equivalences and made a detailed
study of a special homogroup called resorbing (résorbant).

Rarlier, A. H. Clifford and D. D. Miller, [8], had studied homogroups
under the title ‘“‘semigroups with zeroide elements”. Let us recall that an
element & of a semigroup D is ealled net or zeroid if for any & there exist
elements s and ¢ such that ds =z and {d = 2. Now Clifford and Miller
show that K, the set of net elements, if non-vacuous, is a two-sided ideal

* The author holds a National Science Foundation grant NSF G 13758.
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and is a group. Furthermore, if ¢ is the identity of this group, then the
application
r—>xe (= ex),

is an endomorphism of D upon K.

On the other hand, suppose that D is a semigroup having a two-sided
ideal K, which is a group. It is then easy to see that K is, in fact, the
set of net elements. For let ke K and deD. Then kd <« K and since K
is a group, there is an element s.« K such that

s(kd) = (sk)d =% .
Likewise there is a t such that dt = k. .

It seems somewhat preferable for our purposes to view the notion
of homogroup in terms of the existence of an ideal which is a group.

It is a virtually immediate fact that if an ideal I meets a subgroup @
then L contains G. Hence, if I is an ideal and a group it is 4 minimal ideal.
Thus we see that D is a homogroup if and only if D contains a minimal
(two-sided) ideal which is a group. Thus, in the sense of Clifford [1],
K is the kernel = minimal two-sided ideal of D. It is clear then, what
we mean by the kernel of a homogroup. Following Thierrin [29], we shall
call ¢, the idempotent in K, the unitif élément of the homogroup. (We
reserve e for this réle.) The canonical endomorphism,

&L —>2e = ex ,

shall be denoted, following [3], by ¢.

Certainly, if D is homogroup then D admits a homomorphism onto
some group; namely K. And if D does not have a zero element this homo-
morphism is non-trivial.

On the other hand, suppose that 4 is a semigroup admitting a homo-
morphism f into a group G. Then 4 w G can be given the structure of
a homogroup by defining for a e 4 and we @

ax = f(a) x.
(See [3].) Of course, not every homogroup is obtainable in this way for @,

the kernel in this construetion, is prime which is not the case in general.

Let us recall the following quotient sets of Dubreil [5). Let C be
a subset of a semigroup D and aeD.

Cota={y| yaely,

) Cova={2| are(C}.
We denote the set

C"(lf\c'u(l by Oa.

Let D be a semigrpup. B;}r a sub-group or sub-homogroup we shall
mean & sub-semigrouyp which is a ‘group or a homogroup.
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Let j be an idempotent element of the semigroup D. Then 1t is well
known that there is a unique maximal sub-group containing f. It is some-
what customary to denote this group by Hy. It is easy to see that H;
may be given explicitly;

H; = {x| x<{Df and f exD ~ Dx}.

Tt is also somewhat customary to denote the set of idempotent

elements by E. ) ) .
As we see in the first theorem each group H; determines a particular

sub-homogroup. ) ) )
’ If the sets 4 and B have a non-vacuous intersection we shall write

A3CB.
TeamoREM 1.1. Let D be a semigroup and M a subsemigroup of {Df

where f2 =7f. Then ,
MosfnM .f=M
is a sub-semigroup. If M is a sub-homogroup then so is M’. In particular,
H je° f ~nH it of
is a homogroup with minimal ideal Hy. Furthermore,
4

is the mazimal sub-homogroup which has f as unitif element.

Let # be an element of M.<f~ M=.f. Then

xfe M and fzel.

Consequently,
fat = §(af) = af
and
fof = (f)f =fo .
That is to say,
of = fo.
Let @ and y be points of M.-f~ M.f. Then

(@y)f = =(yf) = o(fyf) = (=) ()
and since
(zf)(yf) e MM C M,
we have
zyedM.fAM-.f.

Thus M’ is a sub-semigroup.
Now let M be a homogroup with K as kernel. For any z ¢ M' we have

2K = 2(ME) = z(f M) K= (/) MEC MMK = K.
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Thus K is a left ideal of M’ and in the same manner is a right ideal.
Since K is already a group, K is the kernel of M.

Finally, let F be a sub-homogroup whose kernel is G. If f is the
unitif element, that is to say, if f is the identity of the group & then im-
mediately @ C H; since H; is maximal. Since

PUFICE,
FC G fnGeafCHyurf nHy f.

Following the above theorem, if ¢ is any sub-group whose identity
ig g then we shall designate the sub-homogroup

GergnlGeoyg

we have

by
G
For simplicity, we shall write HY instead of HY.
TEEOREM 1.2. Let b and f be idempotent elements of the semigroup D.
If b commutes with each element of Hy then fh is an idempotent and

Hfg_Hfh- *h r\HﬂL' oh.
Consequenitly,

H; C H™
It is immediate that fh is idempotent. Now the application

r—>zh,

defined upon H; is a homomorphism since 7 commutes with the elements )

of Hy. It follows that (H,)k is a sub-group of D and

. ) fhe (Hy)h .
Since Hy, is maximal,

H)h C Hy,.
Similarly, (Hnh & Hp

h(Hy) C Hy,.

For the second assertion one need only note,

(Hp)fh = (Hp)h C Hy, .
Ths Nfh=(H)h C Hy
H,C H™
Let us note that the assumption that & commute with the elements
of H; is essential.

Consider the free semigroup & on four symbols #, f, y, h. Now impose
the relations

$2:f2=f,

P=h=h,

J“f=fw=$:

Yh=hy=y.
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In the semigroup § modulo these relations,

=@}, H={v.

However, hf = fh and neither is idempotent.

THEOREM 1.3. Let D be a semigroup containing at least one minimal
left ideal and af least one minimal right ideal. If every two idempotents
commute with one another then D is a homogroup.

Clifford, [1], has shown that under our hypothesis a mlmmal ideal K
exists and that K is the union of the minimal left ideals and is the union
of the minimal right ideals. Furthermore, Clifford has shown that each
minimal left ideal L is of the form Dg where ¢g> = g. Likewise, each minimal
right ideal has the form fD where f2 =f. Now two distinet minimal left
ideals must be disjoint. But if L and M are minimal left ideals then L = Dy
and M= Df where ¢* =g¢ and f* =f and hence,

fg=g9fe Dg~Df =L~ M.

Henee K is itself a minimal left ideal. In the same way, we see that K
is a minimal right ideal. It is then well known that K is a group, for in fact

K =K =zK
for each x e K.
A subset N of a semigroup D is said to be normal if

dN = Nd deD.

We note the easily established fact that if D is normal itself then
the idempotent elements of D commute with one another. For let f and ¢
be idempotent. Now Dy contains gf and 7D contains fg and Df = fD. Thus

fof = f(gf) = gf
fof = (jo)f =1y

for each

since gf e fD = Df and

since fg e Df = fD.

Hence we have the following.

CorOLLARY. Let D be a semigroup hawving at least one minimal left
ideal. If D is normal then D is a homogroup.

For with normality and minimal left ideal is also minimal right.
Since the idempotents commute, D is a homogroup.

COoROLLARY (Thierrin). A finite abelian semigroup is a homogroup.

According to Clifford [2], a semigroup D is said to admit relative
imverses if for any @ e D there is an idempotent e, such that

e, = a0 =@,

and an element a’ such that

’ ’

at = a'a = éq.
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1t follows that if D admits relative inverses then D is the union of

maximal subgroups H,. ‘
Tt should be noted that if X is any set we may define

ab =a for all a,bedX.

X is then a semigroup which admits relative inverses. Hence, off hand,
this hypothesis is not very restrictive. Certainly X is not a homogroup.

