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STUDIA MATHEMATICA, T. XXIL. (1963)

On the Picard property of lacunary power series
by

M. WEISS and G, WEISS (St. Louis, Missouri)

§ 1. Introduction. We ghall prove the following theorem:

o0
TamoruM. Let F(z) = > ¢;2" be analytic when || <1 and suppose
i=1
o~
;| = oo. There ewists a positive number q such that, if the powers
1

Ny < My <o < Ny L sabisfy my g fny>q for §=1,2,..., then to each
complex number w there correspond infinitely many numbers 2 in the interior
of the unit circle satisfying F(z) = w.

It is already known that lacunary power series exhibit this type
of behavior on the boundary of the unit circle. More precisely, it has
been shown, by purely real-variable methods (see [1] and [3]) that:

o
If Zl'ajz""f s Mgy > q 21 satisfies the conditions ¢ -0 and
7=l
o0
Dlles| = oo and if w is o compler number then there ewist infindtely many
1

o0
points & = e on the unit circle such that Z'c,- EY = qp.
=1

Tt follows easily from this that such a power series maps the interior
of the unit circle densely into the complex plane. Thus, the theorem estab-
lished in. this paper, in particular, completes this regult by showing that
this onto property of lacunary power series holds in the interior of the unit
cirele ag well. Tt should not be surprising that in order to obtain our result
we shall need complex-variable methods in addition to real-variable
methods.

There seem to be some essential differences between the two cases
oceurring when the coefficients of 7 are bounded and when they are
unbounded. We have accordingly split the proof into two parts. In §2
we consider the former while in § 3 the latter case.

We do not know what is the best lower bound of the ¢’s for which
the theorem iy valid. The methods of this paper can be refined to show
that a lower bound of about 100 can be used. Since we feel that this is
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not best-possible we shall consistently male simplifying (but very gene-
rous) assumptions on the size of ¢.

§ 2. The bounded coefficients case. We shall study power series of
the form

Fs) = ) od,
1

where ;. /n; = q. We assume that F(2) is analytic in the interior of the

unit cirele, but Y|¢;| = co. Furthermore, in this section we ghall assume
1

. that sup |¢| = M < oo.
1gi<oo . .
Let.us fix an arbitrary complex number w. Our aim will be to show

that there exist infinitely many points 2 in the interior of the unit circle
for which F(z) = w. The following is a rough sketch of the idea of the
proof.

&
Let S;(8) denote the partial sum Dle;e"°. For appropriate choices
1

of ¥, we shall show that §;(6), as 6 ranges throughout the interval [0, 2=),
comes “close” to w. This, in turn, will imply that on a circle of radius 7,
where & and » < 1 are related, at least one of the values F(re”) comes
within a “small” distance, d of w. We shail show, however, that certain
neighbourhoods of each of the points £, |{| = r, are mapped onto circles

about F(Z) of radii larger than d, thus implying that the value w is assu- -

med by F. This will be achieved by obtaining appropriate estimates on
the derivatives of F on the eircle of radius + about the origin.

These three steps of the proof are formulated rigorously in the lem-
mas below. Before announcing them, however, it will be convenient
to introduce the following mnotation for two expressions that we shall
use repeatedly: '

1) For technical reasons it will be more convenient at times to deal
with the modified partial sums

L R
85 (8) = Sp_1(6) -+ ;ghemka’

k >1, than with the partial sums introduced above.
2) The expression

.

,Qm =v210jlq_ml.i’

=1

m =1, €y =0, will arige natura}ly in two different contexts:

e © : ’
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a) In estimating the modulus of the derivative

1 00
F'(2) = Z Zn,~01z"f
1

the lacunarity assumption will enable us to show that one term of this
lagt series is dominant. Suppose that the term in question is %, ¢y 8" H1;
then the modulus of the preceeding terms is certainly bounded by

m m m
n; .
(2.1) 2 My lcf] = Ny 2 n_j' |61\ < Ny, Z q_m-w |01| = anm-
T=1 T " T

b) A simplification of the idea of the proof that one of the partial
sums §;(6) comes “close” to w is the following: Having approximated
w with the partial sum 8,(8) we then “aim” toward this point with
the (m+1)*® term of our series and add it to S8,,(0). That is, we choose
an angle @ such that n,,,,® = arg{w— 8,,(0)} so that the distance be-
tween w and 8, (0)+ cmﬂe"‘"mﬂ“’ is at least |¢,,.,| less than the distance
18 (6) —w]| (*). This would move us & step ahead in our proof if we could
then show that 8, (D) = Spn(D)+ O™ +1% is “close” to S,,(0)+
-+ 0,,,,_,_16'5""""'1'». Thus, we are led to estimate the modulus of the difference
S, (0) — 8,, (D). Since the funection f(&) = ¢™n+1¥ hag a full period in an
interval of length 2w/n,,,, we can always choose

De [0_ 75/'"’111-;-17 64 ”/nm-a—l) .

Thus, by the mean value theorem and the fact that [0— @ < =w/np,q,
we obtain

(2.2) 1S (6)—8um(D)|

m m m
- . - I
< g loj] - 1671° — ¢™1%] 2 leslmilf — @) < = E L2 gl
‘ . M 11
J=1 F=1 Je=1 T

m
; T
<n E ¢ g = = Q.
7=1 g

Thus, we see that in both cases, a) and b), we shall be concerned
with estimating @, from above.

The following lemma is the precise formulation of the first part of
the argument sketched above: ’

(1) Provided we have not “overshot” w; that is, provided |8y (6) — w| > |emy1] -
It is partly for this reason that we shall not always “aim” toward w, and will be for-
ced to employ more complicated arguments in the proof of lemma (2.1).


