

ACTA ARITHMETICA IX (1964)

On the different in orders in an algebraic number field and special units connected with it*

by

E. C. DADE and O. TAUSSKY (Pasadena, Calif.)

To L. J. Mordell to his 75-th birthday

1. Introduction. An order $\mathfrak O$ in an algebraic number field F is called principal if it can be generated over the rational integers Z by a single element. We are concerned with relations between two possible generators of the same principal order.

Our result was stimulated by an attempt to explain the following phenomenon:

Let $\mathfrak O$ be a principal order in a cubic field and let θ , λ be two different generators of $\mathfrak O$. Then a set of relations of the following type must exist for rational integral a_{th} with $|a_{th}| = +1$.

$$a_{11} = 1\,,$$
 (1) $a_{21} + a_{22}\,\theta + a_{23}\,\theta^2 = \lambda\,,$ $a_{31} + a_{32}\,\theta + a_{33}\,\theta^2 = \lambda^2\,.$ Clearly, $|a_{22} - a_{23}|$

(2)
$$\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = \pm 1.$$

Let θ be a zero of the irreducible polynomial

(3)
$$f(X) = X^3 + aX^2 + bX + c.$$

Since the third equation in (1) is obtained by squaring the second equation the quantities a_{32} , a_{33} can be expressed in terms of a_{21} , a_{22} , a_{23} and a, b, c. An easy computation shows that the left-hand side of (2) is a cubic form in $x = a_{22}$, $y = a_{23}$:

(4)
$$x^3 - 2ax^2y + (a^2 + b)xy^2 + (c - ab)y^3.$$

^{*} This work was carried out (in part) under a National Science Foundation Grant

We noticed that this form is the norm of the element

$$\eta = x + y(\theta_2 + \theta_3)$$

where $\theta = \theta_1$, θ_2 , θ_3 are the zeros of (3). By (2) and this observation, η must be a unit. The unit η is in F and is connected with the system (1) in another manner.

The second equation of (1) implies that

$$(\theta - \theta_2)(\theta - \theta_3)(x + y(\theta_1 + \theta_2))(x + y(\theta_1 + \theta_3)) = (\lambda - \lambda_2)(\lambda - \lambda_3),$$

where λ_2 , λ_3 are the conjugates of $\lambda = \lambda_1$, corresponding to θ_2 , θ_3 . Since both θ and λ generate the order, the ratio of the differents $(\theta - \theta_2)(\theta - \theta_3)$ and $(\lambda - \lambda_2)(\lambda - \lambda_3)$ is a unit ε . We have

(6)
$$(x+y(\theta_1+\theta_2))(x+y(\theta_1+\theta_3)) = \varepsilon = \pm \eta^{-1}.$$

This unit is in F and has norm +1 because this norm is the square of the rational integer $\prod_{i \in f} (x+y(\theta_i+\theta_i))$. Since $\theta_2+\theta_3=-a-\theta$, we may express η in the form $x-ay-y\theta$. It is noteworthy that η is of a special form, not containing a term θ^2 .

2. Some polynomials connected with the generator of a principal order. Now we consider a more general situation.

Let $\mathfrak{O}=Z[\theta]$ and $\mathfrak{O}'=Z[\lambda]$ be two principal orders in the algebraic number field F of degree n. Suppose that $\mathfrak{O}' \subset \mathfrak{O}$. Then

(7)
$$\lambda = X_0 + X_1 \theta + \ldots + X_{n-1} \theta^{n-1}$$

for some rational integers $X_0, ..., X_{n-1}$. Let

(8)
$$f_{\theta}(\overline{X}) = \overline{X}^n - a_1 \overline{X}^{n-1} + \ldots + a_n$$

be the monic irreducible polynomial for θ over Z, and let $f_{\lambda}(\overline{X})$ be the corresponding polynomial for λ .

Let $\overline{X}_0, \ldots, \overline{X}_{n-1}, \Theta_1, \ldots, \Theta_n$ be independent variables over F. Define the polynomial l by

(9)
$$l(\bar{X}_1, \ldots, \bar{X}_{n-1}; \Theta_i, \Theta_j) = \sum_{k=1}^{n-1} \bar{X}_k \frac{\Theta_i^k - \Theta_j^k}{\Theta_i - \Theta_j}.$$

Let $\theta_1 = \theta, \theta_2, \ldots, \theta_n$ be the distinct conjugates of θ in some convenient normal closure of F. Let $\lambda_1 = \lambda, \lambda_2, \ldots, \lambda_n$ be the corresponding conjugates of λ . Then (7) implies that, for $i \neq j$,

(10)
$$\frac{\lambda_i - \lambda_j}{\theta_i - \theta_j} = l(X_1, \ldots, X_{n-1}; \theta_i, \theta_j).$$

Define the polynomial u by

(11)
$$y(\overline{X}_1, \ldots, \overline{X}_{n-1}; \Theta) = \prod_{i=2}^n l(\overline{X}_1, \ldots, \overline{X}_{n-1}; \Theta, \theta_i).$$

The following lemma gives some basic properties of y.