TamorEM 1.4. Let D be a semigrowp which admils relative inverses.
Suppose that D contains an idempotent z such that zg = gz = 2 for any
idempotent g. Then D is a homogroup. More generally, if every one-sided
ideal contains an idempotent then D is a homogroup.

One sees without pain that if L is a left ideal and & is a subgroup
of D then

L3 G implies LCE.

Consequently, if D admits relative inverses then each left (right) ideal
contains an idempotent. Since 2 annihilates each idempotent, each left
(right) ideal contains z. It is now immediate that D contains both minimal
left and minimal right ideals. According to [1], K, the minimal ideal,
exists. As before, since K is the union of the minimal left ideals, and since
any left ideal contains 2, it follows that K is a minimal left ideal. Likewise
K is a minimal right ideal. As before, K is a group, since

2K =K =Kz for zeK.

Of course if D is a homogroup and admity relative inverses then
the unitif element ¢ has the property hypothesized for z in the previous
result.

Again, let D be a homogrouy, { the cannonical endomorphism, and
¢ the unitif element. Clearly, £ '(e) the inverse image of ¢ is a sub-semigroup.
Alternatively, we may describe this ag

fe}e.e, {e)°.
However, we shall follow [3], and denote this set by J. Thus,

{€}.+e, or

J = (x| ex =xe =¢}.
It is immediate that J is a unitary sub-semigroup. That is to say,
zed.

According to Clifford and Miller, J is the core and K wJ is the
frame of D.

Many of our applications will center around the properties of J.
We have already considered some of these in [10] and [11]. In particular,
applications are made concerning the existence of arcs in topological

xyed and y eJ  imply
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semigroups. The problem of arcs in semigroups is considered in [9], [10],

[11], [12], [13], [14], [15], [16], [17], [19], [20], [24] and in various other
works.

We recall that an element a is left cancellative if the application

r—>ar
is one-to-one. Equivalently,

ar =ay implies x=1y.

Thus, each element of H; the maximal subgroup at 1 is left can-
cellative.

THEOREM 1.5. Let D be a homogroup and P a sub-semigroup such
that each element of P is left cancellative. Suppose further that

tle
is a monomorphism. If the application
v: PaJ ->D
is defimed by
(p, ®) =pz,

then is one-to-one. If the elements of P and J commute with each other, and
if multiplication in P < J is defined by

(p,2)(P, T) = (pP, 2%) ,
then T is a monomorphism.
‘ Suppose pz = Px. We then have
(p)e = (F@)e = p(xe) =P (de) = pe = pe -

Sinee { is one-to-one on P, one has

p=p
so that

px = p¥
and since p is left cancellative,

r=1I.

Thus, { is one-to-one.
Finally, if g € P and y eJ, implies gy = yq, one has

(p, 2)T(g, y) = (p2)(qy) = p(xq)y = p(g2)y = (pg)(wy) = ©(pg, TY) -

Thus, = is a homomorphism.

Suppose that D is a homogroup with identity element 1 and, as
usual, unitif element e. Consider the maximal subgroup H,. Each element
of this semigroup is left and right cancellative. Hence the previous result
applies with P = H;.
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In any case if {|g, is not one-to-one, the application z(p,2) = px
where p e H;, ®¢J, is still a homomorphism if H, and J commute
eleentwise.

Now let D be any semigroup. Let f and g be idempotents. We shall
say that H, is wnder Hy it H; C H’. If this is the case then g is under f
in the usual sense. That is to say

gf =19=19-
Moreover, since H; is a homogroup, the application
>y

defined upon Hy is 2 homomorphism. We shall denote this homomorphism
from H; to H, by ¢}. Thus with this notation, {; is the canonical endo-
morphism “cut down” to the maximal subgroup at 1.

The subset of D consisting of all # such that  « fDf and gz = ag = g
will, in accordance with our previous notation, be denoted by Jh.

A good deal of our later discussion will involve crucially the homo-
morphism ;. Because of this, the following definitions will be useful.

Let D be a homogroup with identity 1 and unitif element e. Then
we shall call D an epi-group, mono-grouwp, iso-group respectively as (; is
an epimorphism, monomorphism or an isomorphism.

We say that a homogroup D is left (right) cylindrical if D =JH,
(D =H,J). By cylindrical we mean both left and right cylindrical.

The following result is an immediate corollary to Theorem 1.5.

Let D be a cylindrical iso-group. If the elements of H, commute with
the elements of J then

D~H,xJ.

THEOREM 1.6. Let D be a homogroup and B « left ideal of J. That is
to say, BCJ and JB C B. Then

DB A~J =JB.
It follows readily that
JBC DB A~J.
Now let # e DB ~J. Then
z=dbed.

Since J is unitary, as noted previously, db eJ and beJ implies dedJ.
Thus dbeJB 80 zeJB.

We recall that a semigroup D is left simple (with zero) if the only
non-degenerate left ideal of D is D itself.

‘We recall the Rees quotient. Let I be an ideal of the semigroup .D.
We say that a = b modulo I if either a =b or a ¢ I and b € I. It is easily
checked that this is a congruence. The quotient semigroup iz denoted
by D/I or Dmod I. We note that D/I has a zero, namely {I}.
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THEOREM 1.7. Let D be a homogroup. If D/K is left simple with zero
then J is left simple with zero.

Suppose, on the contrary, that B =J, B = {¢}, BCJ and JBC B.
Then DB ~J =JB, from above. Now DB being a left ideal is either
equal to D or DB is contained in K since D/K has no proper non-zero
ideal. First, if DB = D then

DBAJ =DAJ=J=JBCB

which is a contradiction. On the other hand, if DBC K we see that
Bu K is a left ideal go that B K = D. It is then clear that this implies
B =dJ.

Let D admit relative inverses. Then each element x i3 contained
in some subgroup. We denote the maximal such subgroup by H..

THEOREM 1.8. Let D be a semigroup which admits relative inverses.
If the idempotent elements commute with one another then for each idempotent
f we have

Hi o f=H;*.f.

Furthermore, H' consists of all elements & such that either

(Hz)f 3L Hy
or
F(Hz) I Hy .

According to lemma 3.1 or [2], each idempotent belongs to the center.
Thus,
H;e*f=H;.%.

The second part follows readily for H, is a group and since / com-
mutes with each element of this group, (H,)f is the homomorphic image
of H, under the application

Z>Tf.

Clearly then, since H; is maximal,

(Hy)fILH;  implies  (Hx)f C H;.

Thierrin, [29], calls a homogroup D resorbing if
(i) D admits relative inverses.
(ii) The product of two distinet idempotents is the unitif element.

As we shall see, a topological resorbing homogroup is of a rather
limited sort. We shall consider these conditions, (i) and (ii), separately.

The following shows that certain naturally occurring sub-semigroups
are resorbing.
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TaEoREM 1.9. Let D be o semigroup and [ and ¢ idempotents such
that fg commutes with each element of Hyw Hy. Then fg is idempotent and
H;w H,w Hy, is a resorbing homogroup with kernel Hy,.

First of all,
197 = (f)(f9) = (f)f)g =1 (f)g =19 -

Sinee 7{fg) = (fg)] = fg, the rest follows from Theorem 1.2.

Rees, [26], defines a semigroup D to be completely simple if

1. D is simple.

2. D=EDE. .

3. Under each idempotent there is a non-zero primitive idempotent.

We recall, [25], that a semigroup D is simple if D has no proper ideals
except possibly zero and if, moreover, D is not the zero semigroup of
order two. (By a zero semigroup, we mean one in which all produects
are zero.)

TueorREM 1.10. Let D be a homogroup satisfying condition (ii). If K
is a magimal ideal and D contains ab least two idempotents then DJK is
completely simple. (If D* = D and each element in D is of finite order then
there is an idempotent oulside of K.)

