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ON A CERTAIN CLASS OF LINEAR DIFFERENTIAL EQUATIONS

1. Linear differential equations of class E. We shall define a cer-
tain elass of linear differential equations, which we shall denote by E.
A linear equation will be included in class F if its coefficients satisfy iden-
tically a certain algebraic-differential relation. We shall give two groups
of such conditions, corresponding to two kinds of Riccati equations of the
n-th order which can be assigned to linear equations (see [3] and [4]).
As we shall see, equations of class F have a certain common property:
the order of each of then may be effectively lowered by one. Thus, in
particular, every second order equation of class F can always be solved
by reduction to a first order equation. Therefore in the second part of the
present paper we shall discuss in detail equations of the second order;
that will lead to the solution of a certain number of equations whose so-
lutions have so far been unknown. This will, at the same time, serve as
an illustration of the application of equations E.

1.1. Suppose we are given a linear equation of the (n-+1)-st order
n+1

(1-1) L,H_] [y] = “n+l,oy+ 2 a'n+l,iy(i) = bn+1-
1=1

We shall assume that the coefficients a,,.:; (¢ =0,1,...,2) belong to
class ¢ in the interval (@, b), @y 10y = 1, and that b, ., belongs to class
C(a, b). As we know (see [3]); equation (1.1) corresponds to the Riceati
equation R, of the n-th order of the first kind:

12)  Ru[v.] =B [0nyin—val+ D, (— 1% (841041 =0,
i=1

.Where the operator lf,‘ (k is either zero or a positive integer) is defined by
Inductive formulas

(1.3) lg[f] =f,
d :
LIl = 6 fl+ei7 1),

where ¢(x) is a fixed funection, differentiable a suitable number of times
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in the interval under consideration, and f(z) is an arbitrary suitably dif-
ferentiable function.

DEFINITION I. We shall say that the linear differential equation be-
longs to class E;, if there exists a number 9, such that the coefficients of
this equation satisfy identically with respect to the variable x one of the
relations

(1.4) Ru[038,11:1 =0 (1 =0,1,...,n).

We can easily show that the Euler equation satisfies relation (1.4)
(for ¢ = n); the same is true for equations with constant coefficients.
In the case of these two simplest types of equations condition (1.4) re-
duces to the algebraic (characteristic) equation. However, class E, con-
tains many more equations of a more general type.

We know (theorem 4 in [3], p. 18) that the knowledge of one partic-
ular solution of equation R, which corresponds to a given linear equation
allows to lower by one the order of the linear equation. Hence we have
the following

ConNcLUSION 1. If an equation belongs to class E,, then ils order can
be effectively lowered by one.

In fact, if the equation in question belongs to class E,, i.e. if it sat-
isfies one of the relations (1.4), then one of the particular solutions of
equation R, (1.2) is

(1.5) Up = Dnlipyr,iy

and the knowledge of a particular solution v, suffices for lowering the
order of the linear equation.

If the new equation belongs to class FE,, it is possible to lower the
order further. Such a property holds for Euler equations.

To the equation of the second order

(1.6) L[yl = y" 4+ any + gy = b,
corresponds the equation R, of the first order, [3]:
(1.7) v = —v3 -+ 3101+ Gg) — Gg.

Substituting v, = a5, Or ¥; = ;445 in the last equation, we find the
following two conditions (1.4) for the linear equation of the second order:

~ ~ ’ - ~

(1.8) 3,01+ (@31 — 51)01 — @21+ Gag =0 (v =006y),
or

(1.9) @3007 + (Bgp — oy Ggg)Vy — Gy + G =0 (v = D,8y).

In these formulas, as well as in the sequel, symbols with ~ denote numbers.
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1.2. Let us assume that the coefficients a, ; of equation (1.1) belong
to class C(a,b). Under this assumption, to equation (1.1) corresponds
the n-th order Riccati equation of the second kind (see [4])

n+1

(1.10) B[] = Guprot D Onpn i I —u] =0,
i=1

where I” is a differential operator of the k-th order defined by operator
¥ as follows:

I*Ifl = if.
DerINITION I1. Linear equation (1.1) belongs to class F, if there exists

a number #%, such that the coefficients of this equation satisfy identically
with respect to « one of the following relations:

(1.11) Rn[&na'n-}-l,i] =0 (t1=0,1,...,n).

