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1. Let f(x) be a polynomial with integral coefficients. It is well known
that if f(2) is & kth power for every positive integer , then f(z) = (g (m))k
identically, where g(x) has integral coefficients. For proofs and referen-
ces, see Polya and Szegd [8], Section VIII, Problems 114 and 190; also
Fried and Suranyi [2].

In this connection, we shall prove the following geuneral theorem:

THEOREM 1. Let f(x, y) be a polynomial with integral coefficients. Sup-
pose that every arithinetical progression contains some integer x such that the
equation f(x,y) = 0 has an dntegral solution dn y. Then there exists
a polynomial g(®) with rational coefficients such that

(1) .'f(m,’.f/(fv)) =0

identically.

COROLLARY. Let k > 1 be an inleger and let f(x) be a polynomial with
integral coefficients. Suppose that every arithmetioal progression contains
some integer @ such that f(w) is a k-th power. Then f(z) = (g(@))* identically,
where g(x) is a polynomial with integral coefficients.

Professor LeVeque raised the question (in conversation) whether,
if f(z) is representable as a sum of two squares for every positive inte-
ger @, or for every sufficiently large integer », then f(z) is identically a sum
of two sguares. We shall prove that this is true, and we shall deduce it
from the following general theorem.

TuroreM 2. Let IT be any normal algebraic numnber field of degree n,
with integral basis w, Wy ..., 0y, end let

Nty g ooy W) = DOV (Ug 0+ Up s« o A 2%, 0)
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denote the norm-form corresponding to K. Let f(z) he pobyrnonial with
rational coefficients, and suppose that every arithinetical PrOYression. con-
tains an integer @ such that

F(®@) = Ny, gy .y ty)

for some rational nwmbers u,, tyy ooy Uy Suppose further that either I
s eyclic or the wmultiplicity of every zero of f(w) is relatively prime o .
Then

f(@) = N(u(o), wa (), ..., w,(w))
wdentically, where w,(x), Us(@)y oy () ave polynomials wwith rationaol
coefficients.
‘We observe that the hypotheses on K aze always satistied if &7 g nor-
mal and of prime degree .
The two alternatives in the hypothesis —one relating to X and the
other to f(v)—are appropriate conditions to impose, in the sense that

if both are violated, the conclusion may not hold. This is shown by the
example (see §6)

f@) =", K = Q (6708,

where ¢ denotes the rational number field.

The property of f(z) postulated in the theorem implies the solubility
of the congruence ‘

J(@) == N (uy, ..., u,) (mod m)
in u; yaeey Uy for every integer @ and every positive integer m. The congru-
ence is to be understood in the multiplicative sense; see Hagge [3], 25,

footnote*. Tf I¥ is cyelic, then by a theorem of Hasge [4] this implies the
apparently stronger statement that for every # we have

f(m) *——N('D“ ey Vp)
for some rational vy, ..., v,. Thus when K is cyclie, we have three appa-
rently different conditions on f(w) which are in reality equivalent.
COROLLARY T0o THEOREM 2. Tet f(@) be o polynomial with integral

c.eoefﬂciems, and suppose that every arithmetical progression contains an
wteger @ such that f(o) 4s a sum of two squares. Then.

F(@) = ui(2)+uj(a)

identically, where u, () and u,(w) are polynomials with integral coefficients.
] In. the particular case of Theorem 2, namely the case K = Q (1),
which is needed for this Corollary, our method of proof has much. in com-
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mon with that used by Lubelski [7] in his investigation of the primes p
for which f(a) = 0(modp) is soluble.

It will be scen that in the conclusion of the Corollary, it is asserted
that wy (@), u.(z) have integral coefficients. In the more general The-
orem 2, if it iy postulated that f(z) has integral coefficients and that
Uy -oey Uy 876 integers, it is not in general possible to draw the conclu-
sion with w4y («), ..., u,(#) having integral coefficients. This is illustrated
by the example (see §6)

f(@) = 20* (0414 3v(@+1)+4, K =Q(/—23).

However, it is possible to draw the conclusion stated above if the
highest coefficient in f(s) is 1. This ean be proved by first comparing
the highest terms on both sides, and then appealing to Gauss’s lemma,

There are other problems, of the same general character as those
congidered in this paper, which we are quite unable to attack. The sim-
plest of them is that in which f(z) is representable as a sum of two inte-
gral cubes for every sufficiently large integer s.