First of all we assert that D/K is a simple semigroup (with zero).
To see this we note first that D/K cannot be the zero-semigroup of order
two. For if D/K is composed of only two elements then for some point »
we have K v {x} = D. Since D contains two idempotents, by hypothesis,
and K being a group has only one idempotent, we conclude that 2? = z.
Thus, D/K is not a zero-semigroup. Certainly, since K is maximal, D/K
can have no proper ideal except zero. Now let ¢ be a non-zero idempotent
in D/K. Then g(D/K)g has only two idempotents becanse of condition (ii).
Hence each idempotent in K/K which is non-zero must be primitive.
According to Rees, [27], a simple semigroup with zero in which each
non-zero idempotent is primitive and which contains a non-zero idempotent
is completely simple.

Let us now consider the second assertion. Suppose first, that D— K
is degenerate say {z} = D— K. Since D? = D, we then must have 2* = x
since D=D"=(Ku{g}=KuvaKuwEruat=Kua?

Suppose then that D—K is non-degenerate Let A = D— K. Now
we cannot have DADC K since D* = D* = D. So we must have D4 D3IC 4.
Hence there is an a e 4 such that DaDIA Since K is maximal, we have
DaD v K =D. Hence a'c DaD so that a = sat for some 8, te.D Since
each element has finite order, we see that since

6 = sat = staP = ... =gsnatr = ...,

On the structure of homogroups

-3
©

we may write
a = fag ,

where f and ¢ are idempotents. Now since a ¢ K, we see that say, /¢ K.

Again let D be a homogroup with H, and J as usual. The produets
JH,, H,J play a particularly important réle in the theory of topological
semigroups. If D is compact and H, is finite dimensional then JH, can
be given, in a natural way, the structure of a coordinate fibre in the
sense of Steenrod as we shall Iater see. (The projection is taken as r.)
The following definition will be useful in what follows:

We say that a homogroup D is left (right) cylindrical f D =JH,
(D = H,J). By cylindrical we mean both left and right cylindrical.

THEOREM 1.11. Let D be a left (right) cylindrical homogroup. Then D
is an epigroup.

Let s and t be points of D. Clearly, if {H, I sH, then tH, = sH,.
Thus if dH; 3T K then dH, 3T kH,, where k ¢ dH, ~ K. But then dH,C K.
Now this is eertainly impossible unless d ¢ K. Thus if D = JH, we must
have K = dH, where deJ ~ K. That is to say d =e. Thus K = eH,.

THEOREM 1.12. Let D be a semigroup such that each element of D
generates a finite semigrowp. Then D is the union of subsemigroups which
are homogroups.

We have only to recall that a finite abelian semigroup is a homogroup.

§ 2. We now turn our attention to the topological aspects of homo-
groups. Of course, by a topological semigroup we mean a Haunsdorff space
endowed with a continuous (associative) multiplication. In a topological
homogroup the cannonical endomorphism ¢ is continuous.

For a resumé of certain parts of the theory of topological semigroups
in general, see [32].

We omit the adjective ‘“topological” when there is no danger of
confusion.

THEOREM 2.1. Let D be a topological homogroup. If F is a compact
sub-semigroup of D then

F o l(F)
8 a sub-homogroup with kernel {(F).

The semigroup {(F) is compact since ¢ is continuous.. Now it is well
Known that a compact semigroup which is cancellative is a group. Now
I(F) is cancellative; being a sub-semigroup of a group, and hence ¢(F)
is a group. Clearly, {(F') is an ideal of the semigroup F v £(E) for if x e (F)
and y e ¥

zy = (we)y = x(ey) e I(F).

We shall denote the closure of a set X by X*.
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Tn the same manner as Theorem 2.1 we have

TrmorEM 2.2. Let D be a topological homogroup having a compact
kernel. Ij F is a sub-semigroup of D then

Fo ()
is a homogroup with kernel C(E)*.

TrEOREM 2.3. Let D be a compact topological semigroup. I f the idem-
potent elements commaute with one another then D is a homogroup.

Since D is compact, there exists at least one minimal left (right)
ideal. Theorem 1.3 then applies.

Tt is easy to see that Theorem 2.3 fails if the idempotents do not
commute. One has but to take any set X and define ab = a for all a, b € X.

One may use Theorem 2.3 to obtain an analogue of Theorem 1.12
for topological semigroups.

Suppose that D is a (topological) semigroup having the property
that each element x of D generates a semigroup whose closure iy compact.
Then D is the union of homogroups. Indeed, the closure of the set v a* v
... is an abelian compact semigroup and hemce is a homogroup.

TrmonEM 2.4. Let D be a compact connected resorbing semigroup.
Then D is a group.

Suppose, on the contrary, that I is not a group. We note first that
D = K. Sinee D admits relative inverses, there is an idempotent element f
not in K. Now {Df is a compact connected semigroup meeting K and
containing H;. Since H; is compact and H; does not meet K, there is
some point « e fDf such that x < H; v K. Now ¢ H, for some idempotent g.
Now if 1D 3T H, then D D H, since {D is a right ideal. Likewise Df J_ H,
implies Df D H,. Since fDf = fD ~ Df, it follows that 7Df 3L H, implies
{Dj D H,. Hence there is an idempotent g such that g ¢ e, g #f and
g «fDf. This is impossible since D is resorbant. Thus D is a group.

Theorem 2.4 fails without connectedness. For instance, let X be
the semigroup consisting only of a zero and an identity.

We note also the following: There exists a locally compact connected
resorbing homogroup. Indeed, let S be the set of points of the form
(8, ¢=5) or (&S, 0) where S is real. Then S is as desired the kernel
being the points of the form (¢*5, 0) and H, being the points of the form
(e2iS, ¢=S). We may describe S as a circle with a copy of the real line
winding or spiraling down upon this circle.

At this point we recall the equivalences 2, ‘R, “¥, of Green [7]. For
any semigroup D, we define

e=b(LYSDava=Dbubd,
a=b(R)sSaDua=bDub,

a=0(UW)a=0b(L), and a=Db(R).
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The £-class, R-class, or 9 -class of an element « will be denoted
respectively by Lz, Re, and H,.

It is well known, and not difficult to see, that the sets L., (Rs, Haz)
form an upper semi-continuous decomposition of the compact semigroup D.

If g is an idempotent then H, =L, ~ R, is the maximal sabgroup
containing g. Hence our notation is consistent.

In the theory of semigroups the terms I-semigroup and standard
thread ave used to denote a semigroup which is topologically an are and
is such that one endpoint is a zero and the other is an identity. It is well
known that such a semigroup must be abelian [6]. In the characterization
of I-semigroups the following semigroups are canonical [24];

I, = The usual unit interval with the ordinary multiplication,
I, = The real interval [§,1] with the multiplication @ -y = max(}, zy),
I, = The unit interval with the multiplication z-y = min(z, y).
Tt is well known, [24], that if D is an I-semigroup (standard thread)
containing no idempotents except zero and identity then D is isomorphic

to either I, or I,.
One important result about semigroups we will use is the following [6].

Let S be a compact connected semigroup. Let p be a point of S such that

S—p =A v B mutually separate,
with KC A. Then
SpupSu 8SpSC A*.
It is immediate from this that if D is a standard thread from 0 to

1 where 0 is the zero of D. Then for any @ e D the subare from 6 to =
coincides with Dz. Actually if [#, ] is this subarc we have
[6,%] = Dx = 2D = DxD.

THEOREM 2.5. Let § be a compact connected semigroup which admits
relative inverses. Then B — the set of idempotent elements — is a continuum.
Thus, if 8 is also a homogroup then [ is monotone. Indeed, J is, in fact,
arewise connected containing a standard thread isomorphic to I, between
¢ — the wunitif idempotent — and any other idempotent in J. Hence, if K
is arcwise connected so also is 8.

