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On theta-functions for certain quadratic fields
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H. CoBN (Tuecson, Avizona)

Dedicated to Louis J. Mordell
on his seventy-fifth birthday

1. Introduction. In some recent papers [1], [2], [3] it was noted
that the problem of finding the number of representations by the form

(1a) ¢ =g+a+E+8

is of unusual interest when the variables &; are integers in the field Q(I/I’T),
over the rationals @, particularly since this problem is not quite as simple
here as in the case of Q(l/5), done by Siegel and Gotzky [12], [5] or as

in the cage of Q(I/E) [1]. The following wunsatisfactory result was establi-
shed: Let R () be the number of representations in quadruples

(&, £, &5, &) where & = a;-+bV/3 (a;,b; rational integers) of @ = u
for w = a+2bV3 and a >2|b11/§. Then we define

Dy =Y IN() where ()|(w) (in Q(/3)),
@) O] '
D)= Y IN(»)| where (v)|(u) and N(u/») is 0dd;
{v)

(here the sums are limited to ideal divisors so thab agsociates of any » are

not repeated). From these we define the “singular series contribution” [1]
4D*(u) it 8tN(u)

3) B(u) = con ’
24D (u)—42D*(n) it 8| N(u).

Then the representation funetion R, (u) for @, = p is not quite B(u),
but rather

(1b) B (p) = B(u)+4L(p)

where L(z) is an “unknown” function. Actually the techniques [10]
which Mordell introduced for the Ramanujan tau-function make L (p)
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somewhat “accessible™ because L(u) can be shown to be multiplicative
and to vanish “quite often” [2]. In the fields of V9 and V5, however,
an analogue of the term 4L(u) would not oceur [1], [5].

The presence of the term 4L(u) in (1b) ¢an be accounted for by the
classical Siegel “genus theory” [12] as evidence that other forms oceur
in the genus of Q,, (say) @, ..., 50 that B(u)is not B, (u) bul a weighted
average of the nwmbers of representations Ry (p), Ry(u), ..., of @y = p,
Q@ = pta, ... G Pall [3] showed how the representation problem of €, = u
can be expressed in rational terms thus transtorming the representation
problem to the more closely explored rational domain.

Subsequently, M. Kneser (in private communications) pointed out
that there are two (and conjecturally only two) additional forms ¢, and
@, in the genus of @,, namely

(4a) Q= E+ B4 284 2V3 86,28,
(Ba) Qs = 3(E+E+E+E)+2(1+V3) (5 &—EE)

F2-VB)E G- 8.

In this paper, we shall verify independently of the Siegel theory
that these forms have the representation funetions

By (u) = B(u)
Ry(u) = B(p)—4L(p)

In fact, without extra effort, we shall note that the even form

(4b)
(Bb)

where  p o= 0 2()1/3, o 2|b]‘l/3.

(6a) Qo = 26+ 2V3 &, 6+ 26+ 284 2V3 &8, 28

(which represents only integers u divisible by 2) has the representation
function for u = 2(a--bV3), a > [b|V3,

(6D) By (u) = 24D (u[2).

We shall use the functional equation of theta-functions avoiding uny
explicit reference to the genus concept. Indeed, our Main Theoren (§ 1
below) suggests a weaker version of the genus concept which is really
the one directly involved in the condition that the functional equation
of the theta-functions be satistied.

2. Terminology of fields and forms. We congider a quadratic field
Q(Vm) where m is a positive square-free integer satisfying mn -« 2 ov 3
(mod4). We note 4m = D the diseriminant of the field. Wo let O denote
‘the ring of algebraic integers a--bVm and we let O, denote the subring
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of integers where b is even. We let O and O5 denote the semigroups in
each of the rings consisting of totally positive integers. The special
integers

(7a) e=A+BVm>1
and
(Th) 7 = m+Vm

denote the fundamental unit ¢ and a convenient element 5, lying in the
ideal 2, but not in the ideal 2 (where 2 = 2 in Hasse’s notation).

We consider positive definite n-ary quadratic (classic) forms having
(matriw) cocfficients in O and representing only numbers in O, (actually
in O or zero). We write such a form as a bilinear form

Q(A, M) = > ayhip;

%7

(8a) (o = az)

where A = (A}, ..., An), M = (g, ..., un) are vectors (in O") with com-
ponents in O. We call the form

(8b) Q(4) =Q(4, 4),
recalling such identities as
() QA+M) =Q(A)+-2Q(4, M)+ (M), ete.

Clearly a; must lie in OF but a;; merely lies in O. We eall Q' the conju-
gate form (where o; replaces ay).