GUEST


224 M. Weiss and G. Weiss

LEsmA (2.1). Suppose 0 < e <1 and thet 16 < qe*; then there exist
infinitely many positive integers & and corresponding &[0, 2m) such that

(a) 8% () —wl < eleyls,
(b) ls| < 2ol  when j=k;
(¢) ng——l < &legl -

TFor each & of lemma (2.1) we define a radius r = 7 (%) by the equation
7" = 1/e. Thus, 1/n; = logl/r and, consequently, » tends to 1 as & tends
t0o oo in such a way that

1
2.3 limay(Ll—7r) =1 ==lim ———
( ) ko0 k( ) k00 (l )nk

Thus, a8 is clear from (2.3), for & large enough,
(2.4) 1—§<a1k(1 7)

and, moreover,
(2.5) p(l—1r) < 1.

.

For the remainder of this section we shall assume that these inequal-
ities hold for the %’s under consideration. This means that we have exelu-
ded at most, only a finite number of the &’s of lemma (2.1). Now, assuming
this lemma for the. moment, it is not hard to show

Levma (2.2). For the ¢, k, & and v = (k) just described we have
| (re™) —w| < 2eley].
Proof. Since #* = 1/¢, we obtain, for any 0¢[0,2x),

k=1

T (re"®) —8%(6)] —[Z o5 (L—17"1) g™ — vc g ”f

k—1

g }Z‘ 61(1— ’)""'7) emjo
1

But, because of inequality (2.5),

+ ’20,7"”6"”7"1 = I4-II.
o}

11— = (1 ——'y-)(l+4.+,,.2+”‘_i__,'m,j—l) g(l——?‘)%k?l—f
T
<@ —r)mg < g7
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Thus, by (¢) of lemma (2.1),

B-1
T = | ch(l_,.n,-)in,- 2 le; lg it == Qk— lcki

Now, using (b) of lemma (2.1) and the assumption 16 < ¢e?, which
certainly implies both the inequalities ¢ >2 and 2/(e"—1) < ¢/2, we
obtain the estimate

2[%] 2 7 = 20y Z (™R — 2g| 2 (:)‘"Hi/nk

k1 Bl =1

1\ o 1\ 1
< 2o Z (;)q <2 [%lz (;) < 2ey 1 <§ ekl -
=1 . =1

Thus, we have shown
| B (re®) — SL(0)] < & o]
for all 0¢[0, 2x). Now, applying this inequality, when § = E,,, together

“ywith inequality (a) of lemma (2.1) we obtain

B (re'®%) —w| < |F (re"k)— S} (&) -+ |8k (&) —w] < log| +eloxl = 2¢|oy|

and the lemma is proved.

We shall now show that, if ¢ is sufficiently small, the dise of radius
o = (1—7)/2 about the point ¢ = r¢** ig mapped by F onto a region con-
taining all points whose distance from F(f) is < 2e|c;]. Lemma (2.2)
and this result clearly imply our theorem. To achieve this end we shall
use the following result from the theory of funetions (2):

LemMA (2.3). Suppose G(z) is analytic in a region containing the circle
C(¢; 9) = {z; [z—- {l < o} and that it satisfies the conditions

a) | (2) e < A for [p—{| <

(b) 16" (5)le =B >0.

Then G maps C(L; o) onto a region containing the interior of the circle
about G(£) of radius B*[6A.

Proof. Let H(z) = G(2+{)—G (), where || < o. Then H(z) is
analytic in the closed dise of radius ¢ about 0 and H(0) = 0. Consequen-
tly,

(2.6) H(2) = a2+ ay8%+ ...+ 0,2"+...
(%) Lemma (2.3), in one form or other, can be found in several places (see, for

example, § 12 of Chapter VII in [2]). We give-a proof of it here only for the sake of
completeness.

Studia Mathematica XXII ' 15
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Because of inequality (a),

H () = e+ 1) —G(0)] = | [ & (0)do] STl <4.

¢
Thus, |6, < 4/¢" for n > 1. Moreover, because of (b), |ay| = |[H'(0
@ (0)] = Ble. Now, let r = (Bf44)e < ¢ (observe that we must have
B < A) and suppose [¢| = r. Using the estimates we have just obtained
on the size of the coefficients of the series (2.6) we have

oo oo
B A 7
H(z)| = az——} a, " | = —r— 77":3(-—)—
[H(2)| = |t:2] n; " . 2_2 i o
1

B (B/4AY 2( 1 1/16A) .
B ol il AN (el bnncscl [ : S S
4 1-(Bjd) 44 1-% 64 =

Thus, if |w| < B?/64, then, by Rouché’s theorem, the function
H(s)—w has as many zeros within the circle of radius r about 0 ag the
function H(z). Since H(0) = 0 we conclude that there exists a point 2
within this circle such that H () = w. That is, G(2+ ) = G({)+w. But
the latter is an arbitrary point within the circle about G'({) of radius
B*/64. Thus, the lemma is established.

Thus, in order to apply this lemma to our function /' at the point
¢ = ré*® we shall need appropriate estimates on the size of the deriva-
tive F' near this point. These are easily derived from lemma (2.1):

) =

(rfe)*
1—(r/eo)

=B

LeMMA (2.4). For the k, v and &, of the first two lemmas we have, for
L = ré,
’ . 1—7
() [F'(2)le <8lexl when =~ |g—{] <o = 5
(b) ' (0)le = 5 lol-

Before proving this lemma let us obgerve that our theorem, in case
the coefficients are bounded, can now be obtained immediately. By
lemma (2.2), we have |F({)—w| < 2¢|¢;|. On the other hand, by lemmas
(2.3) and (2.4) we see that every point within (|e,|/12)*/48 || = |e,] /4 (12)*
of F() is assumed by F (the circle C(Z; g) is certainly interior to the
unit circle). But w is such a point provided 2ele| << |exl/4(12)°. That is,
provided

(2.7) e < (24)°".