Let A be the cannonical application,
A: 8->8

defined, of course, by 4(z) = {H,}. Since each set H, has one and only
one idempotent, the application,

ri B8/, .

Fundamenta Mathematicae. T. LII 6
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where » is defined by
r(f) = A(f) = {Hy},

is one to one and onto.
Since ¥ is compact, » i3 a homeomorphism. Since S8/ is a con-
tinuum, F is a continuum.

Now, let S be a homogroup in addition. As always E CJ. Now recall
the partial order defined on the set E; f is under g, written f < g, if and
only if fg = gf =f. This partial order is continuous. That is to say it
has a closed graph. Otherwise said, if f, g ¢ F' with f<{ g and ¢ <{f then
there are open sets U, V, such that fe U, geV and ae U. b eV imply
asth and b a. All this follows quickly from the continuity of multi-
plication. Now e being a zero in J is, consequently, a minimal element
in this partially ordered set E. Now, from a theorem of Koch [19] F
contains a chain, 7' that is a linear ordered (under <) compact connected
set from e — the minimal element — to say other g ¢ . Thus if t,s e T
either st =ts =t or fs =st =5 as ¢t < s or s < ¢. It i clear now that ¢
is monotone for consider {T'(k) = {%| ex = we = k}. Let t e (k). Let %
be the idempotent in H; = H;. Now, from the above, there is an arc
[e, h] contained in the core. Now i[e, k] contains an are [te, th] = [k, ¢].
Hex;c:si, the inverse image of each point under ¢ is, in fact, arcwise con-
nected.

szt us weaken the rather strong condition that a homogroup be
resorbing to the following.

A homogroup D is called weakly resorbing if

(1) D =EDE.

(2) If f and g are any two distinct idempotents then f ]
. ? L = = ¢, whe
¢ is the unitif element. 0= 07 = ey where

s TH;LR}EM 2.6. Let S be a weakly resorbing homogroup. Then for each
mpo , not in K, the set {Sf— K is open. Furthermor ;
e ermore [ s the only

e

Let « be a point of f8f— K. Suppose, on the contrary, that for any
open set U about z such that U ~ K = [J we have

U 3T (8—18f).

Let y be a point of U not in f8f. Since § i
. f. 8 weakly b, there i
an idempotent ¢ such that ¥ osorbant there B

g =y.
Now

Ty =gy) = (fg)y = ey ¢ K.
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Since multiplication is continuous, and K is closed, we must there-
fore have
fre K.
But
fr=xeK.

COROLLARY. If 8 is weakly resorbing and separable metric and K is
closed then E is at most countable.

For each idempotent fé K there is an open seb f8f— K. If h¢ K is
another idempotent hSh— K is open. Any two such open sets are mutually
exclusive. Clearly if § is metric there are only countably many such
open. sets.

CoROLLARY. Let D be a locally compact resorbing homogroup with
compact kernel. Then for each idempotent | the subsemigroup fDf is again
a locally compact resorbing homogroup with compact kernel.

Note that fDf is closed and hence locally compact. Now iDf ~n K
is & compact sub-semigroup of the group K and hence is itself a group.
Hence fDf has a kernel {Df ~ K which is a group. Since D is resorbing,
s0 also is fDf.

Tt is to be noted that if fDf is connected then Hy =fDf—K and is
dense in fDf. This type of semigroup is considered in detail by Hoffmann [8]. -

At this point it is convenient to consider an example which is some-
what representative.

In the ordinary euclidean plane let (x;, #3) be a sequence of points
converging to the origin, ; > 0. Let 4 be the segment joining the origin
with the point (x;, 7). Now let A4; be given the multiplication of I, or I,
with the origin as zero. If a; ¢ A; and a; € A; where 1 5 j define the product
to be the origin. Let T be the union of the arcs 4;. Then T is a compact
connected weakly resorbing semigroup.

THEOREM 2.7. Let 8 be a compact connected weakly resorbing metrio
homogroup. Then S[K contains a sub-semigroup M such that

(i) M contains the set of idempotents of S/K.

(i) M is a dendrite and is the sum of a countable number of ares A;
such that each A; is a sub-semigroup with the structure of I, or I, and two
distinct ares A;, A; meet only at the zero of S/K. .

If f is an idempotent not in K, then 8 has only two idempotents.
Hence, fSf/K has only two idempotents one & zero the other an identity
(for fSf/K). Henece, [23], there is an arc A;, which is a sub-semigroup
of §8f/K, which contains the zero and identity of f8f/K. Since A; has
but two idempotents, it is either I, or I,. Now for each idempotent f
choose precisely one 4; and let M be the union of the ares Ay. Since 8 is

6*
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compact, M is compact. Certainly M is a compact semigroup and
A; ~ A, contains only the zero element of S/K.

Let D be a homogroup and G a normal (invariant) subgroup of K.
We define the congruence Ky by

2=y (Ke) 2z =y
or
rel, yekK,

and G =yGq .

It is straightforward to check that “As is, in fact, a congruence.
Furthermore, if D is a compact homogroup and & is a closed subgroup
of K then D modulo %, which we write D/, is 2 compact (topological)
homogroup whose kernel is the quotient group K/G = K modulo G.
The natural homomorphism from D onto D/ is continuous.

In terms of this notation we have obviously

.D/K == _D/C}CK .

If f is a continuous mapping from the compact space X onto the
space Y then it is well known that there is a space X' and mappings ¢

and } such that g is monotone, & is light and the following diagram is
commutative.

X——{—>Y

Moreoyer, [36], the space X'’ is formed as the hyperspace of the
upper semi-continuous decomposition of X formed by the components
?f the inverse images f™'(y). Now if €, and C, are components of the
inverse images f~'(y;) and f '(y.) then Ci-(, is contained in some com-
ponent of the inverse image f’l(ylyg)‘ Thus, as first observed by Wallace
the analogue of the monotone-light factorization holds for compact semi-’
groups. We shall make frequent use of this fact without further reference.

THEOREM 2.8. Let K be o compact grouwp. Suppose that
y: K0

8 a continuous homomorphism onto C, the usual circle growp. That is to
say, suppose that y is a character of K. Let y = fa be the monotone-light

factorization of y.
E-Z,¢

Y
P

Let G be a compact connected subgroup of K such that y (@) = C. Then
a(@) = P. Moreover P is of-dimension one.

icm
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We assert that P does not contain a 2-cell. To see this note that
the mapping f is light. Thus, if B were a 2-cell contained in P, §(B) would
be only one dimensional. But a light mapping cannot lower the dimension
of B (of [18], pp- 91-92). Now the dimension of & compact topological
group can be given in terms of the largest dimensional n-cell which it
contains [25]. Thus P is at most one dimensional. Now, «(6) is a non-
degenerate compact connected subgroup of P so that

al@)=2P.
At this point, for the convenience of the reader we state the following:
ProposiTION 1. Let S8 be a compact connected normal semigroup with
identity which is not a group. Let ¢ = pa be the monotone-light factorization
of @ where @ is the natural mapping onto S|.E.

§—2 8L
u\l / B
Sll

Then both 812 and 8" contain standard threads from zero to identity.
Thus there is a standard thread A in 8" such that M = o™ (A) meets K
and contains the identity of S.

The above Proposition is merely a reformulation of some of the
results in [10].

TEEOREM 2.9. Let 8 be compact connected normal homogroup with
identity. If 8 is an epigroup, that is to say if £y is an epimorphism, then
Z is monotone.