The standard “canonical” reduction techniques [7] permit a p-adic
reduction of a form to ¢ diagonal terms with nondiagonal terms avail-
able in the form of blocks of order 2. Actually, we want to define a weaker
concept of a semidiagonalized form as follows: For some integer ¢
(0 <t <),

(II]E%zE...._

ey = 0(mod?2,) it

(10a)

while the remaining (n—t) by (n—%) matrix represents an even form:

(10b) Gppigy1 = ... = Upp = 0(mod2).

It is clear from elementary considerations that sueh a matrix is always
obtainable by a unimodular transformation. For example, if @ (4) repre-
sents only even numbers, (10b) is valid for ¢ = 0; if, however, @ (4) repre-
sents an odd number we can arrange to have an odd diagonal coefficient
ab (say) aj; so that the substitution of A+ apdy=-...+oyndy for 4, will
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produce the desired congruence property (L0a) for the first row and column.
We continue with the remaining matrix of the last (n—1) rows and columns
until (in ¢ steps) a matrix (of {(n—1) rows and columns) constituting an
even form is encountered. The canonical reduction theory, of course,
informs us that # is well-defined by .

We assume oll matrices used here arve in sewmidiagonalized form.

‘We mnext introduce the vector

(11) Q,=(,...

consisting of ¢ unities and n—1 zeros as shown.
Lomma 1. If Q(A) 4s semidiagonalized, then

(12) Q(4, Q) = Q(A)(mod2,).

The proof follows from the fact that 1 =3 2*(mod2,).
A very important constant which arises here is

,1,0,...,0)

(13) Q2 Q) = ¢
which belongs to OF and is easily seen to satisfy
(14) g = t{mod2).

Of course, ¢ iy not well-defined by @ (as is ¢); we shall see (§4 below)

that it is determined modulo 29, (and, fortunately, only its value modnlo

29, is of significance for us).

In the present illustrations the following values of ¢ and ¢ ocour:

Qv t1=0,¢=0,
Ql: t=4, q= 4, (
Q: t=2,q=2,
Qy: t=4,q=16—-4V3.

In all thege cases ¢ is the same (mod29,).

(15)

3, Theta-functions. We now consider two complex varviables
(168) % = X+i¥, 7 =X'+i¥ Y <0< Y.

These are called conjugates and ave treated formally like conjngate quad-
ratic surds (although they are independent “functionally”). Thus the
definition on norm and trace is extended to include them formally, e.g.,
N(Z) = ZZ’ (which is not necessarily positive or even real) and 8 (AZ) ==
AZA-NZ' if A lies in O, efe. 'We also define

(16b)
Thus for A im O, 6(A) = 1 if and only if A lies in O,.

where

¢(AZ) = expriS(AZ[2Vm) = expri[(AZ —V'Z')[2Vm].
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Then we define the theta-function corresponding to the quadratic
form @ as
an 0q(2,2) = D) e[2Q ()]

AeHM

summed over all integral vectors A (with corresponding @ (A4) = @’ (4')).
‘We shall assume all series indicated to be absolutely convergent on the
Dasis of well-known estimates [1]. In particular, the theta-function cor-
responding to

(18)

is written as

Q" =4+ 44

(19a) 0™(2,2) = Y e[(i+...+1)2]
AqeD

and it has the property that

(19D) oz, 7'y = [0V (5, Z"]".

We note that @, is defined independently of the (matrix) basis chosen
for the form @.

We next shall define a certain group ®* of linear transformations
(with coefficients in ) preserving the half-planes of Z and Z':

_ai+p L+
(20) %= vZ++8' T yE48

The definition of &* shall be in terms of generators:

(52 0) (1 a) ( 0 1)
(21) ) )
01 01 ~10

(a arbitrary in O).

(We indicate only the matrix for one of the variables (say) Z, the other
variable Z' naturally being transformed by the algebraic conjugate.) Bvi-
dently ad— fy in (20) is always the square of a unit in O.

In many cases, including those O possessing the Buclidean algorithm,
®* constitutes an important subgroup ® of the complete Hilbert group
0 consisting of all transformations (20) where ad—fy ig the square of
o unib. (The complete Hilbert group Q consists of the transformations
(20) where the unit ad—fy is totally positive, although not necessarily
2 square when N (e) > 0.)

Tn practice we wish to build out of Og(Z, Z') a set of conjugates un-
der ®*; hence, using [1] as a model we form:

(22) Oqle, d; 2, 2)) = D) e[ZQ(A+en2y[2)+dQ(4, n2)]-

A
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We assume henceforth that sn addition to earlier restriclions on @), the deter-
minant of (the matriz for) @ is a unit in O. Here we first verify that at most
four different functions arve defined by the rational integers ¢ and d (actu-
ally modulo 2), or

(23)  Og(c+2,d;5 4, 2') = Oqle, d-+2; 4,4') = Ogle, d; %, 7).