2. Proof of Theorem 1. We note first that the hypothesis implies
that cvery arithmetical progression containg infinitely many integers
@ such that the equation has an integral solution in y. For if d is the com-
mon diffcrence of the progression, and «, is one integer with the property,
there exigty an integer @, = ®-+d"(modd™*') for » =1,2,... which
has the property, and the integers «, are all distinet.

We factorize f(«, y) into a product of powers of polynomials which
are irreducible over the rational field @; by Gauss’s lemma we can take
these polynomials to have integral coefficients. We can omit any factor
So(z,y) for which the equation fy(», y) = 0 hag only finitely many inte-
gral solutions, since ity omission will not invalidate the hypothesis. We
can also omit any factor which does not contain y. Hence we can take

(2) f@, y) = fulw, )fa(@, ¥).. - Julz, ¥),

wheve fi(e, ), ..., fu(®,y) are irreducible over ¢ and are such that
each of the equations fj(z,y) = 0 has infinitely many integral solu-
fions.

It follows from Hilbert’s Irreducibility Theorem (Hilbert [5], p. 275;
for references to later work, see Lang [6], pp. 163-164) that there existy
an integer @, such that all the polynomials f;(x,, ¥), considered as poly-
nomials in g, are irreducible over ¢ and are of the same degree in ¥y as
fi{e, ). Suppose first that all these degrees are greater than 1, and let
n; denote the degree of fi(ay,¥) in y.
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Let # be a root of f;(wy, n) = 0, and congider the prime ideal facto-
rization of a rational prime p in @ (#) and in its least normal extension
Q*(n). Let d, denote the density (in the Dirichlet series sense) of thoge
primes which have exactly # prime ideal factors of the first degree in @ (5).
Then (Hasse [3], p. 129)

W n

Mao=1, i, =1.

re=0 P
To prove that dy, > 0, it will suffice to prove that &, < 1. Now any large
prime p which has just one prime ideal factor of degree 1 in () will
have some prime ideal factor of degree greater than 1 in Q(%), and so
also in @*(n). Since Q*(x) is normal, «ll prime ideal factors of p in @* (n)
will be of degree greater than 1, and the density of such p is exactly
1—1/nf, where nj denotes the degree of Q*(z) (Hasse [3], pp. 138-139).
Hence d, <1—1/n], whence the vesult. In particular, there are infini-
tely many primes which have no prime ideal factor of the first degree in
Q(n).

By a well-known principle of Dedekind, if ¢; is such a prime (and is

sufficiently large) we have

(3) Ji(@o, ¥) 7 0(mod gy)
for all integers y. There is such a prime g; for each j. On the other hand,
the hypothesis of the theorem implies that the arithmetical progres-
sion . i

Z = @ (mod gy ¢s.. . q)
contains an integer # guch that f(z, y) = 0 for some integer y. But then
fi{®,y) = 0 for some j, whence )

fi@; y) = f;(w,y) = 0(modg),

contrary to (3).
It follows that there is some j for which fi(e, y) is linear in y, say

fi(@; 9) = yA(z)—B(w),

“{here A(@), B(x) are relatively prime polynomials with integral coeffi-
cients. There exist polynomials A,(z), By(2) with integral coefficients
such that

A@)4;(@)+B(@)B () = ¢

identically, where ¢ is a non-zero constant. If # is an integer for which
there is an integer y satisfying fi®,y) = 0, then A(z) must divide ¢,

icm
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and since this happens for infinitely many , it follows that 4 (z) is a eon-
stant. Hence
f;(ws g(w)) =0

identically, where g («) is the polynomial B(x)/4. This proves Theorem 1.

The deduction of the Corollary is immediate, since we get f(z) =
(g(w))", where g(«) has rational coefficients, and then it follows from
Gausg’s lemma that g(x) has integral coefficients.

3. LmMmA 1. Suppose that the hypotheses of Theorem 2 hold. Let
) F@) = e(fi@)3{fa(@)2... (fm(2))™,

where ¢ # 0 18 a rational number and fi(z), fo(2), ..., fn(®@) are distinet
primitive polynomials with integral coefficients, each irreducible over Q,
and where e, e, ..., e, are positive integers. For any j, let ¢ be a sufficiently
large prime for which the congruence

(®) Ji(@) = O(modg)

8 soluble. If (e;, n) = 1 then q factorizes completely in K into prime ideals
of the first degree. If X is cyclic then g factorizes completely into prime
ideals of the first degree in the unique subfield K; of K of degree n/(e;, n).