Let M be a continuum such as that whose existence is assured by
Proposition 1. We assert that under the hypothesis of the theorem, the
set M ~J is a continuum. We suppose then, on the contrary, that

M~And=CuB
with € and B mutually separate. Let ¢ be a point of, say, . Since (M)
is an arc from g(e) to @(1), there is a point ¢(b) which is the first point
of p(B) in the order from p(e) to ¢(1). Since the set ¢(H) is compact,

there is an idempotent & in [¢(b), p(1)] — the sub-arc of ¢(M) which is
the first idempotent in the order from ¢(b) to @(1). Since

¢~ (h) =La,
where g(d) = h, is 2 compact sub-semigroup, it contains an idempotent g.

And thus
¢ () =La=1I,

is a sub-group with identity g. It is immediate since b € g8y that
by =gb=5.
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Since multiplication is continuous, there are open sets U and V such
that beU, geV, BV C U and U ~ € = [J. Now, we assert there must
exist a point p such that

peVnd
and.

7(p) <olg)
in the order from g(e) to @(1).
To see this, let us note that for any xz €S,

CTa@) = (L) (@) = G Ly) - () -
Since £} is an epimorphism, we have

ML) (m) =K-¢(x) =K .
That is to say, () to)

((Lyx) = K
and thus for any & there is a point ¢ ¢ L,z such that
o) =e
or what iy the same
J XL, forall w.

In particular then, J 3T L, for each 2 such that

(@) <pg) =h

in the order from ¢(e) to @(1). This fact and the compactness of J imply
that there is a point ¢ such that

teLlynd
and such that for any open set W containing ¢, we have
¢ Tole), o)) nd = gMg ~J 3T W—1I,.

Since L, N J is a compact sub-semigroup of a group, it is itself a grouyp.
Hence, there is a point s in L, ~J such that

s =g.

Maultiplication being continuous, it follows that
(gMg ~J)s I_V -1,

Now if p is any point of (9Mg ~J)s then

and pET‘ nd

in the order from ¢(e) to e (1).
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Since M ~J is a sub-semigroup, bV C U, and ('~ U = [J, one has
bpeB.
Now, since .4 is a standard thread from ¢(e) to ¢(1), we know that
P(bp) = ¢ (b) () < @(b)

in the order from g¢(e) to g(1).
Let us take first the case

@(d)-9(p) =(b).
It then follows (p. 398, cor. 1, [21]) that

@(b)r = @(d),
where

1 =rel(p(p)) .

Since r is an idempotent, qfl(r) is a group, as we have seen, so that for
some f* =
¢ (r) =Ly
Now then the idempotent f is such that
e(f) =1, bf =fb =1,
e(f) =1 e[pd), p(1)],

in the order from

o(f) < glg) (D) to @(1).

This is in contradiction with the choice of g. Hence we assume that

p(bp) = @ (b)p(p) < @(b).
But we already have )
bpeB

s0 that this is in contradiction to the choice of b. Thus, in either case
we have a contradiction to the supposition that M ~J is not connected.
Thus M ~J is a continuum contained in J and containing e and 1. Now
since J confains a continuum between e¢ and 1, it readily follows that
each set ¢7'(k) is a continunm by considering translates of M ~J.

As it turns out, the previous theorem is crucial to our investigations.
Now in a given homogroup S the natural homomorphism & may, of
course, not be onto, that is to say, S need not be an epigroup. However,
in the homogroups which we shall consider, namely certain sub-homogroups
near the identity, the natural endomorphism will at least be non-
degenerate. This will make possible the transfer of the problem to a quo-
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tient homogroup which is an epigroup where the quotient is obtained
by a congruence of the form K previously discussed. To do this much
we rely rather heavily on the existence of enough characters to separate
the points of an abelian K.

THEOREM 2.10. Let 8 be a compact connected homogroup with identity.
Let y be a character of K such that

V(C (El)) =0
where C is the circle group. If N is a normal subgroup of K such that
Kera C N C Kery,

where y = fa is the monotone-light factorization of y, then the semigroup
8/Ky is an epigroup.
We have the following commutative diagram:

K-1s ¢
N BN
P'—E?K/N

The maps o and 4 are the natural homomorphisms. From Theorem 2.8
we know that of(H,) = P. Since = Ao, we see that

pal (Hy) = doaf(H;) = 0,
and hence
ool (H,}) = K|N .

Hence we see that every coset of ¥ in K meets the group ((H,).
Clearly then, §/%x is an epigroup.

. .TI{EO.REM 2.11. Let 8 be a compact homogroup with identity and abelian
mm.mnal ideal K. Let G be the component of e in ((Hy) and suppose that
@ 1is non-degenerate. Then there ewists a character of K, say y, such that
y(6) = C.

I._f g € G and g # ¢ there is a character y such that y(g) # »(e). Hence
y{(G)is a non-degenerate compact connected subgroup of ¢ and 5o y (@) = C.
) U.TEEOREM 2.12. Let 8 be a compact connested normal homogroup with
zde-nmy and N a comp{fat normal -subgroup of K such that S|y is an
epi-group. Then K o [7(N) is a compact connected homogroup.

T}‘la,t Ko™ (N)is a compact homogroup is clear. To see that is
a cont}nuum, note that‘since 8/°Kx is an epigroup, the associated endo-
morphism £y (of 8/Ky) is monotone. Now the core of 8/ » and the space

—~1
K\.JC (l\.T ) modulo K are homeomorphic. Since K is a continuum, it
is immediate that K o ¢™Y(N) is a continuum. ’
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THEOREM 2.13. Let S be a compact connected normal homogroup wiih
identity such that {(H,) is not totally disconnected and K is abelian. Then
there is a compact invariant subgroup N of K such that

Ko™
is a continuum and
THUN)~Hy # Hy .

Let ¢ be a point of the component of ¢ in {(H,) such that x # e.
Since K is abelian, there is a character y such that

y(@) # y(e).
Let N be the component of ¢ in Kery. That is to say let N = Kera where

E-1s0
u\( /ﬁ
P

is the monotone-light factoring of v. We now have the following diagram:
S i S/ :KKel‘g»
NS
S/ K

where the mappings involved are all canonical homomorphisms. We
know from Theorem 2.10 that S/%y is an epigroup. From Theorem 2.12
we know that K v Y (¥) is a continunm. Finally, NN)~H, 5 H,
gince = e Kery and so xé N so £™z) ~ H; is not contained in ETH).

Tet S be a compact connected semigroup with identity. If 8, as
a continuum, is irreducible between some two points then §/K is an
are ([9]). Moreover, although irreducible subcontinua are available as
usual, these may well not be sub-semigroups. Hence, if the notion of
irreducibility is to be used in the theory of compact connected semigroups
it might be revised somewhat to a more appropriate one. With this in
mind, we make the following

DEFINITION. A compact connected semigroup D is said to be al-
gebraically irreducible about (the subset) 4 if no proper compact con-
nected subsemigroup of D contains 4. Moreover D is said to be alge-
braically irreducible between the (mutuaplly exclusive) subsets -4 and B
if no proper compact connected subsemigroup of D meets both A and B.

Using the usual standard methods (Hausdorff maximality Principles
or Zorn’s Lemma) we have the following fact. :

Let D be a compact connected semigroup and A and B two mutually
exclusive compact subsets of D. Then there exists a compact connected sub-
semigroup of D which is algebraically irreducible between A and B.
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These semigroups have been examined by N. J. Rothman and the
guthor from the standpoint of character theory.

Tn connection with the notion of irreducibility it is of interest to
point out the following result which follows from [14].

Let S be a compact connected semigroup such that S = BSE. If 8,
as @ continuum, is wreducible about o finite set then either 8§ = K or S|K
is a dendrite.

One important aspect of algebraic irreducibility is seen in the follow-
ing result which is fundamental for our later investigations.

For various examples of semigroups whieh are algebraically irreducible,
see the examples at the end of the paper and also those in [10] and [13].

THEOREM 2.14. Let 8 be a compact connected abelian semigroup al-
gebraically irreducible from K to 1. Then H, = {1}.