The coefficient appearing in the above definition is additionally assumed
to belong to class C"(a, b).

As before, we can easily show, using the corresponding theorems
from the theory of R equations (see [4]), that equations of class B, with
coefficients satisfying (1.11) have the property formulated in Conclusion 1.

The sum of classes F; and E, will be called class E, or the class of
elementary decomposable equations.

For equations of the second order (» = 1) from (1.11) we obtain
the following two conditions:

(1.12) a7 — (a3 + G31)h + G =0 () = Uy 1y,)
or
(1.13) A2oUs — (g Bap - Gp) Uy -+ Bag = 0 (u = uyay).

Criteria (1.4) and (1.11) have a form convenient for applications, since
it ig easy to determine whether or not a given equation belongs to class E
by substituting its coefficients in the corresponding condition.

There are many differential equations which we are not able to
Solve. One can say that only those equations have been solved whose
coefficients are selected in a certain special way. Having the notion of
elementary decomposability at our disposal, we can say that class F
contains equations whose coefficients are selected according to one of
the conditions (1.4) or (1.11).

2. An approximate method of solving differential equations based
upon the choice of one coefficient.

' THEOREM. To every differential equation (outside class E) one can
assign an E equation which differs from it only in one coefficient.



62 "T. Iwinski

In fact, in order to obtain from equation (1.1), which does not, by
assumption, belong to class E, an equation of class £ we must, as fol-
lows from (1.11), take for the coefficient a,.,; one of following functions:
(2'1) an+l,7' = - {In[_&’nan+l,i]+ a’n-{-l.nln_1 [—&na'n-(-l,i]‘i"

+...+ a'n+1,j+11j [ —a’nan-x-l,i] + a’n-{-l,y'—le—z [_&nanﬂ,i] +

+- .. + a’n+l,0}: Ij—l [ _&nan-{-l,i]
(1=0,1,2,...,i—1,i4+1, ..., n; I"'[f] = 1).

One can also change the coefficient a,_,; appearing in %, = u,a, s
but such a change requires the solution of a non-linear differential
‘equation.

It follows from (2.1) that the simplest way is to change the last
coefficient, a,,,,.

We ecan formulate the corresponding theorem using the deeompos-
ability condition (1.4); however, in that ease one has to assume a suitable
multiple differentiability of the corresponding coefficients in the interval
(e, b).

Let us notice that the choice of one coefficient of a linear equation
from the condition of decomposability is not unique. This coefficient
depends upon the parameter #,, and possibly upon the constants of
integration. The fact that the coefficient which we choose depends upon
parameters may be used for approximate solution of certain problems,
especially in physics or technology. In fact, in such cases the coefficients
of equations usually have a certain physical interpretation, gpd often
are determined experimentally. Using that fact we may sometimes suc-
ceed in selecting the values of the parameters in the coefficient chosen
from (1.4) or (1.11) in such a way, that the equation obtained provides
us with a good description of the phenomenon under investigation.

ExAMPLE. As we know, the equation of & beam with a varying seec-
tion, under the axially compressing force P and arbitrary transverse
load ¢(x) may be reduced to the system of two equations

M+ P M
Y =4q,
(2.2) B
Byll — M’

where M (x) denotes the bending moment, B(x) = EJ(x) denotes the
varying bending stiffness, q(x) is the vertical weight per unit .of length,
and y(z) is the deflection of the beam. ‘

System (2.2) or, equivalently, the corresponding equation of the
fourth order is usually solved in an approximate way, for instance by
expanding the coefficients into infinite power series.
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Let us apply the method of choice of one coefficient in equation
(2.2),. In the case of this equation (a,; = 0) we change the coefficient
ay,, = P|B.

Applying the above theorem we select the coefficient a,, for a,,
in such a way that equation (2.2), will belong to the class E; we shall
use the decomposability condition (1.13). In this case, if a,, = 0, con-
dition (1.13) tekes the form

2 ~2 ’ -~ _ _ =
AUy — Goglh;+ Agg = 0 (uy = %, ay).