LEMMA 1. y is homogeneous of degree n-1 in $\overline{X}_1, \ldots, \overline{X}_{n-1}$. The coefficients of y lie in $\mathfrak{D} = Z \lceil \theta \rceil$.

Proof. By (9) each factor l is a linear form in $\overline{X}_1, \ldots, \overline{X}_{n-1}$. So y is homogeneous of degree n-1 in these variables.

Since the coefficients of l are rational integers, it is obvious from (11) that the coefficients of y are symmetric rational integral polynomials in $\theta_2, \ldots, \theta_n$. Hence they lie in $F = Q(\theta)$ (where, as usual, Q is the rational number field). It will follow from the following more general lemma that they actually lie in $Z[\theta]$.

LEMMA 2 Let $g(\Theta_2,\ldots,\Theta_n)$ $\epsilon Z[\Theta_2,\ldots,\Theta_n]$ be symmetric in the variables Θ_2,\ldots,Θ_n . Then $g(\theta_2,\ldots,\theta_n)$ $\epsilon Z[\theta]$. In fact $g(\Theta_2,\ldots,\Theta_n)$ $\epsilon Z[\Theta_1,A_1,\ldots,A_{n-1}]$, where A_1,\ldots,A_n are the elementary symmetric functions of the variables Θ_1,\ldots,Θ_n .

Proof. Let S_1,\ldots,S_{n-1} be the elementary symmetric functions of the variables Θ_2,\ldots,Θ_n . Since the Θ 's are independent transcendentals over Q, so are the S's. Hence $Z[S_1,\ldots,S_{n-1}]$ is integrally closed in its quotient field $Q(S_1,\ldots,S_{n-1})$ (since it is a unique factorization domain). Since Θ_2,\ldots,Θ_n are the zeros of $\overline{X}^{n-1}-S_1\overline{X}^{n-2}+\ldots\pm S_{n-1}$, they are integral over $Z[S_1,\ldots,S_{n-1}]$. Therefore

$$Z[\Theta_2, \ldots, \Theta_n] \cap Q(S_1, \ldots, S_{n-1}) = Z[S_1, \ldots, S_{n-1}].$$

Our hypothesis is that $g(\Theta_2, \ldots, \Theta_n)$ lies in the ring on the left. So it lies in $Z[S_1, \ldots, S_{n-1}]$. But

(12)
$$S_{1} = A_{1} - \theta_{1},$$

$$S_{2} = A_{2} - A_{1} \theta_{1} + \theta_{1}^{2},$$

$$\vdots$$

$$S_{n-1} = A_{n-1} - A_{n-2} \theta_{1} + \dots \pm \theta_{1}^{n-1}.$$

Therefore $Z[S_1, \ldots, S_{n-1}] \subseteq Z[\Theta_1, A_1, \ldots, A_{n-1}]$. This proves the second statement of the lemma.

If $\theta_1, \ldots, \theta_n$ are specialized to $\theta_1, \ldots, \theta_n$, then A_1, \ldots, A_n specialize to $a_1, \ldots, a_n \in \mathbb{Z}$. So

$$g(\theta_2,\ldots,\theta_n)\epsilon Z[\theta_1,a_1,\ldots,a_{n-1}]=Z[\theta].$$

Acta Arithmetica IX.1

Different in orders

3. The main theorem. Each element of the ring $\mathfrak{O}[\bar{X}_0, \ldots, \bar{X}_{n-1}] = Z[\theta, \bar{X}_0, \ldots, \bar{X}_{n-1}]$ has a unique expression of the form:

(13)
$$B_0 + B_1 \theta + \ldots + B_{n-1} \theta^{n-1}$$

where the B_i lie in $Z[\overline{X}_0, \ldots, \overline{X}_{n-1}]$. We apply this to the powers of the element:

(14)
$$\Lambda = \overline{X}_0 + \overline{X}_1 \theta + \ldots + \overline{X}_{n-1} \theta^{n-1}$$

obtaining unique polynomials B_{ik} in $Z[\overline{X}_0, ..., \overline{X}_{n-1}]$ such that:

(15)
$$A^{i} = B_{i0} + B_{i1} \theta + \ldots + B_{in-1} \theta^{n-1}, \quad i \geqslant 0.$$

Clearly $B_{0k}=\delta_{0k},\ B_{1k}=\overline{X}_k$, and B_{ik} is homogeneous of degree i in $\overline{X}_0,\ldots,\overline{X}_{n-1}$.

We form the matrix (B_{ik}) , i, k = 0, ..., n-1. Its determinant must be a homogeneous polynomial $z(\overline{X}_0, ..., \overline{X}_{n-1})$ of degree n(n-1)/2 in the ring $Z[\overline{X}_0, ..., \overline{X}_{n-1}]$.