We recall the monotone-light factorization of ¢:

825 8.0
NS
5

We know from [10] that the semigroup 8’ contains a thread from
zero to identity, say M, and that «'(M) is thus a compact connected
semigroup. Hence 8 = a7}(M) and 8" = M.

Now suppose first that there is an open set V about 1 such that
V—{1} does not meet E. In this, it follows that there is a point a(s) of
the are M such that the sub-arc[a(x), a(1)] containg no idempotents
except a(l). Thus the semigroup 8/8z contains only two idempotents,
one a zero — the element {Sz} — the other the identity 1. Now from [23]
'we know that §/8z contains a standard thread from zero to identity, say 7.
Let 2 denote the canonical mapping from S to §/Sz. Then 1 is one-to-one
on §— 8z. It follows, since 1 is monotone, that 17T is a compact con-
nected semigroup and so A7Y(T) = §. Since S is irreducible, we see that
H, = {1}

Hence, if there do not exist points of E arbitrarily close to 1, we
are finished. ’

We suppose now that there do exist points of E— {1} in any open
set about.1. Or, what is the same thing,that in any sub-are [a(z), a(1)]
of ‘?” (8") there are idempotents other than «(1). We now Supposé that
H, is non-degenerate. Since multiplication is continuous, it follows readily
that f<')r smlne idempotent f, where a(1)# a(f) ela(x),a(1)], the ]101n(;~
%norphlsm {yis non-trivial, that is that fH,  {f}. Now a"’[a(f), a(l)] = H
is ja co'ml.)aet connected homogroup with minimal ideal H; = L,. Indeed
H sa.tlsﬁes the hypothesis of Theorem 2.13 so that there is a compacé
invariant subgroup of Hy, say N, such that H ;N s a compact con-
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nected semigroup and such that N~ H, = H,. Hence the semigroup
Sf w N7 is a continuum which is a proper subset of §. This contradiction
completes the proof.

TapoREM 2.15. Let 8 be a compact connected abelian semigroup with
identity which is not a group. Then 8 contains a non-degenerate compact
conmected sub-semigroup X such that X ~H, = {1} and X 3L §—H,.

One has only to choose as X any compact connected semigroup
algebraically irreducible from K to {1}. From the previous results, the
maximal subgroup of 1 in X is precisely {1}. Since X ~ H, is a compact
sub-semigroup of a group, it also is a group. Hence H~H, = {1}.

COROLLARY. Let S satisfy the conditions of Theorem 2.15. Then if G
is any compact subgroup of Hy there is a compact connected sub-semigroup X
such that X ~ H, = G and X 3L S—H,. If B is any compact subset of H,
there is a subcontinuum X of 8 such that X 3L §—H, (in fact X I K)
and X ~ H, = B.

Without commutativity the best information on the existence of
a continuum such as X is to be found in [12].

As we see in the next theorem, the class of compact connected
semigroups which are algebraically jrreducible from K to {1} exhibits
a number of properties similar to the class of standard threads.

THEOREM 2.16. Let S be compact connected abelian semigroup alge-
braically irreducible from K to {1} where 1¢ K. If | € E then

(1) H; is a continuwm.

(2) If 1 #1 and f¢ K then H; separates 8. Indeed, we have S— Hy
= (Sf—Hj) v (H! — Hy) mutually separate.

(3) H' is a compact connected semigroup algebraically irreducible from
Hf to 1.

As in the proof of Theorem 2.14, we note that 8 = a"Y(M) where
« is monotone and M is an arc. Now H; = a*(a(f)) and so is a continuum.
It is clear that H, separates § if f # 1 and fé K.

Now a(f) separates the are M into [a(e), a(f)) and (a(f), a(1)] mutually
separate. We recall that the subarc [a(f), «(1)] is a sub-semigroup with
zero a(f) and [a{e), a(f)] is a semigroup with «(f) as identity. It is im-
mediate then that H' = a[a(f), (1)]. We have

8—Hy = a[a(e), a(f) v a(a(f), a(1)]

mutually separate. Now if Sf meets the inverse image of an element
in M, say a~}(m), we must have a=}(m) C 8f. It follows that a[a(e), a(f)]
= 8f—Hj;. Now H = o '[a(f), a(1)] is a compact connected semigroup
and H A 8f = a(f). I H' were to contain a proper subcontinuum,
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say ¥, which is a sub-semigroup meeting H; and containing 1 we see
that § = §f v Y from the irreducibility. To see this we need only show
that 8f v Y is a semigroup. (It is certainly a continuum.) Let a, beSfu Y.
If either @ or b is in Sf then so is ab since 8f =8 is an ideal. If both are
in Y so is ab since Y is by hypothesis a semigroup. If say a e 8f and
beY then ab = (af)b =a(fd) caH,C Sf. Likewise baeSf. Now, by
assumption ¥ is a proper subset of H. Since 8f ~n H' = H;, we see that
H'—YC H,. That is to say if ¥ omits a point & of H’ then % ¢ H;. Now
Y ~ H; is a compact sub-semigroup of H;. In fact, ¥ ~ Hy is an ideal
of ¥ and 5o is a continuum. Since a compact sub-semigroup of a group
is 2 semigroup with eancellation, it follows that it must already be a group.
Hence, we see that ¥ ~ Hy is a compact connected subgroup of H;. From
the corollary to Theorem 2.15, we see that 8f = f8f contains a compact
connected sub-semigroup ¢ meeting K and such that @ ~ Hy =Y ~ H;,
But then h¢QuY and yet @ Y =8 using the irreducibility of S.
With this contradiction our proof is complete.

Either as a consequence of the previous theorem or of [10], we have

CoROLLARY. Let S be a compact connected abelian semigroup algebraically
irreducible from K to H,. If each subgroup H;, f2=1{, is totally discon-
nected then 8 is an arc (i.e. ¢ standard thread).

THEOREM 2.17. Let § and H; be as in Theorem 2.16. Suppose that
H; is finite dimensional. If f is a limit point of B~ H' then there is an
element g in B ~ H' such that (I is an epimorphism.

Let us note first that a(¥) is the set of idempotents of M where
a: §->M is the monotone homomorphism onto the standard thread M.
Let us note first that since o« is monotone, ¢l a(a(f), a(1)] is
a compact connected semigroup which meets H; and contains 1. Hence
from Theorem 2.16 we know that H' = cl aXa(f), a(1)]. In other words,

daa(f), a(1)] = a[a(f), a(1)].

Now since H; is finite dimensional, compact and connected, the
union of the groups fHy, f <k, is a compact group. We denote this by G-
We assert that H; = G. Suppose, on the contrary, that there is an element
@ in H; but not in ¢. From above, we know that there are points of H’
arbitrarily close to z. Since f& = =, there is an open set V such that [V &
=0, V. Let ¢ be an element of V~ H’. Now, by hypothesis there
is an idempotent ¢ such that a(q) e[a(f), a(?)]. Now, ¢t e Hg and so

ft=(fg)t =f(gt) ¢ /H, C &.

Hence fi ¢ ¢ which is a contradiction. Hence ¢ = H,. Since the collection
fHy is ascending, we must have fH, — A’ for some g.
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THEOREM 2.18. Let 8 be a compact homogroup, such that Kerly = Hy ~J
admits a local eross-section in H,. Let q: V —>H, be this cross-section. Then
the mapping

T Fud =8
defined by ] )
T(vyd) = qlv)j
is a homeomorphism into.

It is clear that 7 is a continuous mapping. To see that v is 1 to 1

suppose that ] .
g{v)-j = q@)j .
Multiplying, we see that g(v)(je) = q(7)(je) = q(v)e = g(D)e. Sinee q is

a cross section,
P =7.