This is a Ricecati equation with constant coefficients and its general so-
lution is of the form

ey
Qoo — AT
Uy (¢ —eriv)
Hence
Pt (o—e"™
(2.3) B = Pui(o—e™)

6n:/7‘21

Thus, our problem ean be solved exactly by giving the solution in the
so-called closed form if the stiffness of the beam can be determined by
(2.3), or in an approximate way if this function gives the stiffness in an
approximate way. The basic form of expression (2.3) has, for certain
constructions, some practical advantages, in particular when we consider
the possibility of modulation, owing to the appearance of two parameters
4y and é.

Equation (2.2) after substituting (2.3) belongs to class E (u, = %, ay,),
and its solution can be obtained from formulas (3.26) derived below (see
Page 70):

e

1
+g]+sm7

- ~ - [6— ¢
M=A1(c——e’”’“1)+A2[ = In

6 — e
where
Sm = (6 — ") [ (6— ™)~ [ q(6— &) da?.

After using (2.2), we find the general solution

10 x iy
(2.4) I _1_{ Y e g [0 I
Yy =A,+ A2+ B A1+ A, =3 n PR
1 . ~
N +chn C—@xlul ]} +S’
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where 8 is the so-called weight function, and

(2.5) S = _&;‘__P ff ezl‘l:l f(6_02/;1)—2fq(é’_ex/‘izl)dw4'

The weight function for our problem has been written only for a continuous
weight ¢. In the case of forces concentrated at one point and continuously
distributed moments we can obtain the function § by using the well-known
procedure (passage to the limit) for function gq.

Having the general solution (2.4) we can solve every boundary problem
for a certain class of beams, and the result can be thoroughly discussed
before the technical realization.

3. The second order linear differential equation of class E.
Now we shall systematically investigate the second order equations of
clags E. This discussion will be particularly useful in view of the fact
that, as follows from the general properties of equations E, every second
order E equation can be solved.

It follows from §1 that an equation of the second order belongs to
class F if its coefficients a,, and a,, satisfy one of the relations (1.8),
(1.9), (1.11) or (1.13). It is casy to see that by putting %, = 1—9, we
reduce (1.12) to (1.8); thus it suffices to consider only three relations:
(1.8), (1.9) and (1.13). They are either algebraic equations, linear differ-
ential equations or equations of Riccati with respect to the coefficients
@9 OT @y, . In the first two cases we easily express one coefficient by the
other, in the last case this is possible only after solving the Riccati equa-
tion. The determination of a,, by a,, (or conversely) leads to the determi-
nation of a certain second order equation of class E.

3.1. Let us first consider an equation from class E whose coefficients
satisfy relation (1.8). Thus, suppose that we are given an equation (1.6).
Under the assumptions formulated earlier, the Riccati equation of the
first order (1.7) corresponds to the equation (1.6). The following conclusion
holds:

I. A linear second order equation of class E whose coefficients satisfy
relation (1.8) has the general solution y = .y, +C,y,+ Y, where

Y, = exp [(”1"‘ 1)A,],

(31) ¥, = exp[(3,—1) 4] [exp[(1—27,) Ay]da,

Y, = exp[(5,—1)An] [ exp[(1—25,)4,] [ byexp[F,4,]d22.

The capital letters in these formulas (and in the further parts of the paper)
will denote indefinite integrals.
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Proof. In fact, let v, be a particular solution of equation (1.7), defined
in the interval (a, b). The general solution of a linear equation (given
in [3], pp. 20 and 21) after using the relation

(3.2) Gyp = A — 0y
takes the form

¥, = exp(V,—A4,),

(3.3)  y, = exp(V,—A4y,) [exp(4u—2V,)da,

Y, = exp(Vy—4y) [ exp(dn—2V1) [ byexp(Vy)dat.

Thus, the general solution of a seecond order linear equation satisfying
the conditions formulated above is determined by one particular solution
v, of the corresponding Riccati equation.

If equation (1.6) belongs to class E and its coefficients satisfy (1.8),
then the corresponding Riccati equation (1.7) has a particular solution
V) = 0,8y.

