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Punkte x, ist der Existenz in @, der endlichen extremen #n-ten Differential-
koeffizienten (2) von der rechten bzw. linken Seite gleichwertig.

Bs gilt

SArz 1. Set I die Menge der Punkie, in denen die Distribution T min-
destens einseitiy besohrinkt ist. Dann hat T einen Wert fast diberall in F.

Hierans folgt

Sarz 2. Die Menge S aller singuliren Punkte einer Iistribution ist
eine Vereinigung

N=~8,w8,

wortn Sy 6in Gy und 8y ein Gy, vom Mape Null ist.

Mit 8, wurde die Menge der Unbeschrinktheit der Distribution
bezeichnet, wihrend 8, aus allen singuliren Punkten besteht, in denen
die Distribution beschrinkt ist.

Umgekehrt gilt

SATZ 3. Zu jeder Vereiniguny S einer Gy-Menge 8, und einor Gy Meonge
8, vom Mape Null existiert eine Distribution, fiir welohe S die Menge sin-
guldrer und CS die Menge reguldrer Punkte ist.
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Some remarks on topolt;gicul algebras

by

W. ZELAZKO (Warszawa) .

1. Introduction

The development of the theory of any class of topological linear
spaces yields the developement of the theory of analogical class of topolo-
gical algebras. The eminent Gelfand’s theory of Banach algebras was
tollowed by the theory of Banach spaces; the same is the case with locally
convex and other classes of topological algebras. In this paper a short
account of the basic properties of normed algebras and of some of their
generalizations is given. The following well-known theorem of Kolmo-
goroff is @ starting point of our classification: a topological linear space
is a normed gpace if and only if it is & locally bounded and at the same
time locally convex space. There follow two generalizations of normed
algebras: locally bounded algebras and locally convex algebras. We give
a comparison of some basic properties of these algebras. The following
agpects will be congidered: continuity of multiplication, structure of di-
vigion. algebras, some problems connected with representations, invo-
lutions. Some ungolved problems will be formulated or recalled.

2. Definitions and notations

A topological algebra is an algebra over the real or complex goalars
which iy a topological linear space with an associative and separately
continnous multiplication (i.e. ay is continuous in one variable with
fixed another). Every topological algebra may be topologically imbedded
in an algebra with wnit. In the sequel we shall agsume that every consi-
dered algebra possesses the unit ¢. '

A radical of an algebra A is the intersection of all its maximal left
ideals.

A topological division algebre is an algebra in which for every o # 0
there exists an inverse.x . The continuity of inversion is not assumed.
A eclass of topological algebras is said to possess the property M [30],
if every division algebra belonging to this class is isomorphie and hom-
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ecomorphic either with the field of real numbers, or with the complex
field, or with the divition algebra of real guaternions.

The term normed algebra (locally convex algebra, locally bounde(l
algebra, or generally g-algebra, where ¢ is any class of linear topological
spaces) means: topological algebra which is a normed space (locally convex
space, etc.), as a linear topological space.

- A topological algebra is called m-comvex, ov idempotent if it possesses
a basis {U} of neighbourhoods of zero which consists of idempotent sets
(i.e. TUCT).

3. Continuity of multiplication

3.4. Normed algebras. In the case when a normed algebra is in-
complete the multiplication needs not td be jointly continuous (eontinuous
in the two variables simultaneously). An example of such an algebra
is the algebra of all complex sequences » == (z,) such that >'|,| < oo
with multiplication defined as convolution and with the norm defined as
lleel| = ( X, |2)”®. The continuity of multiplication in this algebra follows

from the inequality
oy < () leal) Il

Such a class of algebras was considered by Rohlin [21], who calls
them wnitary rings (assuming that they are unitary spaces; more strictly
unitary rings are completions of such algebras). In a Banach algebra
(complete normed algebra) the multiplication is jointly continuous.
This theorem, due to Gelfand [9, Satz 1], was later generalized by Arens
[3, theorem 5], who stated that in every completely metrisable topolo-
gical algebra the multiplication is jointly continuous. If A is a normed
algebra, then the following statements are equivalent:

1° The multiplication in A is jointly continuous,

2° Algebra A is m-convex.