This bound on ¢ is far from best possible — even best possible by the
methods we are using. In faet, no attempt is made by us, in this paper,
to obtain such a best-possible bound (which is undoubtedly intimately
connected with the lower bound on ¢ discussed in the introduction).

icm°®

Picard properly of lacunary power series 227

Let us now turn to the proof of lemma (2.4). Suppose |z—¢| < o
then (see, comment after inequalities (2.4) and (2.5))
1 3r—1 1
< 7+

- ‘———=R<1
5 5 .+ 0

=7r—0 g <

Thus, by inequalities (2.1) and part (b) of lemma (2.1),

k-1 oo
1 ! ! 12 (Y] 7
5 1P (@) < 27 (2)] =| S oo gmm’!l

k-1
&S E 7 |eg] + n loxl + 2’”']107 | R™

k+1

[~
< Mgy @iy + 1G] 261 2 n; B

k41
Now, because of part (¢) of lemma (2.1) and our lacunarity assumption
gy e < 1]q, Wo have gy Qs = (Mg /1) 1 Qr—y < (8/m) g |€r] . Further-
more, sinice our conditions on ¢ and ¢ certainly imply ¢/(g—1) 3, we
have

q
fyy = ——
1= =
Consequently,

3 .
Zn R L my BM Zn,R‘“J < — {an”l—}— y (nj—n;_1) R 7}

s |

< %{(1+R+R2+. R RM) 4 (RMP R R LY

These estimates, together with inequalities (2.5) and (2.7), give us
1 £ 3 & 1 3
3 [ (2)] < (; +1)’nk\0k|+gfckl < (7-: +1)2—Q 10k|+510kl

1 3 4
<25 6]+ = lex] = = el
4 e e
and inequality (a) of our lemma follows.
We now prove (b): 3
k-1
LR (L) = 2njCan’+/)’Lkﬂk‘)"nllglﬂ'ksk_}_ Z ny0; ¥ gl —

k41

0k
P+ _e__" £ Q)
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We have just observed, however, that

k-1

&
P| < nilepl < — N |Ogl
1B < X o] <~ mulod

Our assumption on ¢ certainly implies, therefore, that |P| < (n,/4e) 0.
On the other hand, using (b) of lemma (2.1) and the inequality 4/(e"*—1)
< 1/4e (obtainable from the inequalities (2.7) and 16 < ge?), we see that

co

oo o

n Y D,

Q< E ;0|7 < 2 (o] § L4 = 2 |0y| my, } gyl

r Ny oy
+1 k41 Te4-1

L X1
2 gl
< Zlekf”kz%z(ﬂkﬂmm e~ R+ < 4oy my, E e

=1 j=1

-] 1. N
-5 dlogng, . m
Sdlodm et = SR < .
54 4e
=1 ¢ —1

Congequently, using these estimates on |P| and |@| as well as in-
equality (2.4) we obtain

which proves (b).

It only remains for us to prove lemma (2.1). We shall break up the
proof into & number of steps.

(i) There emists a sequence {&,} C [0, 2r) such that

=S (el > o]+ (1 q_l);]oﬂ.

Proof. Since

2.8)

m—1

2 Q = el A +g7 .. g™

m—1

Fleal (L+g7 o g™ b b ol (L 7Y F o] < q—‘__—%.i 2 el

Jaml

inequality (2.8) will hold if we can construct a sequence {&n} C [0, 2m) such

icm
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that
’ m -1
b
(2.9) oS ()] > 0]+ Dl == D) Qs
j=1 1 =1

We shall do this by an inductive process. Let £,e[0,2r) satisfy
arg {¢,6™%1} = arg{—w}. Then |w— 8,(&)| = lw|+les| and (2.9) is sabis-
fied when m = 1. Now assume we have a value £, for which this inequal-
ity holds we shall then find £,,.; for which it is valid.

In fact, choose &niyelém—T/Mmirs Em~+T[Mmy) =1, so that
Arg (O €M mHm+1} = arg {8, (€m) —w}. Such a number certainly exists
sinee I contains a full period of the function &=+, Thus,

10— Sy (Em) — Oma €™M = f10— 8y (Em)| - |0m sal -

Consequently, because of this inequality, our induction agsumption
and inequality (2.2) (with 6 = &, and @ = &)

jw— Sm+1(§m+1)' = |w— B (&mr) — Omaa e:':“m+]5m+1]
= |[{w— B (Em) —Cmyr 611} — (S (i) — S (Em)}]
> ‘w—sm ( Em)l + [om-)-l‘l - lSm< E-m-;-l) "Sm (fm)]

> [w—Sm(En)l+ 1am+1|~3q5czm> o] + ; logl+ lcm+11—3q‘-czm

and (2.9) is valid for m+1.
(i) Whenever 0 <j <7
q

Q+Qrt - Qe < q—__'iQH- [6741] + lepzal o=+ o5 -

, s SR
< Proot. ¥ m < j the coefficient of lo,| in Z;Qa is
N 8=

é;q’"“K aZ:.'q = q’”‘fgq“ = q"‘”’;;q_-i-

Thus, the terms involving |e,|, for m < j, contribute no more than

1 S
o7 D, Il = 25

If > m >4, then |6,| occurs only in @, @uiay «oos @rs in the term
Qs, m <8< r, its coefficient is ¢~**™. Thus, its coefficient in the sum
r T

>Q, is XY ¢ **" < g/(¢g—1). Proposition (i) is now clear.
8=7 8=m
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J), 0 Lj < dJ, and corresponding