In this particular case funetions (3.3) coineide with (3.1) which was
to be shown.

3.2, Determining the funetion a,, from formula (1.8) we come to
the following conclusion:
I1. The linear equation of the second order

(3.4) y"—*—azl?/,'*'(1_61)(610'51"_“2,1)?/ = b27

belongs to class E and its general solution is (3.1) provided that v, # 1,
0y # 0 and ay, belongs to class C'(a, b).

In fact, we can apply formulas (3.1) since the coefficient a,, has
been chosen according te (1.8).

Despite its special form, equation (3.4) contains one arbitrary func-
tion and comprises many particular cases important for applications.
This equation is known; it was given by H. Gortler [1], with no indica-
tion, however, of the method of solution.

3.3. Let us treat the coefficient a,, in (1.8) as an unknown funection.
It satisfies the Riceati equation
Q2

(3.5) ay = —V 85— = 1 (v #1).

L —

Thus we have the conelusion:
II1. A linear equation of the second order belongs to class E if its coeffi-

Zastosowania Matematyki, VII, 1 5
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cient a,, 18 an arbitrary function from C(a,b), and a, 8 an arbitrary
solution of the Riccati equation (3.5).

The general solution of such an equation is function (3.1), where in place
of ay we put the corresponding solution of equation (3.5).

Thus, one can construet equations of class E wusing functions a,,
for which equation (3.5) is solved, or for which at least one particular
solution is known.

It is convenient to formulate the above result in another way as
follows:

IV. The linear equation of the second order
(3.6) y"+&f?y’+ G20y = b,

belongs to class E if ayy 18 an arbitrary function from C(a, b) and f satisfies
the equation

(3.7) fr+ %f —0 (B0,

and if the numbers a and B satisfy the relation a+p = 1. The solution of
such a family of equations is

v =1,
(3.8) vo = f [ Vaw,
Y, ___fﬁ ff_(i+l)fbafdw2-
Proof. As we know [4], the solution of the Riccati equation (3.5)

can be determined by a solution of a certain linear equation; namely,
if we put @, = —2/,, then we get from (3.5)

(3.9) 7 =2t

—— Q305
7n—1
and to equation (3.9) corresponds in turn the linear equation (3.7) where
B = (9,—1)/?,. Thus, if the function f = C,f,+C.f, is the general solu-
tion of (3.7), then, [4],
af’
f ’
where a = 1/7,. Hence the corresponding equation of class F satisfying
(1.8) takes the form (3.6), provided that f is the solution of the equation E
satisfying condition (3.7).

It remains to put

Az =

A, = &lnlf ]
in formulas (3.1). This leads to (3.8) and completes the proof.
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The result presented in Conclusion IV does not comprise the case
B = 1. The solution for this particular case has been given by J. Zbornik,
[7]. Thus the results of J. Zbornik and results IV complement each other.
It should be stressed here that the solution of J. Zbornik for g =1 is
deeper and covers equations whose coefficients are defined in a certain
special way and depend upon two arbitrary functions. Thus, we should
expect the possibility of generalization of both results.

Using the known solutions of equations (3.7) one may construct
a table of solutions of equations of form (3.6). Certain solutions are pre-
sented in Section 4.

3.4. In a similar way we define two families of equations E from
condition (1.9).

Condition (1.9) is 2 differential equation with respect to both a,,
and a,,. .

It is easier to solve it treating a,, as an unknown (when a,, is given),
since in this ease we have a linear equation

’ ~ ~9 9 -~y
(3.10) O3 V3 G20 G2y = V1829 + V1 Ggo -+ Bag.
The general solution of this equation is
@y = Ee_”l“zl’—}-e"’l"‘?"(ﬁ f a5y 6" 120d2 40, f 306 1 200z f a,ue”l“'-"’dw).

We easily see that the integrals appearing in the above formula may be
computed (by integrating by parts), and we get

~ ” - 1 ~
(3.11) azl = cexp(—”lAzo)—*fvlazo—*";" (’01 # O).