Proof. Put
F(@) = fi(#)fo(®). . fm ().
Since the diseriminant of F («) is not zero, there exist polynomials ¢(x),
p(w) with integral coefficients such that
(6) F(2)p(@)+F (@)p(@) = D

identically, where D is a non-zero integer.
Let ¢ be a large prime for which the congruence (5) is soluble, and
let x, be a solution. By (6) we have F'(x;) = 0(modg), whence

F(o+q) # F (o) (mod ¢*).
'Bjr choice of #, as either @, or %, ¢, we can ensure that

fil@) = 0(modg), F(z) 5 0(modg’),

whence
film) # 0(modg®) and  fi(m) % 0(modgq) for ¢ #j.
By the hypothesis of Theorem 2, there exists @, = @ (modg¢’) such
that

(7) @) = N(uyy gy ooy Un)
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for some rational @y, %, ..., %,. From the preceding congruences we

have
fim) = 0(modq), f;(x,) # 0(modg’),
fila,) = 0(modg) for 4 7.
Hence
(8) f(@y) = 0(mod ¢7),  f(w,) # 0(modg*t).

Let the prime ideal factorization of ¢ in K be

9 ¢= Q0.0

the factors are distinct since ¢ is supposed to be sufficiently large. We
note that ! divides » because K is a normal field, and that

(10) No; = g

Write the prime ideal factorization of wwy-+... 4 upw, in K in the form.

—1
Uy 0y o Up e, = Qi .. 0 abt,

where a, b are ideals in K which are relatively prime to ¢. Then

(11) N(uy oot thgop) = 4 g™t talyg(Np)-?,

and Na, Nb are relatively prime to g.
It follows from (7), (8), (11) that

wla+ . a)fl = ¢,
whence :
o divides 1.
(ej, m)

If (¢, n) =1 we get that n divides I, whence | = n and it follows
from (9) and (10) that ¢ factorizes completely in X into prime ideal factors
of the first degree.

Now suppose that K is cyclie(*). The Galois group of K is o cyclic
group & of order n; it has a unique subgroup # of order /l, and each
q; is invariant under the automorphisms of #. The subgroup s deter-
mines a subltield L of K, of degree I, and # is the Galois group of K rela-
tive to L. A prime ideal factor of ¢ in I cannot split further in K, since
any such factors would be derived from one another by the automor-
phisms of # and so would not be distinet. Hence the factorization of q

() In dealing with this case we do not need to exclude the possibility that
(6, m) = 1. :

icm
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in L. is also of the form (9). Comparison of norms shows that the Gy
congidered as prime ideals in L, are of the first degree.

The unique subfield K; of K, of degree n/(e;, n), is a subfield of I,
and therefore ¢ also factorizes completely in K;, the number of prime
ideal factors being equal to the degree of K; and each being of the first
degree.

This completes the proof of Lemma 1.

LeMMA 2. Let G(z) be o polynomial with integral coefficients, irre-
ducible over Q, and let G(0) = 0. Let J be any subfield of Q(6). Then
(12) @ (z) = alN;(H(w))
tdentically, where H(x) is a polynomial over J, and Nj denotes the norm
from J 1o Q, ewtended in the obvious way to apply to J [x], and a is rational.

Proof. Let o be a generating element of J and let o® = w, ..., o™
be the conjugates of w, where m is the degree of J. Since J is contained
in Q(6), we have

w=yg (0)1
where g is a polynomial with rational coefficients. Thus G(x) has a zero
in common with the polynomial

m

[ a(@)— o),

F=1

(13)

which has rational coefficients, and since G-(z) is irreducible, it must divide
this polynomial,

The factors ot (13) are relatively prime in pairs, since their diffe-
Tences are non-zero constants. Hence the polynomials

HO(@) = (@(a), g(2)— )
are relatively prime in pairs, and since each of them divides G(x), their
product must divide G(x). Thus

m

G(z) = A(@) [ [ A (@) = A(2) N, (H (@)
F==1

The norm on the right is a non-constant polynomial with rational coef-
ficients, so it follows from the irreduecibility of G(x) that A (w) is a con-
stant. This proves the result.

; Lmyva 3 (Bauer). Let J be o normal number field and let % be any
number field. Suppose that every sufficiently large prime which has at least
one prime ideal factor of the first degree in k also has at least one prime
ideal factor of the first degree in J. Then J ds contained in k.