(iii) There exists & pair of integers (j, /
= |w—8,,(0n)|, ] <

, 07¢[0, 2x) such that the numbers Iy,

0;, 6;
7y Y41y ol) sansf(t/

m<LJ (@f‘g = 0 we set Wy =
(1) either

Om]
E = F _1+ Qm—l”‘l‘fﬁ

10m]
M < By < Bat Z Qs —=
for j<m<dJ;

1
(@) Bp >0 <m<J;

[Gmya]| when §

8) By <%0yl

The pair (§,J) cam be chosen so that j (and, hence, J) is arbitrarily

large.
Proof. Let j be any integer satisfying

i
™
iw1+(1—é—_—1)§1031> u

Such an integer exists since 2[0,] = oo and our conditions on ¢

(2.10)

and ¢ clearly imply 1—=n/(g—1) > 0 We shall now show how to obtain the
integer J (since the only condition on j we need is that (2.10) be patisfied
the last part of our proposition is thus obvious). By proposition (i) we can
find 6,¢[0, 2n) such that :

¥

= lw—$1(91)l > |w|4- (1— é{r—_i) Z les] .

EIS

Thus, by (2.10), M < E;. Since |o,| < M and (14-s)/e <1, this
shows that (2) is satistied for m = j. Note that we have shown, in this
case, |64 < Bj.

Now let 0 e[6,—m/nyq, O47/ny) satisty arg{og, 6™} =
arg {w— 8;(6;)} (as before, we note that such a 0’ must exist since we
are choosing it in & period-interval of the function ¢™i+1%). Then H;— |0/
= [w—8;(8;) —6;,,6™+1”| and, hence (using again the reasoning that gave

icm
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us inequality (2.2))

(2.11)  |w—841(0)] = [{w— 8;(8)) — 4261} — {8;(6")— 8;(6)}

|09+1l

—lojal+18;(6") — 8; (0] < By |07+1H- = Q< By~ +qu~-

Suppose that there exists 0" ¢[0, 2r) such that

(2.12) [w—8;41(6") = E,— |013+11+ Q.

q

Then, because of the continuity of f(0) == w—8;,,(f), the two in-
equalities (2.11) and (2.12) imply the existence of a number 0;,,

C,
SO0 = B 22y T,

Ej = ]4,0
+1 q

If, on the other hand, for all 6”¢[0,2%), |w—=8;.(6")] <H,—
—lealfe+(m/g)Q;, We choose 0p,¢[0,2r) such that Hy, = |w—
~85,1(6;41)| = M. That such a point 0+1 exists follows from propo-
gition (i) (see inequality (2.8)) and mequa,hty (2.10). In. either case part
(1) of proposition (iii is satisfied for m =j41.

If, now, E;, < lc,+2| we let J =j-+1 and (iii) is established.

1
If, however, H; > T le;,el (that is, part (2) holds for m =j+1) we

congider two cases: 1° EH;,; > |65, < —Ef 1

In the former case, we apply the argument just used, with (j-41) mstea.d
of. j, to obtain a number 6.4 for which ., = |w—=8;,2(0;.s) satisfies
(t) with m =j+2. In the second case we proceed as follows: Let
£e[0, 2c) satisfy

and 2° By <opl <

6742l = [w—8741(E)

(such a £ exists by continuity, our. assumption H;, = ]'w—Sy.H(Gm)] <
< |6;44| and our choice of j which, together with proposition (i), guarantees
the existence of &;,, such that ;e < M < |lw—8;,2(&51))). Now choose
B e[£—m[Njpey E4 T [Nj.) 80 that arg {o;, 6™ +2"} = arg {w—8;,,(&)}. Hence,

o —8;..2(6)] = Hw"siﬂ(f)’““,‘+°em/+26‘ {8531(0) — 851 ()}

1042l

= |8712(0)— 8 (O < Q7+1 <- Q1+1+E7+1
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But this last expression is dominated by [our assumption on ¢ cer-

&
tainly implies 1/e—m/(g—1) > 0) Thus, 3eQ <3 @r < lossal-

x i+l s 107001 m 2 » 1 (v) For each J of proposition (iii) there ewists 07,i¢[0, 2n) such that
EZIGSM ol == =< U 'Q“Z!l +1-~ . .
s=1 0 1 1872 (Br) — 0] < A lersal+ EQJ-
=M(——1°—+1—~)<M. ‘ N S o
g—1 ¢ Proof. Because of inequality (3) of proposition (iii), proposition
On the other hand, by (i) and inequality (2.10), we can find ¢, (i) and inequality (2.10) we are assured (by:,l_lj usual continuity argument)
[0, 2x) such that jw—=8;,4(&) = M. Thus, by continuity, we can of & number & such that |8;(&)—w| =——lesy[. Now choose 674
find 6;,5¢[0, 27) such that o €[0,2n) satisfying - arg {¢17#1%7+1} = arg {w—8s(6s)}. Then,
! T Ora
Brya = =810 (0s0)] = Bpya — Qg — 222 1 :
2 2 (0r42)] M T T 1851 (B 40) —] = SJ(6J+1)+EGJ+16mJ+10J+1_.w
and (1) is satisfied when m = j-+2. 1 . - . -
We continue this process until we reach an integer J >j for which (3) = HSJ(E)—W-}- = Gy 6T “'1} +{87(0742) —87(£)} \g - le7al+-@Qy-
is true. That such an integer must exist can be seen as follows. If not, ' . I :
for all » >j we would have (using the estimate of proposition (i) (vi) When J and 65, are as in proposition (v), then
b [ B 4 e
B, < B + EQT“ _Bﬂ (1) '!‘I‘QJ < 5 lersal,
<{Er_1+397_1—@} LT Ll (2) 18741(6742) — 0] < elogial-
1 K ¢ Proof. (1) follows immediately from (iv) and our condition on g,
" rl , " 41 which certainly implies 4n/s* < g; thus
™ 1 P 1 ’
‘<EH+EZQ5"_€'Z [681<E7'+ _lQi"I“ 7’“'1 2[%!"“"2[08[ T g € )e €
8=f 8=7+1 1 TG i) —Qr < —Qy = {_QJ} < eyl
” q 4 212 2
<= T b 1 . . ™
< B+ g—1 &t —1 o 2 l6sl. (2) now follows from this estimate and proposition (v):

. £ T ° ¢

. But, if r is large enough, the lagt expression is negative and, thus, 18712 (Or4a) =] < ;IGJ“H_EQJ < 2 fozal + 2 boreal = elozial

the inequality is impossible. ‘
(iv) For eash J of proposition (iii) we have [671] = $eQy.