Then, ¢(v)-j = q(v)] implies
j=1
since g(v) e H,. Thus v is a homeomorphism (into).
It is known that Kerf, admits a cross-section in H, whenever H,
is finite dimensional.
Let us note also that Kerl; is an effective transformation group of J.
Levva. Let all things be as in Theorem 2.18. For h e Hy let bV = V.
Define qun: Vi—H, by
gn{v) = hq(h ).
Then qn 48 1 to 1. Define the coordinate function s by
™w(®, ¥) = qu(®) Y
where x € Vy and y eJ. Define tr, by
Th,w(?/) :Th(w7 y) .
Then the homeomorphism
1;:;1,,,,;: J—>d,

where © e Vi~ V,, coincides with (the action of) an element of Kerl,.
That ¢ is 1 to 1 follows from Theorem 2.18. It is then easy to see
that ThsT,. is & homeomorphism. Now we note that

(Tl:ﬂlc"a,x) ) = 117,91:(79(93: f’/)) ’
a9 (g7 2)y) = @) gol@) -y -
Furthermore,
e{gn(@) - go(@)) = e hg (W '2)} - ga(g™'2)
= {heq(h™'z)} " - g-eq(g™')
= D)y (g ) =T =
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Hence « .
o) [gn()]
coincides with an element of KerZ;.
Liemua. Let all things be as in Theorem 2.18. Then the mapping
Yot VoV, —~Kerf;
given by

—~1
) . Yr,(®) = ThaTpe
ts continuous.

This follows from the fact that ¢ng, and inversion are continuous.

Hence we see that if Kerl; has a local cross-section in H, then H,-J
hag in a natural way the structure of a coordinate fibre (bundle). The
base being {3(H,) = eH, = H,e, the fibre being J and the group KerZ,
- being the group of the bundle.

Now let f and ¢ be idempotents with f under g that is

fg=9f=7.
1f 8 is abelian then H; is under H, and then
¢ is defined.

Considering the semigroup gSg~ H' it follows, from the above, that
H,-J% has in a natural way the structure of a coordinate fibre (bundle).
The base being - Hy, the projection f the fibre J%, and the group Ker;.

THEOREM 2.19. Let 8 be as in Theorem 2.16. Suppose that f,g ¢ E
are such that Cj is an epimorphism. Then

a[alf), a(g)] =HyJ5.

If Kerl§ has a cross-section in H then o [a(f), a(g)] s given as a co-
ordinate fibre in the sense of [28] where the base is Hy, the fibre i8 the con-
tinwum Jj, the group of the fibre is

Kerlf =dJ% ~ Hj,. -
Furthermore, J is iiself algebraically irreducible about { and Kerly.
First of all, J7 = ¢J} is a continuum becauge of Theorem 2.9. Clearly
H, Jj
is a compact connected semigroup. We know from Theorem 2.16 that
B = a7 a(f), a(1)]
is algebraically irreducible from H; to 1. Now

H =a7[a(f), a(g)) v aalg), a(1)].
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We assert that

T =H, Jf v o [alg), a(1)]
is a compact connected semigroup. To see this let t;, ¢, ¢ 7. If both points
are in either H,-JJ or e '[a(g), «(1)] so is the product. Suppose , € H,-J7
and f,¢ Hy-Jj. Then -ty = (4.9)t, = tigh) e L{H,t) e t, H, C HJIH,
= H,J%. By the irreducibility of H’, then, we see that

HyJj =o' [a(f), a(g)]-

The description of H,-J7 as a coordinate fibre has alveady been done.
Finally, suppose that Y is a proper subcontinuum of J7 which is
a semigroup containing f and KerZY. Since J7 is a unitary sub-semigroup of

a*[a(f), a{g)],

it follows that if z e a[a(f), a(g)] and z ¢ J§ then 2Y ~J% = 0. Now
H, Y is a compact connected subsemigroup of H,J% containing H; v H,.
Hence H,Y = H,J}. But since H, ¥ does not contain J5—¥, we have
a contradiction. Hence
Ji=Y.
As we have already noted if D is an iso-group then the mapping

A Hyxd =D

defined by
Mbyj)=h-j
is one-to-one since
Bj = hj
implies
hje = hje = he = he .
Hence

h=F% - and j=7.

It follows that if D is a compact connected iso-group algebraically
irreducible about K and H, then D is topologically a cartesian.product.
And, if D is abelian we have

D=~ H, xJ.
We consider at this point some applications to finite dimensional
semigroups.
TaEOREM 2.20. Let 8 be a compact connected, normal, n-dimensional,

homogroup with identity. If 8 is an epi-group and K has dimension n—1
then J contains a standard thread [e,1].

‘We know that H,J is a fibre bundle over the base eHl = K. Now J
cannot have dimension > 2. For then the dimension of J-H, would be
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at least n—1-+2 =n-+1. To see this we recall, [25], that any open set
in K comtains an n—1 cell N. Hence if dimdJ =2 then dim (J x N)
— dimJ 4 dim N. Hence we conclude that dimJ < 2. Now since £, is an
epimorphism J is a continuum, hence dimJ = 1. Thus J is a compact
connected one dimensional semigroup with zero ¢ and identity 1. From [9]
we know that J contains a standard thread.

TerorEM 2.21. Let 8 be a compact connected normal, n - dimensional
semigroup with identity. If Hy is n—1 dimensional then there is a local
thread af the identity.

We know, as before, from Proposition 1, that S contains a continuum
M such that « (M) is a standard thread where g:. 88" is the cannonical
homomorphism. If in M there are no other idempotents near 1, that iy
to say, if there exists an open set V such that VAM~E=/{1}, then
it is well known that M contains such a local standard thread. In fact,
in this case M contains a local one-parameter semigroup [23]. Suppose
then that there arve idempotents e, 1 in every neighborhood about
of M about 1. For the remainder of the argument we restrict ourselves
to points of M. As we know if f < ¢, that is if f is under g, fg =gf =1,
or equivalently if ¢(f) <@(g) in the order from p(e) to (1) then

Kerll C Kerl}.

Now by continuity, the common part of the groups Kerg;, must be precisely
{1}. Hence there is an idempotent p 3 1 such that Ker(,“,l, is zero dimen-
sional. Tt then follows that (p(H; ~ M) is n—1-dimensional since

GmH, A M = dimKersh +dimZL(H, ~ M) .

Since p(H,~ M) is an n—1 dimensional subgroup of Hy~ M =1Ly~ M
and since H, ~ M is at most n—1 dimensional for p ¢ K, we see that

H, modulo ¢4(H,) is zero dimensional so that Zz(H, ~ M) coincides with
the identity component of H, ~ M.
Now we know that in the monotone-light factorization of ¢,

82588
N
Sl!

that a () is a standard thread as is a([a(p), a(1)]). Now since £, takes H,
onto the identity component of H,, it is well known that &5 must map
the identity component of H, onto the identity component of H,. Thus,
%n the semigroup a*([a(p), «(1)]} the maximal subgroup at 1 is C, the
identity component of H,, and the minimal ideal is O, — the identity
component of H,. And since

5;7(01) =0p =p0Cy,
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we see that

aa(p), a(1)])

satisfies the conditions of Theorem 2.20. For its kernel H, is n—1 di-
mensional and its maximal subgroup at the identity is n—1 dimensional.
Now it is a well-known result of Wallace [33] that if D is a compact
connected n-dimensional semigroup with identity 1 then its maximal
subgroup at 1 can be of dimension at most n—1. It follows from this that

a[a(p), a(1)])
is n-dimensional.

In the next theorem we turn our attention to the special situation
in’ which we deal with a plane semigroup. Here, quite naturally, the
algebraic irreducibility is very restrictive topologically.

