onto the whole of X so as to remain γ -linear. Some sufficient conditions for extensibility are known.

THEOREM 13. Let $\langle X_0, || ||, || || * \rangle$ be a γ -reflexive subspace of a γ -normal space $\langle X, || ||, || || * \rangle$. Then every γ -linear functional on X_0 possesses a γ -linear extension on X.

A universal space. Two two-norm spaces, $\langle X, \| \|, \| \|^* \rangle$ and $\langle Y, \| \|, \| \|^* \rangle$ are called γ -equivalent if there exists a distributive operation T from X onto Y which establishes an isometry of $\langle X, \| \| \rangle$ and $\langle Y, \| \| \rangle$ and, at the same time, T is a homomorphism between $\langle X, \| \|^* \rangle$ and $\langle Y, \| \|^* \rangle$.

Let us consider the following example: suppose we are given a linear space Z with a sequence $[\ \]_i$ of seminorms such that $[x]_i=0$ for $i=1,2,\ldots$ implies x=0. Let $Z_\pi=\{x\colon \sup[x]_i<\infty\}, \|x\|=\sup_i [x]_i, \|x\|^*=\sum_{i=1}^\infty 2^{-i}[x]_i$ for $x\in Z_\pi$. Then $\langle Z_\pi,\|\ \|,\|\ \|^*\rangle$ is a γ -normal space.

In particular, let C denote the space of continuous functions x=x(t) on the half-line $0 \le t < \infty$ with $\lceil w \rceil_i = \sup\{|x(t)| : 0 \le t \le i\}$. Then γ -convergence in the space $\langle C_n, \| \ \|, \| \ \|^* \rangle$ means uniform boundedness plus uniform convergence on compact subsets of $\lceil 0, \infty \rangle$.

THEOREM 14. Every γ -normal two-norm space is γ -equivalent to a subspace of a certain space $\langle Z_{\pi}, || ||, || || * \rangle$.

The space $\langle X, || ||, || || * \rangle$ is called γ -separable if there exists a countable set dense for the convergence γ .

THEOREM 15. Every γ -separable space is γ -equivalent to a subspace of the space $\langle C_n, || ||, || ||^* \rangle$.

The group of invertible elements of a commutative Banach algebra

D

R. ARENS (Los Angeles, Calif.)

Let f be continuous, complex-valued on a compact subset D of the complex plane G. Then f has the form $f = ae^g$ where a is rational, and g continuous on D. This classical theorem we generalize in a Banach algebra manner (see 1, below). Reformulated as in 4 (below) it represents another step along the path begun by Shilov [3] of finding algebraic invariants of a commutative Banach algebra A (over G, with unit) depending only on the space A of complex linear-algebra homomorphisms. In a sense, Shilov shows that the cohomology group $H^0(A, Z)$ is isomorphic to the subring of A generated by its idempotents; and we show that $H^1(A, Z)$ is isomorphic to G/G_0 (see 4).

Notations: C, A, Δ have always the meaning as above. $C^* = C - \{0\}$. $\mathscr{C}(X,Y)$ is the space of continuous functions. If $F \subset \mathscr{C}(X,C)$ then $\exp F = \{\exp(2\pi i f): f \in F\}$. If $W \subset C^*$ then $\operatorname{Hol}(W,Y)$ are the holomorphic Y-valued functions on W, Y = C or C^* . $\{f \neq 0\}$ is the set where $f \neq 0$. For $b \in A$ and $\delta \in \Delta$, $b_A(\delta) = \delta(b)$.

1. Lemma. Let $f \in \mathcal{C}(\Delta, C^*)$. Then there exists an $a \in A$, and a $g \in \mathcal{C}(\Delta, C)$ such that $f = a_A e^a$. If $f = b_A e^b$ is another such representation, then $b = ae^c$ for some $c \in A$.

We shall deduce this from the following mere combination of two theorems of H. Cartan's. For our notation we refer closely to [2].

2. Proposition. Let P_1, \ldots, P_N be polynomials in n complex variables, and form

$$W = \{|P_1| < 1, ..., |P_N| < 1\}.$$

Then there is a natural isomorphism of the multiplicative groups.

3.
$$\mathscr{C}(W, C^*) / ex \mathscr{C}(W, C) \leftrightarrow Hol(W, C^*) / ex Hol(W, C)$$
.