Proof. Condition (3) of (jii) certainly implies B; < M. Thus, by (1),

(vii) If & >J 1 18 such that |¢,| < leg| for J+1 < v < k, then there
exists {e[0, 2n) such that

By = By_y—|ojlje-+ . Bine ; ¢ ;
1ol (5/0)Qy-s- Since, by (3), we now that By, < (1) Z Qeor < sl
- les], it follows that q .
. . 1 (2) 185(£)—w] < elexl.
20, = - & T ¢ k]
eQ"‘ = e(!QJ““EQl—l) <3 les] -+ EQJ——I < 1’7Jr~1—]—:l + =@ Remark. Let us note that once (vii) is established so is lemma (2.1).
o 9 ‘ If |¢j| < 2|esy4| when j > J 41 then, by proposition (vi), the conditions
=B, < 1+e (a), (b), (¢) of lemma (2.1) hold for k¥ = J+1. If, on the other hand,

e 1074 there exists j >J+1 for which |¢;| > 2|¢ry,), let & be the first index
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larger than J-+1 such that 2(e > sgp |es]. Then, clearly % satisfieg
sz=J+1

the hypothesis of proposition (vii) and condition (b) of lemma (2.1) ag
well. This last fact together with inequalities (1) and (2) gives us the
degired lemma.

Proof. Because of (3) of proposition (iii) By = |8;(0;)—w| < 16744
But, by (i) and (2.10) we know that there existy &, such that ey, < M
< |8;7(&)—w|. Thus, by the continuity argument employed repeatedly
above, we conclude that there exists a, such that [8y(ay)—w| = |0y,
Now let aJ_,_le[aJ—-Tc/'nJ_}_l, (IJ'I-TE/%J.H) Bl‘:\rﬁsfy arg{oJHe"”-’*'l“"-l'l} ==
arg{w—87(ay)}. Then [Syy3(ars) —0|=|{87(as)+ 0741 67 HI+1_gp} .

™
4 {875 (ar1) — 8y(an)}l = |85 (aysa)— 8r(ay)l <”q‘ Q-

We now choose ay.,. If 670 < |Sr.iq{0s)—w| we choose [T

elay, —m/fyys, Gy -7/, satistying
arg {0.7+zem"+2a"+2} = arg{w -8y ary)}.
Then, by the usual argument,

8742 (aJ+2) —w|

= [{8rs1(ars)+ 6o gmtaiz W} {8s1(0r0) = Srin(@ren)}
< 8rpa(ayp) —w|— |0J+2]+'§QJ+1 < 'Z‘(Q.I+QJ+I)'" 6742l -

I on the other hand, |6s,,| > [8.4(ay 1) —w| then, as before, we
find a point & such that [8;,,(&)—w| = [¢;.]. We now choose Grea
e[E—m[nypa, E+4n/ng,,) satisfying

axg {07,064 = arg {w— 8, (8)}.

Tﬁus,

ISJ+2(‘1J+2)’_"17| = |{871(6)+ 0.)‘+23in"+2“"+”"w}i+ {SJM(G‘JM)“‘SJH('E)}I
= ISJ+1(aJ+a)_SJ+1(5)I < E"QJﬂ-

. We_eontinue t?]is process until we have defined o_;. Let p be the

largest integer satisfying J+1<p <k—1 and |e,| > |8 () — |

The methoq we are employing for choosing the numbers Omy, JH+1<
m < k—1, implies, therefore, that

185 (ap) —w| < 'Z-Qnﬁl.
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Hence, using proposition (ii),
kg
ISk—.—l(ak—i)— w| < E (Qpat- o +Qrme)—(lopial + ..+ lexal)

B—1
T T i E kil
< &:_1Qp_1—[- !—1?1 [epl — (1—— i:) les] < thi (@1 lex)-

J=p+1
But, because of our assumption on |oy,

(2.13) @y, = Q_lQp—a"_l" (61l = @7 Qps+q " 0posl + l0pa| = ...
p—J
=P ; T oryia| S o 2

Let us note that exactly the same reasoning gives us the inequality

q
g—1

(2.14) Oz < Qurtoxl

Using proposition (iv) and our condition on ¢ (which in particular,
implies w(g—1)"'-2e7" < Je)
(81 (1) — w|
7 q T (2 q
< —1 (QJ+ —1 ferl + Icpl) < —1 (; [ersal+ —1 lex] + ]%[)
g
(g—1)

Now, by the usual continuity argument, we can find 0 satisfying
lex|Jé = |Sp_a(0)—w|. Now we choose (e[f0—m/ng, 04 7/[n;) satisfying
arg {6,6™} = arg{w—8;_,(0)} and we obtain, using (2.14), (iv) and our
condition on ¢,

18%(2) — wl
= Sk_x(C)Jr-of ™ — ! = H»S'k_l(ﬁ)—?ﬂ-i— %6"“’5} +{8k-1(D) — 810}

q
qg—1

<= o) < (2 7l <
S =1l x| -+ el + lox \§+ b lexl <

T

fexl

= 18O —Bua (0] < - Qur < 7O+ 25

T 2me T
(el -+ —1 loxl < 7o lowl+ —1 fox| << &lox| -

Hence, inequality (2) of (vii) is established. We note that the last
part of this argument gives us inequality (1). Lemma (2.1) and, thus,
our theorem in case the coefficients are bounded are proved.