The two polynomials $y(\overline{X}_1,\ldots,\overline{X}_{n-1};\Theta)$ and $z(\overline{X}_0,\ldots,\overline{X}_{n-1})$ are related by:

THEOREM 1. The norm from $F(\overline{X}_1, \ldots, \overline{X}_{n-1})$ to $Q(\overline{X}_1, \ldots, \overline{X}_{n-1})$ of $Y(\overline{X}_1, \ldots, \overline{X}_{n-1}; \theta)$ is $z(\overline{X}_0, \ldots, \overline{X}_{n-1})^2$. In particular, \overline{X}_0 does not appear in z.

Proof. Let $A_1 = A, A_2, ..., A_n$ be the conjugates of A corresponding to the conjugates $\theta_1, ..., \theta_n$ of θ . By (15), we have the matrix equation:

$$(B_{ik})\begin{pmatrix} 1 & \dots & 1 \\ \theta_1 & \dots & \theta_n \\ \vdots & \vdots & \ddots & \vdots \\ \theta_1^{n-1} & \dots & \theta_n^{n-1} \end{pmatrix} = \begin{pmatrix} 1 & \dots & 1 \\ A_1 & \dots & A_n \\ \vdots & \ddots & \ddots & \vdots \\ A_1^{n-1} & \dots & A_n^{n-1} \end{pmatrix}.$$

Taking determinants, we obtain:

(17)
$$z(\overline{X}_0,\ldots,\overline{X}_{n-1})\prod_{i\neq j}(\theta_i-\theta_j)=\prod_{i\neq j}(\Lambda_i-\Lambda_j).$$

By (9) and (14), for $i \neq j$, we have

$$rac{arDelta_i - arDelta_j}{ heta_i - heta_j} = \sum_{k=1}^{n-1} \overline{X}_k rac{ heta_i^k - heta_j^k}{ heta_i - heta_j} = l(\overline{X}_1, \ldots, \overline{X}_{n-1}; heta_i, heta_j).$$

Therefore (17) implies

$$z(\overline{X}_0,\ldots,\,\overline{X}_{n-1})=\prod_{i< j}l(\overline{X}_1,\ldots,\,\overline{X}_{n-1};\, heta_i,\, heta_j).$$

On the other hand, by (11),

$$\operatorname{norm}(y(\overline{X}_{1}, \ldots, \overline{X}_{n-1}; \theta)) = \prod_{j=1}^{n} y(\overline{X}_{1}, \ldots, \overline{X}_{n-1}; \theta_{j})$$
$$= \prod_{i \neq j} l(\overline{X}_{1}, \ldots, \overline{X}_{n-1}; \theta_{j}, \theta_{i}) = z(\overline{X}_{0}, \ldots, \overline{X}_{n-1})^{2}.$$

4. Further remarks. The main theorem generalizes the fact observed in the introduction for cubic fields, not only to fields of arbitrary degree, but also to generators of two orders $\mathbb O$, $\mathbb O$ with $\mathbb O \supseteq \mathbb O$. Since the order $\mathbb O$ is a sublattice of $\mathbb O$ the absolute value of the determinant of the transformation sending the basis of $1, \theta, \ldots, \theta^{n-1}$ of $\mathbb O$ into the basis $1, \lambda, \ldots, \lambda^{n-1}$ of $\mathbb O$ ' is $(\mathbb O : \mathbb O')$. By definition, $z(X_0, \ldots, X_{n-1})$ is this determinant. Therefore

(18)
$$(\mathfrak{D}: \mathfrak{D}') = \pm z(X_0, \dots, X_{n-1}).$$

Hence we have the following theorem.

THEOREM 2. The following three statements are equivalent:

1.
$$\mathfrak{D} = \mathfrak{D}'$$

2.
$$z(X_0,\ldots,X_{n-1})=\pm 1$$
,

3.
$$y(X_1, ..., X_{n-1}; \theta)$$
 is a unit in $Z[\theta]$ with norm $+1$.

An alternative proof of our results can be obtained by noticing that

$$y(X_1,\ldots,X_{n-1};\theta)=f'_{\lambda}(\lambda)/f'_{\theta}(\theta)$$

is the ratio of the differents of the two elements λ and θ . We call, as usual, $(-1)^{n(n-1)/2}$ times the norm of the different of an element its discriminant. The discriminant of θ coincides with the discriminant $d(\mathfrak{O})$ of \mathfrak{O} and that of λ with the discriminant $d(\mathfrak{O}')$ of \mathfrak{O}' . Further, for any two orders $\mathfrak{O} \supset \mathfrak{O}'$ (even for non principal orders)

$$d(\mathfrak{D})/d(\mathfrak{D}') = (\mathfrak{D} : \mathfrak{D}')^2$$
.

Hence, we have again

$$[z(X_0, ..., X_{n-1})]^2 = \text{norm}(y(X_1, ..., X_{n-1}; \theta)) = (\mathfrak{O} : \mathfrak{O}')^2.$$

CALIFORNIA INSTITUTE OF TECHNOLOGY

Reçu par la Rédaction le 27. 4. 1963