1

The solution of the equation so defined can be found from (3.1) by putting
vy, = 0,G5,. Hence
V. The linear equation

" T g | 1, ,
(3.12) y”+(ce 1920 4+ 9y @9+ jb-—)?l +axny = b,
1

belongs to class E and its solution is

~ ~ X
Y, = exp(—c f&“l‘dz"dw— 7)’
1

v2 =, [explé [ e ido+ % ~ b 4u0) do,

Y, = eXp(—Efe";l”zodw— %)fexp(cffe“ﬁ"“dm—}— % —%,Am)sze;l"zodwz.
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The particular case of this equation, ¢ = 0, leads to the equation
of C. Olsson (see [6], p. 554, formula (2.77)) if we substitute a,,= ¢f(x)+d.

If we treat a,, a8 an unknown in condition (1.9), then equation (1.6)
may belongs to class E, only if a,, satisfies the Riccati equation

!

, . 1 a. -
(3.14) @9 = —"71“§o+(azl— 5—) B+ _’52_1_ (v, #0).

1 1

This equation can be solved. The substitution

(3.15 -
. ) Qg9 = ,51
leads to the equation
1 ’
= zz+(a’21— E)z— 215
to which, in the theory of R equations, corresponds the linear equation [4]:

(3.16) f:'——(aﬂ—' —;_)f:—a’élf. =0.

1
We find successively

1’ d 1 4
Jfo— a(azlf‘)‘{" 7]" =0,

(317) f. = fiexp(Am— %) +5exp(A2,— ivii)fexp (% —Azl)dw,

and, using (3.15) and (3.17), we find for the function a,,, after suitable
transformations, the formula a,, = f./?,f..
Thus we come to the conclusion that the equation from class E which
satisfies relation (1.9) has the form
1 f
(3.18) Y't+any +=- f—?/ = b,
v ft.
where f. is given by (3.17),.
Let us solve this equation. In order to do this we have to substitute

v, =f'01d:z; = '51fazodw = In|f.],
into formulas (3.1). That gives
Y, = foexp(—A4,),
(3.19) Ya = foexp(—A4y) [ f exp(4s)da,

Y. = f.exp(—Ay) [ f-%exp(4u) [ baf.da?.



On a certain class of linear differential equations 69

Let us reduce equation (3.18) to a simpler form. Putting

x
(3.20) exp(—: —Azl) = f
v
we get
1 il f x
a21—~5l = —7‘7 eXp(51 “‘AZI) dz —f7
(3.21)

fo=f"Ye+f), exp(dy) =exp ('bi) .

After substituting (3.21) in equation (3.18) and in its solutions (3.19)
we obtain the following result:
VI. The second order linear equation

1 ' 1 ' i
s el Gl

where f belongs to class C%(a, b), belongs to class E, and ils solution is

= e_xl;l(a‘l‘f)’
(3.23) Y = e+ ) [ P @+ e,
Y, = e @ f) [ (G407 [ uf THE+fdar.

We assume here that the denominators in the above formulas do not
vanish in the interval (a, b).

3.5. Suppose we are given the linear equation (1.6) of the second
order. As we know, [4], to equation (1.6) corresponds the equation R,

(3.24) u, = uz_ a21u+ arzo,

and, if u, is a particular solution of this equation, then the general solution
of the linear equation (1.6) is

y1 = exp(—Uy),
(3.25) Yy, = exp(—U,) feXp(Ul—Am)dw:

Y, = exp(—U,) [ exp(Uy—410) [ bsexp(4,)da?.

Since @,y = a5, — u;, we obtain the following result:

VII. One particular solution of equation (1.6) of the second kind R,
determines the gemeral solution of the corresponding linear non-homogeneous
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equation (1.6), and this solution has the form
¥ = exp(—Uy,
(3.26) Y = exp(—U,)fexp(Z U,—A4y)de,
Y, = exp(—U,) [ exp(2Us—4u) [ bexp (4 —Uy)dat.