<

LS |
® | b
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- §3. The unbounded coefficients case. Let us now assume that the
coefficients of F(z)—_—i:’cjz“f satisfy ¢, # 0 and lilgiiuplcﬁ = oo, Singe
F is assumed to be analytic in the interior of the unit circle, however,
we do have Zjo’ les]™ < oo whenever 0 < ¢ < 1. We ghall agssume thag q

and ¢ satisfy the same inequality as in § 2.

Again we shall show that on each of.a sequence of increasing eircles,
whose radii tend to 1, we can find a point at which ' approximates a fixed
complex number w. We then shall obtain estimates on the derivative
of F' near this point which, as in the previous case, allow us to apply lemma
(2.3) to show that w must be assumed by F.

The following lemma, which shall be applied to appropriate partial
sums of F, ean be considered to be an analog to lemma (2.1):

Leaoga (3.1). Suppose P(6) = by ™4 byg™2® | | 4 by e™N0 gaie
fies mya e >¢, L<E<N—1, and M < Z” lbx, where M = max 1Bl
1<k N

and the symbol 3" denotes summation over all terms exoept one at which this
. . . N
mazimum is ottoined. Suppose, furthermore, that |w| <(1—¢) 3'1byl. Then
i
there exists 0y such that '
|P(O)—w| < §eM.

Proof. We shall define 0y,6,,..., 0y inductively in such a way
that O satisﬂeg the conclugion of our lemma. Rirst, 0,¢[0, 2r) iy chosen
80 that arg {b, 6"’} = arg{w} is safisfied. N ow, suppose 0, 1 < k<N,
has been chosen; we then show how to obtain Okri- In cage [by,| <

3

< 181(6) —w|, where S,(6) denotes the partial sum Y b,6"°, we choose
J==l

O 1 € [0 — 7 /my +1y Ot /mg ) satisfying a,rg{bkﬂemkﬂ”k'“} = arg{«lo-—

—8,(0x)}. If, on ‘the other hand, b > [8k(0r) —w| we consider two
cases:

(a) There exists 0;¢[0,2r) such that 84 (65%) — w| 2 [bral;

(b) for all Be[0, 2m), |84(0) —w| < 179

If case (a) holds, the continuity of ), implies the existence of a
such that [8,(6)—w| = |brysl. We then choose Orpre[0—m /gy, O+
+[ny) 80 that arg{by,, e™rriin} — arg {w— 8),(0)}.

If case (b) holds, let 6 satisfy |w— 8,(0)] = max |w— 8 (D).
L ®e[0,3m)
We then ehoose O 1[0 /ny .y, 0+ mm;) again, so that

arg {by, 6™+ %41} = grg {w—8,,(0)}.
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Let 84(8,) = 0. We claim that for at least one %, 0 <k < N, we

have
(3.1) [broal > |185(6) — i

Suppose not. Then, by our choice of 6, and this hypothesis (when
k=0 it asserts [by| < |w|), we have [§,(6;)—w| = |w|—|b,|. Conse-
quently, since we assume |b,| < |8;(0,)—w|,

182(0,)— ]
— [{8,(0:) — w-+ by 62} + {8, (8) — 84 (B)}] < lSi(91)—wl“lbzl+§ @

< |w[+;iczl,- [by] — (B4

(see inequality (2.2)). . -
Continuing in this way we obtain (using proposition (i) of the last

section)
(B4 (Orsa) —
E+1 k k41 k
T T T
_ ja ] - . = b
< lul ,; 'qui; Q <l ,; b+ = @t q_lgzul

k1 k1 k1 )
™ T 1

<tol= i+ Dbl = ol (1— ) M
i=1 i=1 j=1

Thus, when %k = N —1, this would give us
) N

8000l < ol (1= =) 3 1n

7=1

(3.2)

< {(1—-8)—(1—91—_”_—1)}gN{7 [Bs].

But our assumption on the values of ¢ and e certainly implies that

™ 3
):——»—a<0

(1~s)—(1—q_1 =1

and, thus, inequality (3.2) is impossible. Thus (3.1) must hold for some %,
0<k<N.

Let j, 0 <j < N, be the largest of the numbers % for which [b;,.,] >
> |8%(0x) — 2| holds. Then, for this j either (a) or (b) holds. Suppose,
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first, that (a) holds. Then, using the notation established above, with
Jj= k,

|842 (65000 —w] = 1{8;(6) +bj+161n1+19f+1..w}_|_{,g 1(05401) —85(0)}]

= 18;(05)— 84(0)] < &’3@-

Since, by assumption, |b,.| < |8,(0,)—

must have

1842 (Brsa) —

w| whenever j <r < N we

w] = [{8,(0p) + Dy €711 — 0} - {8, (8,.10) — S:(0,)}]

18, (6,)— 0] — 1b,+1r+§@,..

Herice,

(3.3)  |Pu(0y)— 0] = |8y (0n)— 0] < [Sy—1(Oy_s) — 0] — {by] + gqy_l

< 18ys (By—g) — 0] — By | + EQN_Z— bl +f Qror < ...
< 8haalByea) =]+ = ZQr Zw ZQ, Zwrl
T+1 72

But, by proposition (ii) of §2, and the relation between & and q this
last expression is majorized by

b - STn,

- 1 i+2
N
kd g
< 1 Q-+ — p=) 0540l — (1_q“——1) Zlb,. 7% Jr = byl
e

< ~—-—Z Mgt —-——M ( r.. 4 ki 3

(T4, T 3 .
¢g—1g—1 + q—l) < 45’M
and, in this ease, the lemma is proved.