THEOREM 2.22. Let S be a compact connected abelian semigroup with
identity which is a subset of the plane and which is algebraically irreducible
between K and 1. Then K is either the usual circle group or is degenerate.
If K is a circle group then S is the union of a half open arc and a set which
is either a simple closed curve (namely K), or is an annulus one of whose
boundary curves is K the other a maximal subgroup Hy for some f2 =f.

If K is degenerate, then S is either the union of a disc and a half open
are or is itself an arc. In case S contains a disc, the boundary curve of the
disc is of the form Hy, f2 =f{.

From Theorem 1.3 we see that K is a group. Now K is always a con-
tinwum if § is a continuum. Since K is a compact connected group em-
beddable in the plane, it must be the usual circle group.

Now we know as before, Proposition 1, that S/.2 is an arc from
@(K) to ¢(1) and is monotone. In particular, then, since K does not
separate S, we know that if K is a simple closed curve, §— K is contained
entirely in one of the complementary domains of K. In either case we
assert that S/K is embeddable in the plane. For suppose first that §—K
is contained in D the bounded complementary domain of K. Now S/K
is contained in the space formed by taking D v K and shrinking K to
a point. Thus §/K is topologically contained in the 2-sphere. Now S|K
being a compact connected semigroup with identity cannot be the 2-sphere
as is well known [32]. (For example, it is well known that H*S/K) is
trivial.) On the other hand, if §— K is contained in the unbounded com-
plementary domain of K then we note that S/K is naturally contained
in the space formed by taking the plane and shrinking to a point the
set D U K. This space is again the plane and so /K in either case is
embeddable in the plane.

Now if every maximal subgroup of /K is totally disconnected then
S/E contains a standard thread from zero to identity. By the irredu-
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cibility of 8 we see that S/K must then itself be a standard thread. Thus,
in this case § is the sum of K and S—K the latter being homeomorphie
0 ¢(8)—@(X) which is a half open are. On the other hand, if some max-
imal gubgroup of S/K is mot totally discon-
nected then from [10] there is a maximal sub-
group H, such that H, is a usual circle group,
the zero of S/K is contained in the bounded
complementary domain of H, and either S8/8y
is a standard thread or g8 =gS8y =48 in
which case § is topologically a disec.

Hence we see that if S/K is not an arc
then there is a subgroup H, such that K and
H, are the boundary curves of an annulus.
Now this annulus must be a subset of S since
§JK cannot separate the plane since H,(S/K)
=0, [33]. Thus, in this case S is the sum of
this annulus and a half-open arc.

Now if K is degenerate then the results
of [10] applies immediately. There is a g% =g such that either g8g=8=a
disc or §/Sy is a standard thread and H, is a usual circle group and
the disc it bounds is contained in 8.

Now we know from Theorem 2.14 that H, = {1} and hence in no
case can S be a disc or an annulus for this situation would imply that H,
is a simple closed curve.

The following result will prove useful in the verification that certain
subsets of a semigroup are sub-semigroups.

ProPOSITION. Let D be a semigroup. Let A and B be two sub-semigroups
of D such that A ~n B = C s such that

(1) it 48 an ideal of B,

(2) for each a € A there are elements g and h in O such that ag =a
and ha = a.

N

Fig. 1

Then A v B is a sub-semigroup of D.
(AvBpE=A*0CABuUBAuw B
=A4Au(4C)Bu B(CA)u B
=AuBu 4(0B)u (BC)Au B
=4duBuACuClCAuUB
=4uBuAduduB,.

) Exawmrre 1. Let T' be composed of the points (%S, e—5) where §
is real and gr_ea'ter than or equal to zero, together with the usual circle
group (- consisting of the points of the form (¢S, 0). We may describe T

icm
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as a half open arc spiraling down upon a circle (. Here, the circle is the
usual circle group and the kernel of T. The above example is due to Wallace.

For another example we could include the whole complex dise,
i.e. all complex z with |¢[< 1. This semigroup is again algebraically
irreducible and has a zero.

Fig. 2 TFig. 3

EXAMPLE 2. We construet now a compact connected abelian semigroup
algebraically irredneible from kernel to identity with the following prop-
erty: There are idempotents j; arbitrarily close to 1 (in fact, {f} con-
verges to 1), such that each Hy, is the usual circle group. In particular
then, none of the (}, are epimorphisms.

We begin by recalling the semigroup 7' of Example 1, an arc winding
upon the cirele group. Let C; be a copy of the cirele group and form the
gemigroup 7T x 0;. Now form the upper semicontinuous decompositien
which shrinks to a point each set of the form {k} x O, where k ¢ K = the
minimal ideal of T. (K is a circle group.) The resulting semigroup T

7#
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is & tube winding upon a circle. Let the identity of T; be denoted by f.
Now using Hy, in place of € in example construct, using Hy, as kernel,
a semigroup isomorphic to 7.

N

—

Fig. ¢ Fig. 5

Specifically, one can form T, x I, where I i it i
" 3
select out the sub-semigroup Y 1 the alt fnterval, and

Tyx {0} v Hy, x1.
x I, construct a semigroup such as 7. Tt follows that
Ty x{0}u T
is a sub-semigroup. Let us identify 7 x {0} with T,. The semigroup

fl = Tl.u T is pictured in figure 3. As before we form 77 x ¢ and shrink
0 2 point each set {,} x ¢. The resulting semigroup, we denote by Ts.

In the semigroup Hy,

icm
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We denote the identity of T, by f,. The closure of the arc component
of f, we denote by T',. We continue this process as before. Let the T; be
taken so as to converge to a point f not in any 7. Define of =fr =2
for all z e T;. The resulting semigroup 7' is the desired one.

If we form T'x C and then allow an arc to wind upon fx C so as
to form a semigroup we see that we can construet an example in which
H; is non-trivial f;—f and no ¢, is an epimorphism.

In a compact connected semigroup with identity certain compact
connected algebraically irreducible sub-semigroups may be standard
threads while other such sub-semigroups may have a more complicated
structure.
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Pointwise periodic groups
by
K. H. Hofmann* (Tiibingen) and F. B. Wright** (New Orleans, La.)

1. Introduction. Let 4 be any Boolean ring, and let G be a group
of automorphisms of A; for an element ¢ e A and an element g ¢ @, we
denote the image of & under g by as. The set a® = {a : g« @} is called
the orbit of a (under G). The group G is said to be pointwise periodic
(on A) if every orbit is a finite set, and a pointwise periodic group is said
to be periodic (on A) if there is an upper bound to the size of the orbits.
(A group, all of whose elements have finite order, is sometimes called
periodie. We shall eall such groups torsion groups.) By the duality theory
of M. H. Stone [6], any Boolean ring is isomorphic to the Boolean field
of open compact sets in some locally compact, totally disconnected,
Hausdorff space X. Following Stone, we shall call such spaces Boolean
spaces, and, following Halmos, we shall the space X associated with
a Boolean ring the dual space of the ring. Stone has shown that there
is a natural isomorphism between the group of all automorphisms of
a Boolean ring and the group of all homeomorphisms of its dual space.
Consequently, for any group G of automorphisms of 4 there is an iso-
morphic group I" of homeomorphisms of X. The notions of pointwise
periodicity and periodicity for I" have an obvious meaning.

The special case of a cyclic group has received some attention. More
precisely, if ¢ is an automorphism of A, and if y is the dual homeomorphism
of X, then the following is known:

(a) The automorphism g is periodic if and only if y s periodic; this
is an immediate consequence of the isomorphism given by Stone.

(b) If y is periodic, then, trivially, it is pointwise periodic.

(¢) If y is pointwise periodic, then g is pointwise periodic; this result
is due to A. D. Wallace [7], extending a theorem of Hall and Schweigert [2].

The converses of (b) and (¢) are not, in general, valid. Counter-examples
will be found below; the failure of the converse of (¢) seems not to have
been noticed. )
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