Proof. See Bauer [1] or Hasse [3], pp. 138 and 141.
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4. Proof of Theorem 2. Let f(z) be the polynomial of the the-
orem, and f;(x) any one of its iireducible factors, as in (4). Lot 0 be any
zero of fj(x) and ¢ any large prime which has at leagt one prime ideal
factor of the first degree in @(6). Then by Dedekind’s theorein the
congruence

fi(w) = 0(modyg)
is soluble.

It (¢;,n) = 1, it follows from Lemma 1 that ¢ factorizes completely
in the field K. By Lemma 3, with J == K and & = ¢ (0), this implies that
K is contained in @(6). It follows now from Lemma 2, with @ (@) = f;(a),
that fj(z) is expressible identically in the form

fi(@) = N (H; (@),
ag in (12). Hence

(14) (fi(@)) = afi Ng(H§ ()} = b N g (HF ().

Now suppose that K is eyclic. It follows from Lemma 1 that ¢ fac-
torizes completely in the field K;. By Lemma 3 with J = I{; and &k =
@(6), this implies that K; is contained in Q(6). It follows now from
Lemma 2, with G(z) == f;(x), that f;(@) is expressible identically in the
form

fi(m) = m,-NK].(H,-(m)).
Now
Ne(Hy(a)) = (N, [H (@)},

since the degree of I relative to K; is (¢, n). Hence

(15) (fit@))d = o { N g (Hy (m))} 9 = b; N (H} ().

The conclusions (14) and (15), reached on the two alternative hypo-
theses, are the same. By (4) and the multiplicative property of the norni,
we have

flz) = aNg(h()),

where 7(x) is a polynomial over K. By the hypothesis of the theoren,
taking @ to be a suitable integer, we infer that @ is the nomn of an clement
a of K. Putting
ah(z) = o (@) 4 ...+ o, u, (),
we obtain
f(d?) = -N(“l(m)y ey ’Lb,,,(m))
identically.

icm®
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5. Proof of the Corollary to Theorem 2. It follows from

the theorem, on taking K = Q(i), that
f(z) = Ui(e)+ Ui (a),

where U, U, are polynomials with rational coefficients. Let
Uy ()T, (@) = (o),

where »{x) is a primitive polynomial whose coefficients are integers in
Q%) and « iy an element of Q(¢). Then

f(@) = la'y(@)v (2).
Since »(z) and v(z) ave both primitive and f(x) has integral coefficients,
it follows from Gauss’s lemma that |af* is an integer. But |af* is a sum of
two rational squares, and so it must be a sum of two integral squares,
: 2 Q12 ) Qs 5 B ; :
i.e. |a]* = |7, where p is an integer in @(i). Putting
prix) = (@) + du, (),

where u,, 4, are polynomials with (rational) integral coefficients, we
get
Jl#) = wi(w)+us(2).
6. Two examples. (1) Suppose that
f(.’L‘) =& 25

We prove first that every square is expressible as a value of the norm
form of K. This norm form is

K = Q1)

N (g Vit ity + V) = (43— w4+ 2uy 1) 4+ (05— 03— 20 9,)°
Plainly 2° is representable with w, = wy = 0, uy = 4y = 1.

Also if p is a prime and p = 1(mod4) then p = a’+b* and »* is
representable with 4, = 4y = 0, 4y = @, u, = b. Finally, if p = 3(mod4)
then p is representable either as a*—2b or as a’4-2b°, and we take
Uy = b, Uy = F+b, Uy =a, Uy, = 0.

On the other hand, #* is not representable in the form

& =N (‘ul(w), ciey u,i(;z;)),

where 4, (@), ..., (@) arve polynomials with rational coefficients. For
if the greatest degree of any of these polynomials is g >1, then the
coefficient of #% on the right is N(e, ..., ¢;), where ¢;, ..., 0, are ratio-
nal numbers, not all zero, and this coefficient is not 0.
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In this example, K is normal but not eyelic, and the multiplicity
of the zero of f(z) is not relatively prime to the degree (namely 4) of K.

(2) Suppose that
fl@) = 20" (@414 3n(e+1)+4, K =@V —23).
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Here the norm form of K is
N (10y, 4y) = w3+ 1y 1y Gus.
For every integer @ we have m(w+1) = 2¢, where ¢ is an integer, and
flx) = 88-6t-+4 = N(t4+2, ).

On the other hand, if w; (), u#,(x) are polynomials in & with integral
coefficients, the coefficient of the highest power of » in N (/u,(w), ?Lg(m))
is an integer of the form

@+ ab+ 6%,

and cannot be 2, since the least positive integer other than 1 represented
by this form is 6.
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