Now suppose that (b) holds. Repeating the argument used to estab-
lish proposition (i), of the last section we gan. show that there exists 0,

such that
fo—(6)] > le—(l-———)Z]b]

=]
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But, since (b) holds,

Jw0-=8;41(0141)| = {w—8;(0)— J+13i7bj+loj+l}+{Si(ﬂ)‘sf(9i+1)}|

<lbf+1|—tw—8()|+ Qs < byl — Sf(e;>r+;1@,~.

Hence, using all but the last of the 1nequa]ities (8.3) and (ii) of § 2,

1Py (O) =101 < [8510(Bps0) =0l + ZQ, Z'“

14 ps
<{ral— o -1+ 20} + ZQ, pNE
14 772
=“ZQ1+IZ’7+1]—2U’I—|W —8(6))
i+2
1Q7+1bf+1|(1+q_%)-( e 1)Z|b|—|w 8,61
J+2
Ok bl (1) (1———)(Zlbrl+21brl) ol

r=7+2

i
But M < 3l < S+ 2|b | and @; <

T=
expression is majorized by (usmg the relation between ¢ and ¢)

e i e At

<-—""’r w<®u
q— 4

Mg/(g—1), thus the last

MM_
¢—1  q— i

and the lemma is proved.

The next lemma will enable us to construct partial sums of F which,
by an application of lemma (3.1), shall give us the desired approximation
to w:

LeMMmA (3.2). There ewists an increasing sequence of radit, {r;}, with
lim 7, =1, and an accompanying sequence of positive integers, {N;},

F—>00
with ﬁmN,- = oo, such that for each pair (r, N} = (r;, N;)

(1) SMy < |ey|t™Y, where My = max |ex|r"™¥;

1gkgN
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(2) If N'e{l,2,..., N} satisfies My = |on/|t"V, then
My< D ledr™;

k#£N’
1<k N

(3) loxh™ < (1)™mIE) joy|™ if & >N,

Proof. Let us choose a strictly increasing sequence of positive num-
bers {o;} such that lim g; = 1. Given a fixed member of this sequence

100
¢ = g; we define P = P; by the relation

(3.4) leplg™ = max |o ¢";
1<k<oo
this maximum clearly exists since ' is analytic in the interior of the
unit circle and, thus, lim |¢;|e"™ = 0. We then choose s =35, <y
Ko

satisfying (s/o)*" = ¢. Inequality (1) with (r, N) replaced by (s, P)
is then easy to show: letting P'e{l,2,...,P} satisfy [cp.[s"P' =

max|cy|s"s = Mp we have
<k<P

s\"? 3 3 .3 o\’
"P = |op|0"P =) =L P > Zlop,| o"P = = |ep.| 8" (")
lepls lep| @ (@) 1 lep| 0"F = 41 Pl 0 4Jcp\ ;

P

3 oy 3
— |eps =—Mp.
>4.GP]8 e

Similarly, inequality (3) follows readily. If % >P, we then have

Ny

8inp o
log] 8™ = |ep| g% (E) ( P) = (3)"¥/"P|oy] o" < (§)™/"P|gp| o"P

(3)”};/‘%13 4
4

it np
3 |ep|8™F.

Now, if part (2) is satisfied when (v, N, N') are replaced by (r, P, P')
we let (r, N) = (s, P). If not, we proceed as follows. Suppose that P =
= P'; then the negation of (2) becomes

Pl
Mp = lop[s"® > D" [og]s™.
B 8
ER- k3 Pv—]
Dividing by s"P and noting that 3 |o,|s™ "P increases to oo as
1
s tends to 0 we see that there exists a unique r, 0 <7 <s, satisfying

Pl

|eplr™ =2 lex| 7™,

(3.5)
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We then let N = P. Note that the fact My = |ex|#™¥ is an immediate
consequence of equality (3.5). Parts (1) and (2) of our lemma are then
obviously satisfied. Since decreasing s does not alter the sense of the
inequality |o|s™ < (3)*#""P%lep|s"P, T > P, we see that (3) is also satis-
fied.

We observe that in either of these two cages (provided thege cases
occur infinitely often) it is easy to see that r =7, — 1 and N = N;— co.
For in both cases we have chosen the value N, = P satisfying equality
(3.4). Since lirglsupicj] =oo and ¢ = gy—1 it iy clear that N;— co.

Now, in the first case
$ max |op| 0" = {loy| "V = |on|"V.
igk<oo

Since the left-hand side of this equality increases to oo as j — oo
(and, thus, ¢ = g; - 1), must the right-hand side tend to co. But this

can only happen if 7 =17; -1 (since )'|g,|r"* is bounded if, say, r<
1

< 1< 1, and thus, 50 is [ey|+"¥). In the second case equality (3.5) holds.
This implies |¢,| < [¢p|#™P~™. If » did not 4end to 1 then the fact that
&~™ F'(z) is analytic implies that |op|#"P~™ ig as small ag we wish for some
large enough values of P. Since ¢, is assumed to be different from 0, this
iy impossible.

Finally, suppose part (2) is not satisfied with our choice of s and P
and that P’ < P. We then let N = P'. For k < N, |¢;|s"* < $Mp = $My;
otherwise the contribution of a term |¢|s"* > $Mp and |cp|s"P > M p
in the sum in (2) would be at least $Mp and (2) would be satisfied, contrary
to hypothesis. Now let 0 < r < s satisfy (r/s)"¥ = }. Thus, if k¥ < N,

r\"t 3 r\" 3 'r)""c
Pl e Yo'} B < = - = - nN [
s = el (o) < 32t 1) = Sewtonn -

3 4 r\"k
=1 lex] g”'"N (E) < lonlr™.

