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onto the whole of X so as to remain y-linear. Some sufficient conditions
for extensibility are known.

TrroreM 13. Let <X, || I, || [*> be a y-reflexive subspace of & y-normal
space (X, | I, || [¥>. Then every y-linear functional on X, possesses @ y-linear
extension on X.

A universal space. Two two-norm spaces, <X, |, |l *> and
KX, [, 1% are called p-equivalent if there exists a distributive opera-
tion 7 from X onto ¥ which establishes an isometry of (X, | ||> and
Y, |I> and, at the same time, 7' is a homomorphist. between
<Xy |+ and <X, | [+ :

Let us congider the following example: suppose we are given
a linear space Z with a sequence [ J; of seminorms such that [@]; =0
for i =1, 2,... implies # == 0. Let Z, == {»: sup [#]; < oo}, [l = sup [«];,

) 4

[Jao]* :%2“7[&:} for weZ, Then <Z,, ||, |*> iz a y-normal space.

In particular, let ¢ denote the space of continuous functions & = x(1)
on the half-line 0<?t<oco with [2]; = sup{le(t)|: 0 <t<d}. Then
y-convergence in the space (U, | |, | |*> means uniform boundednoss
plus uniform econvergence on compact subsets of [0, oo).

THEOREM 14. Hvery y-normal two-norm space is y-equivalent to a sub-
space of o certain space <Z, | I, || [[*>.

The space (X, |||, | |I*> is called yp-separable if there exists a count-
able set dense for the convergence y.

THEOREM 15. Hwery y-separable space is y-equivalent o a subspace
of the space <O |11 | %>
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Tet f be continuous, complex-valued on & compact subget D of the
complex plane ¢. Then f has the form f = ae” where o is rational, and g
continuous on D. This classical theorem we generalize in a Banach algebra
manner (see 1, below). Reformulated as in 4 (below) it represents another
step along the path begun by Shilov [3] of finding algebraie invariants
of a commutative Banach algebra A (over €, with unit) depending only
on the space 4 of complex linear-algebra homomorphisms. In a sense,
Shilov shows that the eohomology group H'(4,Z) is isomorphic to the
subring of 4 generated by its idempotents; and we show that H(4, Z)
ig isomorphic to G/G, (see 4).

Notations: C, 4, 4 have always the meaning as above. * = C—{0}.
%(X,Y) is the space of continuous functions. If FC¥(X,C) then exF
= {exp (2nif): fe F}. If WCC" then Hol (W, ¥) are the holomorphic
Y-valued functions on W,Y¥Y =C or O* {f 0} is the set where
f#0. For bed and ded, ba(6) = 6(b).

1. LEMmMA. Let fe% (A, O*). Then there exists an acd, and a ge¥(4,0)
such that f = aue’. If f = bae" is another such representation, then b = aé’
for some ce A.

Wo shall deduce this from the following mere combination of two
theorems of EL. Cartan’s. For our notation we refer closely to [2].

2. ProprosItION. Let Py, ..., Py be polynomials in n complew variables,
and form

W = {|Py] < 1,..., [Pyl <1}.

Then there is & natural isomorphism of the multiplicative groups.

3. € (W, 0% /ex€(W, ) « Hol(W, 0%) /ex Hol{W, C).
We sketeh the proof. For the Stein manifold W we have the exact
gequence of gheaves ([2],27(11)) 0 —>Z — 0, = 0% -0, and the exact
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sequence. ([2], 35 (2.10.1)), of chronology groups of W,
0 - H(Z) - H(C,) - H°(C%) - HY(Z) ~ HY(U,) > ...

By Cartan’s theorvem ([2], 119), the group written last is 0, so that
H'(Z) = H°(O%)/ex H'(C,), and this quotient-group is ([2], 24, 29 (2.62))
the one on the right side of 3.

But we also have ([2], 26 (9)) 0 — Z -» 0§ — Ug - 0, and so by
analogous reasoning, using [2], 37 (2.11.1) (noting that ¢, is fine) we
obtain Brushlingky’s theorem (generalized): H' (Z) = € (W, (") Jex € (W, ().
A carefull tracing of the isomorphism (3) shows that for <&@ (W, (%)
there i an ac<Hol(W, 0) and a 9% (W, () such that ¢ = aey.

Proof of 1. By Stone-Weierstrass, f==f ¢’ where f, == @;,iig4+
oo @gy, 4Ty 4; 20 g€ (4, 0). Detine puy(8) = (£ (ay), ..., £ (ag)). Then
() = o(ay, ..., a; A)CC" in the joint spectrum of these elements
relative to A. Bvidently o = 2, Z3+...4-2,_1%, never vanigshes on it.
One can find apiy,..., 4,4 such that & %0 on o = 0(ay, ..., a,; 4,)
where 4, is the subalgebra generated by ay,...,a, [1, 2, 3], understanding
21y ..oy % NOW to be the first & coordinate-functions in 0™ From Shilov’s
obgervation ([1],206), there exist polynomials P,,..., Py such that
o CW =N {P)] <1} C{w 5 0}. Thus (2.2) # = ae” where acHol(W, 0%),
ye(W,C). By the theorem. of Oka-Weil [4] there i3 a polynomial P guch
that max{|P(1)— a()|; Aeo} < e. Take & 5o small that P 5 0 on o and
also a = P¢® where pe®(0,(). Then # = P¢’ where ¢e%(c,C). Let
& =P(ay,..., a,)ed. Then f, = a,6™ where ¢,e%(4,0), yielding half
of the lemma. Suppose now that e, ¢’ =b,e" on 4, and, by [1], 8.1,
ab™! = ¢° for some cecA.

4. Theorem. Let & be the group of imvertible elements of A. Then there
s o subgroup I' of G such thai G = Go--I" whore Gy = {¢": acA} is the
component of 1 in @, and GGy« I« HY (A, Z).

Sending ¢ into o, induces a homomorphism H of @/, into fi\‘/(Az‘o

A
(where G = # (4, 0%). The lemma shows that H is “onto” and 1:1.
G/G, has no elements of finite order, so I' exists. Clearly G, =
= {¢"}.

Lemma 1 can be extended to commutative I' algebrag, by the use
([8], 2.4).

I should like to add that when I announced my reduction of the
problem to the set o, Professor H.L. Royden independently took wup
the matter and also arrived at [1]. Royden also wused Cartan’s
Théoréme B.

This research wag supported by the Office of Naval Research
(U. 8. A).
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