Let us consider equations E satisfying the last condition (1.13).
We assume first that the function a,, is given; then, from (1.13)
we find for a,;:

. () 20 1
(3.27) Qg = UyQgq— —— + =+
Az Uy

Since the funection u, = #,a,, is a particular solution of the Riccati
equation (3.24), we find from (3.26) a solution of the linear equation whose
one coefficient is an arbitrary function a,,, and the other — the func-
tion (3.27). Thus ‘

VIIL. The linear equation of the second order

’

e - . O 1 .
(3.28) Y+ U0y —— + - Y +axny = by,
1

20
where a,, belongs to the class C'(a, b), 4, # 0 and ayy # 0, belongs to class E
and its general solution is

Y1 = exp( — 3 A g),

.~ ~ xr
(3.29) y, = eXP(.“ulAzo)fazoeXP(ulAzo— ?-;_) dz,
1

~ ~ Z T
Y, = exp(—u,4,) f (30 €XP ( Uy A gg— &—) f baaz' €XP (7}_) da®.
1 1

3.6. Finally, we shall select the coefficient a,, from condition (1.13).
The function a,, should satisfy the Ricecati equation

, 1
(3.30) Ay = U “go—(azl— 7-—) @z0-
(]
Substitution a,, = z/%, leads to the equation
1
(3.31) 2 = 2t— (a21— -—) z,
U,

which can be solved. Indeed, to equation (3.31) corresponds the linear
equation

144 1 ' o
o+ (a’21_;:)f‘ =0,
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whose solution is
. x -
fo= —c,fexp (&— —Am) dr4-c,.
1
It follows that the general solution of the equation (3.30) is
. x
1 ¢,exp = —A4,
1

Go =~ . -
clfexp = —Agy ) dr+e,

1

Let us denote

We have in this notation

- 1 'f”
Q3 = Wy e
Thus equation E whose coefficients satisfy (1.13) has the following form:
1 fll 1 51 f:
= — '— = =——=Y = b,.
?/ + ( ul .f, ) y y 2
The solution of this equation can be found also from formulas (3.26).
Since the particular solution u, = %,a,, has, in the case under considera-
tion, the form

af
efte,’

u1=—

we have
U, = —Inle,f+¢,.
We have also
x
A4y == —In If |
%,
and we reach the following result:
IX. The linear equation of the second order

1 fu 1 élf,
(3.32 ~+<_, - ) ey =
) Y w F Y o of czy 2

belongs to class E if f belongs to class C*(a, b). Its general solution is
Y1 = 6.f+¢s,
., - x\ ..
(3.33) Yo = (clf+02)fexp (— ﬁ_) (Cuf +62) Yder,
1

Y, = (61f+é2) fexp (“ Zw_) (61f+62)_2szeXp ('&i) f'_1(61f+52)d“72
1 1
(% # 0, f' +# 0, 6,f+6, # 0).
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4. Finally we shall list a certain number of equations of class F and
their solutions, using theorem IV.
Let us denote the general solution (3.8) of equation (3.6) by

(41) gy =AGN = &fftaf [ Vdat g [ [bofdar.

In equations of type (3.6) we have two numerical parameters. We assume
that they satisfy the relation

(4.2) a+pf =1.
4.1. The general solution of the equation
f ”+12f =90,

where 1 is a real constant, is the function
f = é;sindz+¢é,c08 .
It follows from theorem IV that the equation

- 0,008 —Cy8in Aw

4.3 Yok oy + A = b
(4.3) y'ta clsin/’lm—i—czcoslmy +hhy 2
has the following solution:

(4.4) y = A(B,e,8inix+¢,cosix).

The particular cases of this equation lead to the following two equations:
if ¢, =0,

(4.5) y'—y'hatgin+pily = b,,
whose solution is

(4.6) y = A(B,6,c08ix);

if ¢, = 0,

(4.7) y'' + y'aletg lo+BAty = by,
with the solution

(4.8) y = A(B,¢;sinix).

Equations (4.5) and (4.7) are discussed in book [5], p. 552. The solution
of (4.5) has been given for the particular case 1 =1, a = —2, § = 3.
J. Halm, [2], has given the solution of (4.5) for 1 = 1, ¢ = 2 and arbitrary j3,
hence solution (4.6) coincides with Halm’s solution at one point.

For equation (4.7) Goldszejzer, [5], p. 552, has given solutions for
values of parameters which do not coincide with (4.2).