Furthermore, if N <k << P, [o5)t"™ = (§)"/"V|c,| 8™ < (3)"/™N |oy| "N =
= (§)"¥"Ni|oy|+"N; while if & > P, then

3\™/mN
Iokl"m’f = (Z)

3\™inN n ( 3)"1: ( 3)%/"1\7 . g
== ale™| =) <|+ [
(4) lexl @ o =\ P o

/"N np 3 \"&/"N 3\
< (:Z) lep} @"F (‘s') = (‘") lep}s™ < (Z) on|s™
e

4
3\"%/nN 4
= {— — "N,
(3) onig

Studia Mathematica XXII
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In either case we obtain inequality (3). If (2) is still not satisfied we
see .that we now have the previous case. It remaing to be shown that
(if this last case occurs infinitely often) r —1 (%) and N — co. We have
ley?™ = lox| 35"V > |opl 38" = lop|5;0"F = f—ﬁlggi lexlo™. Since the lIat-

ter tends to co so must |ey]#"Y and this clearly implies N -~ co and
that My — oco. If » does not tend to 1 inequality (2) together with the
absolute convergence of F(2) in a digc smaller than the unit dise wounld
contradiet this last faect: My —> oco. N

One simple consequence of part (3) of lemma (3.2) is the following
inequality:

0
(3.6) D lelr™ << & foy(r™N.

N+1

For

oo o o0

s 4 LT 3\minN 4 ny \ 3\ak-N
2, 17" < o lowir™ T <3 lowlr™ T

dd B L 4

N+1 k=N41 ' k=N41

00 . 0o
4 " 3\ 4 3\
== N il PR e =
(5) e 7_151(4) <y lowl Z(L)

4 a3 \* 1 4 7 3\? 1,
= g fGNIT N (-4—) ;—W < ("3“) !ONM" "N (71—) 4 <e ICN|’V N,
4

Lemya (3.3). Bwoept for a finite number of the pairs (r, N) = (75, N})
of lemma (3.2) we have

(3.7, P (r6™) — 0] < 26 o |r™

for some 0 = 6;¢[0, 2x).
. Proof. Weshallshow that (3.7) holds as long as My = My 2w /(L&)
Since r =7 -1, it follows that My = M ;> 005 we thus exclude at
. 0y Ay i
most finitely many pairs (s, V). Let P(&) = Y™™, Then, clear-
A 1

. () If case (2) is still not satisfied we must, as we have shown before, choose
§ still smaller value of r, for which equality (3.5) is satistied (with P replaced by ¥).
‘We have shown that the fact that even these smaller »'s tend to 1 follows onece we
show N - oco.
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ly, P satisfies the hypotheses of lemma (3.1). Thus, there exists 6 ==
0;€[0, 2r) such that

N
P(0)—w| =| > 0" 6™ —w| < e My < eloy|r™.
1

Combining this inequality with inequality (3.6) we obtain our lemma.

By exactly the same reasoning we used in the previous section e
now see that an application of lemma (2.3), the last lemma and the fol-
lowing estimates on the derivative of F give us our theorem:

LEMMA. (3.4). Hacept for a finite number of the pairs (r, N) of lemma
(8.2) we have

on |1 A 1
(@) |F'(2)] Q—I% == when |zl <r+e, whes o= oy’
. lox|?™™™ B
(b F ()] = == when |{|=r.
) ()] 350 . |

Proof. It follows from our argument which established lemma (3.2)
that #"¥ %; this inequality, in turn, implies that »+1/16ny = r4+e << 1.
Thus, F'(2z) is well defined when [2| < 7+ ¢. Using our assumption on the
size of ¢, lemma (3.2) and r near enough 1 (say, cloge enough for 1/16r =
(e/r)ny < —11;; g0 that

N ny nN 8
(’LLQ) =(1+ ﬂ) <1428 ny <2,
r 7 r 7

we have, for |2| =g,

7 + Q)‘"‘k

g 8 ’ 8 c | M 8 S (%
R e L Jie

N
8 r "N n,
:\f‘:‘l'TI(}NI"'nNﬂN( -:'Q) 2._’.‘..{.
7 .
1

3 NNy

8 4 o1 (3 \ N g o\" :
S a kd i3 L) = pio.
g Lol %N2(4) (1+¢) +@

.
N1 N
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Now

8:4-8¢ 1
- N |
1),0.1\7“‘ (7 3. 7(

1’16
had ngn 7y (/)
121 L B
4 ny 7
o [ 8 \"EinN 8 \ iy -
Z (E) [y (',7) ] oo™y
b 6 \"%/mN [ 7\ %O/nN) ”
2l G e
hd T\ n,
ST i < 2
7 8o
N+1

Thus P+Q < loy[+"¥/4p and part (a) is established.
We now prove (b). Let = 7¢®, then

8-4
e 16-7-3

N—-1

8o

| (&) = 2 e, 1k g0 + oy ,’,nNemNe% ZM’ . e gitic?

N+1

By lemma (3.2), part (3), and the estimates on q,

o (8 \ N g,
4 Ny

©

! e
n p

Zy k‘ckl'

N1

- ]GNI"
N+1

4 had I 3 Q\ gl
< 3 o] 7" N myy Z (-4_)4&,(7%/"1\7) (_d_) K
£ 3 4

4 k—N
SEIGNWMNW'N i)%q £ < 1

= (4 16
Furthermore,

y AL

N-1

MManNQS-—-<
N

1

“Nlow| -~

).._[ ‘V“",N <_IM

)
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Sinee nylox!r™ = (1/16¢)|ey]+™, it follows that
CE (O] > oyl — =g o0l L ol L

160 160 4 16 4 32

and part (b) certainly holds for r close enough to one.
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