3° In A there exists an equivalent norm satisfying |lwy|| <<

4° The completion of 4 is a topological algebra,

llae fly 11

3.2. Locally bounded algebras. A linear topological space is called
locally bounded if it possesses a basis of neighbourhoods which are bounded
sets. A set I of topological linear spaces is bounded if for every neigh-
bourhood U of zero there existy a scalar tr, such that 1 C U, It is
proved by Rolewicz [22], that the topology in a locally bounded topol-
ogical linear space may be introduced by the means of a morm |u|
satisfying [azl] = |af®|la|| for every scalar a, where p is a fixed number
satisfying 0 < p < 1. For the locally bounded algebras there exists the
following theorem, due to Pelezynski [30]: Let 4 be a complete metric
algebra. Then the following statements are equivalent:
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1° The topology in A may be introduced by mean of the sub-
multiplicative metric o(wy, 0) < o(2, 0)o(y, 0) (this condition was also
considered by Kaplansky [12]).

2° 4 is a locally bounded algebra.

3° The topology in A may be introduced by means of the submulti-
plicative p-homogeneous norm.:

logll < l@llliglly, ool = laf o], 0 <p <1

(We recall that A is assumed to possess the unit element.)

A metric algebra complete in the p-homogeneous submultiplicative
norm is called p-normed algebra. Hence every locally bounded complete
metric algebra is a p-normed algebra.

3.3. Locally convex algebras. A locally convex completely metris-
able topological linear space is called By-space. The topology in a B-space
may be introduced by the means of a denumerable family of pseudonorms:

ol < llolle < flolls <o < lfl <

A sequence , tends to m, if and only if |z, — z,/, tends to zero ag
n—>o0, b =1,2,3,...

A Bg-algebra iz a topological algebra which as a topological linear
space is By-space. For any Bj-algebra there exists an equivalent system
of pseudonorms such that

(3.31) oyl < l1ollosallyllepn (8 =1,2,...).

The m-convexity of a locally bounded algebra is a natural conge-
quence of its completeness. For the Bj-algebras it need not to be so.
The firgt example of a non m-convex By -algebra was constructed by
Arens [1], see also [30]. A Bj-algebra is m-convex if and only if there
exigts an equivalent gystem. of pseudonorms such that
(3.32) S eyl < ekl - G=1,2, ...

Very little is known about Bj-algebras which are non m-convex.
It would be interesting to discover for Bi-algebras the necessary and
sufficient oondlinmm for being m-convex. If 4 is an m-convex B.,-a.lgebm,

and f(z) _2 @y "

ez

is entire function of complex variable 2, then for every

0 .

element wed the series D a, " is convergent. On the other hand, in the
Thwa)

known examples of non-m-convex Bg-algebras there exist elements for

which the series of ¢® is divergent. It may be supposed that it is generally

80; hence ariges the question:
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Is a By-algebra A m-convex if and only if for every entire function

0 00
f(#) = Y m,2", and for every zecd, the series 2, @ i convergent? (1)
]

N=0

In a similar way the following question may be brought forward:

Let 4 be a commutative complex By-algebra. I8 it m-convex if and
only if for every non inversible element we4. there exists a multiplicative
linear functional f such that f(») = 07 (We recall that A is agsumed. to
possess the unit element(?).)

It may be noticed that a By-algebra is m~-convex if and only if there
exigty an equivalent system. of pseudonorms such that multiplication iy
continuous in respect to each of them. [18].

4. Structure of division algebras

4.1. Normed algebras. The fundamental theoren of CGelfand’s
theory of Banach algebras is the Gelfand-Mazur theorem stating that
the class of normed algebras possesses the property M. This theorem wag
first announced by Mazur [17] in 1938, and then it was proved by Gel-
fand [9] in 1941 (for complete complex division algebras). The Mazur's
proof (unpublished till to-day) is based upon. the Tiouville theorem for
harmonic funetions and the Frobenius theorem. Some other proofs ap-
peared [11], [20], [26], [27]. In Mazur’s Ppaper [17] it was also announced
that if 4 is a normed algebra whoge norm satistios |lwy|| == ||| |y, for
every @,y eA4, then 4 ig either a real field, or a complex field, or a di-
vision algebra of real quaternions. The same conclusion wag them. obtained
by Edwards [7] under agsumption that 4 is a Banach algebra and e~
= [wi|~! for every x inversible in A.

4.2. Locally bounded algebras. The clags of locally bounded al-
gebras possesses the property M [30]. If A is a topological algebra in
which topology is introduced by means of the norm ||| satisfying the
following conditions:

,1° lloll = 0 it and only if » = 0,

2° lall = {|—al,

3 Jlo+yll < [all+ [,

4° if (@) is a sequence of sealars tending to 0, then for every med
lim 4, ]| = 0,

5° if lim |j,]| = 0, then lim [jam,|| = 0 for every scalav o (see [B],
. 35-37), and additionally

6° llayll = |lallllyl),
then 4 ig either a field or real numbers, or a complex field, or a division.