We sketch the proof. For the Stein manifold W we have the exact sequence of sheaves ([2], 27(11)) $0 \to Z \to C_\omega \xrightarrow{\text{ex}} C_\omega^* \to 0$, and the exact

sequence ([2], 35 (2.10.1)), of chronology groups of W,

$$0 \to H^0(Z) \to H^0(C_\omega) \to H^0(C_\omega^*) \to H^1(Z) \to H^1(C_\omega) \to \dots$$

By Cartan's theorem ([2], 119), the group written last is 0, so that $H'(Z) = H^0(C_\omega^*)/\exp(H^0(C_\omega))$, and this quotient-group is ([2], 24, 29 (2.62)) the one on the right side of 3.

But we also have ([2], 26 (9)) $0 \to Z \to C_c^* \to C_c^* \to 0$, and so by analogous reasoning, using [2], 37 (2.11.1) (noting that C_c is fine) we obtain Brushlinsky's theorem (generalized): $H^1(Z) = \mathscr{C}(W, C^*)/\exp(W, C)$. A carefull tracing of the isomorphism (3) shows that for $\varphi \in \mathscr{C}(W, C^*)$ there is an $\alpha \in \operatorname{Hol}(W, C)$ and a $\varphi \in \mathscr{C}(W, C)$ such that $\varphi = \alpha \in \varphi$.

Proof of 1. By Stone-Weierstrass, $f = f_1 e^{\theta}$ where $f_1 = a_{1A} \overline{a}_{2A} + \dots + a_{k-1,A} \overline{a}_{k,A}$, and $g_1 \epsilon \mathscr{C}(A, \mathcal{O})$. Define $\mu_k(\zeta) = (\zeta(a_1), \dots, \zeta(a_k))$. Then $\mu_k(A) = \sigma(a_1, \dots, a_r; A) \subset C^k$ is the joint spectrum of these elements relative to A. Evidently $x = z_1 \overline{z}_2 + \dots + z_{k-1} \overline{z}_k$ never vanishes on it. One can find $a_{k+1}, \dots, a_n \epsilon A$ such that $x \neq 0$ on $\sigma = \sigma(a_1, \dots, a_n; A_n)$ where A_n is the subalgebra generated by a_1, \dots, a_n [1, 2, 3], understanding z_1, \dots, z_k now to be the first k coordinate-functions in C^n . From Shilov's observation ([1], 206), there exist polynomials P_1, \dots, P_N such that $\sigma \subset W = \bigcap \{|P_j| < 1\} \subset \{x \neq 0\}$. Thus (2.2) $x = ae^w$ where $a \in \text{Hol}(W, C^*)$, $y \in (W, C)$. By the theorem of Oka-Weil [4] there is a polynomial P such that $\max\{|P(\lambda) - \alpha(\lambda)|; \lambda \in \sigma\} < \varepsilon$. Take ε so small that $P \neq 0$ on σ and also $a = Pe^v$ where $p \in \mathscr{C}(\sigma, C)$. Let $a = P(a_1, \dots, a_n) \in A$. Then $f_1 = a_A e^{g_2}$ where $g_2 \in \mathscr{C}(A, C)$, yielding half of the lemma. Suppose now that $a_A e^g = b_A e^h$ on A, and, by [1], 8.1, $ab^{-1} = e^o$ for some $c \in A$.

4. Theorem. Let G be the group of invertible elements of A. Then there is a subgroup Γ of G such that $G = G_0 + \Gamma$ where $G_0 = \{e^a : a \in A\}$ is the component of 1 in G, and $G/G_0 \longleftrightarrow \Gamma \longleftrightarrow H^1(\Delta, Z)$.

Sending a into a_A induces a homomorphism H of G/G_0 into \hat{G}/\hat{G}_0 (where $\hat{G} = \mathscr{C}(A, C^*)$). The lemma shows that H is "onto" and 1:1. G/G_0 has no elements of finite order, so Γ exists. Clearly $G_0 = \{e^a\}$.

Lemma 1 can be extended to commutative F algebras, by the use ([5], 2.4).

I should like to add that when I announced my reduction of the problem to the set σ , Professor H. L. Royden independently took up the matter and also arrived at [1]. Royden also used Cartan's Théorème B.

This research was supported by the Office of Naval Research (U. S. A.).

Bibliography

- [1] R. Arens and A. P. Calderón, Ann. Math. 62.
- [2] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, 1956.
 - [3] G. E. Shilov, Mat. Sb. 32, 2.
 - [4] A. Weil, Math. Annalen 111.
 - [5] R. Arens, Michigan Math. J. 5.