4.2. The equation
fl/_igf/ =0
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(4 is an arbitrary real number) has the solution
f = é;shix+¢,chis.

It follows that the equation
~x 6,chiz+¢,8hiw

4.9 & 2y —fity = b
(4.9) Y tal ¢,8hir+¢,chiz Y —ply =b,
has the solution

(4.10) y = A(B, ¢,shizc,chin).

If ¢, =0, we get the equation

(4.11) ¥ +y'adthie—plzy = b,
with the solution

(4.12) y = A(B, chix).

If ¢, = 0, we have the equation

{(4.13) 9" +y'aichiz—pity = b,
with the solution

(4.14) y = A(B, shix).

Also in this case J. Halm has given a solution of equation (4.11)
(see [6], p. 550) for 1 =1, a = 2 and arbitrary 8. _
Solution (4.12) eoincides with Halm’s solution at one point g = 1.

4.3. The equation
"= (@*+3)f=0
has the solution (see [5], p. 528, formula (2.11a)):

f= 5lxexp(§w2)+ézmexp(§m2)fw‘zexp (@ %)dx.

The simplest of the equations which can be solved (with coefficients
formed from elementary funetions) by the method based upon theorem IV)
is the equation

- 1 ~
(4.15) y"+“GH“;)V—ﬂWL+My==m-
The solution of (4.15) is

y = A[B, wexp(42?)].
4.4. The equation

F'— (@t +f = 0
has the solution (see [5], p. 529, formula (2.13)):

f= élexp(éﬁwz)—}—ézexp(%dwz)fexp(—da;z)dw.
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Thus, the second order equation formed from the first particular solution
exp(}ax?) is

(4.16) y" +aday’ —B(d%2+a)y = b,
with the solution
(4.17) y = A[B, exp(}da?)].

Equation (2.47) in [5], p. 547 (for @ = 2, a = 2, B = —1) is a particular
case of this equation.
Equation (2.48) given in [5], p. 547,

(4.18) Y’ —dxy’ + (3w +2n—1)y = b,,

{(where n is an integer) can, in two cases, be solved directly, since it can
be reduced to equation (4.16). In the first case (» = 0) this equation
takes the form

(4.19) ¥ — 4wy’ + (30— 1)y = b,.
In faet, (4.16) reduces to (4.19) if @ = —3, a=3, f= —3, and its
solution is
(4.20) y = A[—;, exp(— ).
If n = —1, then (4.18) reduces to
(4.21) Y — 4oy’ + (32— 3)y = b,.
This is a particular case of (4.16) (for & = —1, a = 4, § = —3) and its
solution is
(4.22) y = A[—3, exp(—§a?)].
Equation (2.50) given in [6] on p. 547
(4.23) Y —day’ + (402 —2)y = b,
is also a particular case of equation (4.16) (4 = —2, ¢ =2, f = —1)
and its solution is
(4.24) y = A[—1, exp(—a?)].

IR

4.5. In book [5] on p. 539, formula (2.29) gives a particular solution
fi = exp(H)
of the equation ‘
(4.25) f'—(h*+h)f = 0.
It is easy to verify that the general solution of (4.25) is the function

f = ¢,exp(H)+¢, K exp(H),
where K = fexp(—2H)dz.
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It follows from theorem IV that the equation

’ ~ 5lh'_i_é’:,2(h"K_'W'K’) ,_"‘ 2 B .
(4.26) Y +a— Gk y' —B(h*+h')y = b,

has the general solution
(4.27) y = A[B, é,exp(H)+¢.Kexp(H)].