(*) The answer is positive. For the proof and detailed discussions, see [25].
(®) The angwer is negative, see [25], p. 300,
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algebra of real quaternions [80]. If 4 is a topologieal algebra complete
in the morm satisfying 1°-5°, and additionally

6" llwyll < llollllyl],

70 |lo ¥ = |lol"" for every @ inversible in A, then A gatisfies the
conclugion of the previous theorem [307]. We notice that by 6° or 6’ the
considered algebras are locally bounded.

4.3, Locally convex algebras. The clagy of B-algebras possesses
the property M. This was proved in [3] for separable division algebras,
and generally in [31]. It is interesting that for non complete locally convex
metrigable topological algebras thiy theorem is false. Williamson [28]
congtructed an example of non-trivial topological field in which topology
is introduced by a denumerable family of pseudonorms satisfying (3.31).
Consequently its completion is a Bg-algebra containing a non-trivial
field. Sueh a situation is impossible for normed or locally bounded algebras.

4.4. We pose here a general question concerning complete metrie
algebras:

Does the class of completely metrisable topological algebras TOBBESE
the property M?

Tt is sufficient 6o prove this fact in the commutative case; in this case
it may be agsumed that the inversion it continuous in the considered
algebra [31]. It may be also assumed that the topology in the eonsidered
algebra is given by means of the norm |o| satisfying 1°-5° of 4.2. In con-
neetion with this problem we recall the following theorem due to Sha-
farevitsh [25]: a topological field K may be normed if and only if the
seb B ={weK:o" >0} iz an open set, and the set B = {weK:u '¢R}
iy a bounded set.

5. Representation

5.1. Banach algebras, The fundamental facts of the now clagsical
theory of commutative complex Banach algebras are as follows:

Every maximal ideal in a Banach algebra A is closed, and there is
& 1-1 correspondence M « fy; between maximal ideals and mulbiplica-
tive linear functionals of 4, given by the relation M = {wed: fy(s) = 0}.
The set M of all maximal ideals of A is corgx;paeﬁ in a weak topology and
there exigts a homomorphism of A onto A C O(M), given by the for-
mule @ > & == (M) = fr(w). It is 0] = ﬁaﬁcm(MM = 1im7/]|m"’||. If 4

a

is semi-simple (the radical of A iy the zero ideal), then the homomorphim.n
®~>& iy an algebraic isomorphigm. It follows that the radical of 4 is

characterized by the relation rad A == {wed: lim?f/Wﬂ = 0}, Very little

I8 known about the structure of fi, and it would be interesting to charac-
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terize those subalgebras of C(X) which are algebraically isomorphic
with the commutative Banach algebras having X as maximal ideals
space. The representation theorem for the commutative algebras was
extended to some clagses of non-commutative Banach algebras (Lu-
ching [16]): a Banach algebra A is called strictly sems-simple, or sss-algebra
if ity strict radieal defined as intersection of those of ity two-sided ideals
which are regular maximal right ideals is only the zero ideal. Hvery
sss-real Banach algebra in algebraically isomorphic with a subalgebra
of 0(X, @) of all continuous quaternion-valued functions defined on gome
compact X.

5.2, Locally bounded algebras. The classical Gelfand’s theory is
also true for commutative complete p-normed algebras. In fact Gelfand’s
theory is based upon submultiplicativity of the norm |jwy|| < L]\ 1wl
Gelfand-Mazur theorem, and characterization of radicals rad 4 = {wed:

} hmqf/ﬂ;ﬁ”ﬂ = 0}. All these facty are true also for p-normed algebras. Con-
sequently a semi-simple commutative p-normed algebra 4 is algebraically
isomorphic with a subalgebra of C'(X) for some compact X [307], [32].

5.3. Locally convex algebras. Bivery m-convex B,-algebra iy a pro-
jeetive limit of Banach algebras. The problem of representation of noun
m-convex By -algebras iz open and seems to be of great interest.

6. Involutions

Let 4 be a complex topological algebra. An involution @ -» x* ig
defined as operation 4 — 4 satisfying the following conditions:

i, ot =g,

i (wy)* = y*a¥,

iii. (aw-by)* = ax*4-by*,
where @, 4 4, a, b are complex scalars (bar means complex conjugate).

6.1. Banach algebras. The paper [6] is devoted to general dis-
cussion of involutions in Banach algebras. It establishes the existence
of commutative and non-commutative Banach algebras possessing no
involution. But if in a non-commutative Banach algebra there exists
a continuous involution then there exists an uncountable set of involu-
tions. The same is false for commutative algebras. There exist also Banach
algebras possessing involutions with arbitrarily large norms.