If ¢, = 0, then we have

- K’ =
(4.28) y"+a(h+ f) Yy —B(h*+h)y = b,
with the solution
(4.29) y = A(B, Kexp(H)).
If ¢, = 0, we have
(4.30) Y’ +ahy’ —B(h*+ 1)y = b,
with the solution
(4.31) y = A[B, exp(H)].
4.6, It follows also from theorem IV that the equation
. fl - fll
(4.32 y'tay —B—y=>
has the solution
(4.33) y=A(B,f).
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T. IWINSKI (Warszawa)

O PEWNEJ KLASIE LINIOWYCH ROWNAN ROZNICZKOWYCH

STRESZCZENIE

Opierajac sie na definieji tzw. uogélnionych réwnan Riceatiego n-tego rzedu
(por. prace [3]1i [4] cytowane w artykule) autor okresla pewna klase rézniczkowych
réwnan liniowych (oznaczong symbolem E). Réwnanie liniowe nalezy do klasy E,
jedli istnieje taka liczba, dla ktérej wspdlezynniki réwnania spelniaja tozsamosciowo
ze wigledu na zmienng x jeden ze zwigzkéw (1.4) lub (1.11). Szezegdélnym przypadkiem
klasy E s3 réwnania liniowe o wspélezynnikach stalych oraz réwnanie Eulera (zwykle
i uogélnione). Dla tych ostatnich réwnah kryteria (1.4) i (1.11), wystepujace w de-
finicji r6wnah E, sprowadzaja sie do réwnah charakterystycznych odpowiednio dla
réwnain liniowych o wspélezynnikach stalych lub dila réwnah liniowych Eulera.

Réwnania E posiadaja nastepujaca wlasnosé: rzad kazdego réwnania F mozna
efektywnie obnizyé o jednosé. Wynika stad, ze wszystkie réwnania E rzedu drugiego
mozna rozwigzad.

Z tego wzgledu, w drugiej czesci artykulu autor zajmuje sie réwnaniami F rzedu
drugiego, podajac pewna liczbe rozwigzah réwnan dotychezas nie rozwiazanych lub
rozwiazanych tylko w szczegbélnych przypadkach.

T. ABHHbCKHU (Bapmapa)

O HEKOTOPOM KJACCE JIHHEHHBIX JJUOOPEPEHIIHAJBHBIX
VPABHEHHUN

PE3IOME

Ucxoas us ompeiexenusa Tax Has. oGo6umeHHHX ypaBHewmil Puxaru n-ro Imo-
pagka (ep. [3] u [4]), aBTop ompesmender HeKOTOPHI Kuace AuPPepeHIUATEHEIX
JHHEeHHHX YpaBHeHull (o6o3HaueHHHH cuMBoaoM E). JIuHelimme ypasHeHue mpu-
HafJIeMuT K Kiaccy E, ecnu CymiecTBYeT TaKoe YMEJO, s KOTOPOro KoaddunueHTsi
YPaBHeHUA TOMMIECTBEHHO BHIOJHAKT IO OTHOINEHMI0O K HePEMEHHO# z OgHY M3 3a-
Bucumocredt (1.4) uaum (1.11). OcobuiMm cayvaeMm xnacca E aBjidworcA JuHelHHEe ypas-
HEHNs ¢ MOCTOAHHHIMHU Koapduuuentramm u ypapHenue itmepa (obnikHOBeHHOE ¥ 006-
ofmenyoe). Jlas 3TMX NOCHERHUX YPABHEHHN BHICTYHAIOL(MEe B ONpEAe]eHMH Ypas-
HeHn#t E kpurepuu (1.4) um (1.11) CBOZATCH K XapPAaKTePUCTHYECKUM YPaBHEHMAM
COOTBETCTBEHHO [JIA JMHEHHHX YDPaBHEHMI ¢ NOCTOAHHHIMM Kod(duiuentamm nIH
AAd AuHEHHHX ypaBHeHWiH Jiiiepa.

Vpaprenud E 061a7a0T CAETYIOWMM CBONHCTBOM: NOPAJOK KamMAOro ypas-
HeHuA E momuo sddextunno cumsuts Ha eguHnuy. OTcCiofa cieayer, 4ro BCe ypas-
Henua E Broporo nopmpka pemuMEL.

B enssu ¢ arum Bo BTOpoO# YacTH €TaTRM aBTOP 3aHMMaeTcH ypasHemusamu E
BTOPOre JIOPAZKA a JaeT HEKOTOPOEe KONWYECTBO peINeHUH YpaBHeHMIH, KOTOpPHie He
OLLIM [0 CMX TOP DellieHsl MM OB pelieHb B YACTHHIX CHydasX.
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