The classical theory of representation of Banach algebras with in-
volutions is due to Gelfand and Neuwmark [10]. They considered the Ba-
nach algebras with involution: satisfying the following conditions:

a. flal] = [*],

b. Jlw*a| = [l |l2,

¢ (e--a*2)”" exists for every element 2.
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Algebras satisfying these conditions are called O*-algebras.

Every C*-algebra is isomorphic and igometric with a closed sub-
algebra of the algebra of all bounded operators of Hilbert space [10].
This isomorphism @ « 4, sends «* onto Aj. Moreover, Gelfand and
Neumark proved that in the commutative case every C*-algebra is iso-
morphie and isometric whieh ¢(9N), where M is its maximal ideal space.
This isomorphism is given by the formula @ ~ . It is also o* (M) = (M)
[10]. They proved this theorem. assuming only b. Hence in the commu-
tative eage b implies a and ¢. The conjecture that it is go in the general
case was stated by Kaplangky [18]. And in fact, Fukamiya [8], and
Kelley and Vaught [156] proved that in non commutative cagse a and b
implies ¢. Recently Yood. [29] proved that b implies a. He considered some
more general condition introduced by Arens [2], namely

. el > klexllel, k>0,
calling a Banach algebra with involution satisfying b’ an *Arens algebra.
Yood proved that if in an *Arens algebra % >t,, where t, = 0,676...
is the real root of the equation 4¢%-4- 2(*—~{¢—1 =0, then in this al-
gebra there exists an equivalent norm satisfying a and b. Hence every
*Avens algebra with & >1, is a (*-algebra. A question may brought
forward :

Iy every *Arens algebra a C*-algebra?

In the commutative case the answer is positive (Arens [2]).

6.2. Locally bounded algebras. It seems that the great part of
regults concerning Banach algebras is true also for p-normed complete
algebras, but no interesting examples have been discovered.

6.3. Locally convex algebras. In this section we give a report of
the results obtained by Sia Do-ghing [23], [24]. We assume here A is
a complete m-convex locally convex algebra with topology introduced
by means of the family |a|l,, ae?, of submultiplicative (i.e. satisfying
(3.82)) pseudonorms. It ix assumed that on 4 an involution a — a* is
defined. We rocall that linear functional f is called positive if f(x*z) = 0
for every wed. A multiplicative linear functional f iy called a real funo-
tional if f(m) == f_(;)n)u for every wesd. The following theorems are proved
in [247]: .

631, If A i a B, algebra with a continuous inversion, then every
positive functional defined on A is continuous. '

632, Let M be the set of all continuous multiplicative linear func-

tionals defined on A and let SR be the set of all real funo.tiona.ls on. A.
Then if the involution on 4 is econtinuous and if f is a posi_tlve functional
‘yuch that f(e) = 1, then there exists a Borel measure u defined on a com-
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pact in the weak topology subset C.fR,C‘?fﬁ, M(@t,)’: 1, such that

J@) = [ w(w)du(u).
. ity
As a corollary it is obtained that if the real functionals are continuous,
then go are the positive functionals.

6.33. If the involution in A is continuous, then 4 satisfies condi-
tion ¢ of 6.1 if and only if

sup f(o*o) = supliny/ o)),
Fe)=1 a n

6.34. If A is a commutative algebra and

sup [ja*al, = sup [lo*

lo-supiwll,  for every med,
then

Lo llz*fl, = [lo*|l]lo]l. for every wed and every ael,

ii. 4 is complete with respect to |w|l, for every ael,

iii. 4 = C(M) (M is considered as. a topological space with the
weak topology) and there iy a decomposition M = (M, such that the

L]
norm flo|l, i8 equivalent to the norm gup |o(M)| for every ae?l.

Mehy
6.35. If sup |laal, = sup || for every zed, then |a*u|, = |af? for

every ae?l, and there exists a Hilbert space H and a family of projective
operators P,, ae?l, of H into H, such that:

i. There exigty a symmetric isomorphism 2 « A4, of A into the al-
gebra of all operators H — H.

ii. 4,P, CP,4,, and there is a bounded operator for every zed,
and every ae¥.

i, [loll, = (AP,

It would be interesting to have 6.31 and 6.32 also for some non-m-
convex Bi-algebras. By a slight modifieation of the proof of Siu Do-
shing we get theorem 6.31 for am arbitrary Bj-algebra, or even for
an arbitrary completely metrizable topological algebra with a con-
tinuous involution. Theorem 6.32 cannot be true in this form, because

there are non m-convex B-algebras with positive funotionals and PORSESS-
ing no multiplicative linear functionals.
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