To verify this result note that if ¢ is changed to ¢-2 then the net effect
is to change /A in @ (A--cnQy2) to A+ 42, (which again spans all of O%);
furthermore changing A to A9, in Q(4, n&) produces a change
in the argument of ¢[...] by @ (9%, 742,) = n*¢ which lies in O, and there-
fore produces no change. (Actually this technique is used extensively
in the results that follow.) ‘

Lemma 2. The conjugates O(c, d; Z, Z') transform as follows under
the generators of ®&*:

(248)  Op(e, d; Z-1, Z'41) = Bgle, d--e; 7, %e,,
(24b) Ogle, d; Z+4n, Z'+ 1) = Op(e, d+1; Z, %) ey,
(24e Oglc, d; 6%, 7'y = Ogle, d; 7, F')es,

(24d)  Ogle, ds =117, —1/%') = N(BY"0o(d, ¢; %, 4')es,

where the multipliers ey, ¢y, oy, €, can be wrilten s
(25a) e = e[dg/4] = ()"
(28h) ey = e[c*q/d] = (wy)"
(2Be) e = eledgn’(e—1)/2] = (wy)
(26d) ey = e[odgn®/2] = (w,)*

where oy == o[yt y 4],

where vy = e[ g /4],

where  wy == e[gn*(e—1)/2],

wy = e[qn*/2],
and the sign of N (Z)"* is defined (by analytic continuation) using the-|-
sign when Z and Z' are purely imaginary.

For (24a), note that a change of Z to Z-1 augments the argument
of ¢[...] in (22) by the trinomial

QA+ enyf2) = Q(A)+eQ (A, 58+ P 4.

The first of these terms iy ignored since it lies in Dy; the second changes
d to d+c¢ formally, while the third provides e,. ‘

For (24b) we note that changing Z to Z+ # etfectively multiplies the
augmenting trinomial (above) by 5. Then, by Lemma 1, 7@(A)
Q(4,792,)(m0d 2) while ¢cnQ (4, nQ,) = 0(mod?2), and ¢*gn’/4 provides e,.

Before proving (24¢) we require the following :

Lmwvea 3. If we veplace o by 52y then the value of Oqle, d; Z,7")
changes by a “sign” factor (4-1) namely eledqynl, which depends only on
the residue class of p(mod2,) l

where
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Foy proof merely change 4 to A—ceyQ, and 5 to 542y in (22).

Then for (24¢), we note that if Z is multiplied by & in (22) then &
can be absorbed in @ (A--eng2;/2) giving Q(eA+ene@y/2). This suggests
that A is multiplied by & which does not affect its generality while % is,
however, also multiplied by e Likewise, since 1/e = f¢' = ¢(mod2),
then & =1 and dQ (4, n8;) can be replaced by d@(ed, ey in (22).
Thus the net effect of multiplying Z by & is to augment 5 by ne—n =
2(e—1)n/2, making Lemma 3 applicable with y = 5(e—1)/2.

For the final result (24d) we extend the symbols 4, A’ and M, M’,
efie., to a pair of n-dimensional real vectors with funetionally independent
(nonalgebraic) components written X = (@, ..., #,) and X' = (21, ..., %)
We still keep the conventions in defining e(...) analogously with (16ab),
but we let [...dX denote the 2n-fold integral from —oo to oo of
Ay . . . Ay, Ay . . . dity,.

LemmA 4 (Poisson-Lipschitz). If all sums encountered are obso-
Lulely convergent, then formally

Y 1 [ SR, . S -
_\_, P4, 4) = T Z f P(X,X )e(—lz wi#i)dl
M =1

(26a)

A

where D is the discriminant of any nondegenerate quadratic module O.

The proof and necessary estimates are well established [1], [5],

[8]. In our application we replace the variables u; by } ay;u; which does

not affect the generality of M in O since the determinant of @ is a wnét
in O. Thus > &;u; becomes Q(X, M). If we now substitute

F(A, A7) = e[ZQ (A4 cn/2) 4 dQ(A, 742)]
we obtain

(26b)  Oylc, d; Z,4")
1N ¢ C, Q) — 20 (X, M)]dX
= i D) | S1PRE +eni2) +2Q(X, 12)=20(X, D)

MeD™

which is the starting point for (24d). )
To consummate the proof of (24d) we “complete the square in X™
for the argument of e[...]in (26b) obtaining

ZQ(X + en@yj2+ dny /2% — M |Z)+ 260 44— ZQ (eny2-+ dn 2422 — M |Z).

The first term, being integrated by dX from —oo to oo is replaced by
ZQ(X) and it becomes Temoved from summation. The remaining two
terms become

(—1/Z)Q(M — dn[2)+ Q(en 2y, M —d2n(2).
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We can identify the “parts” of (24d) (replacing —d by d) once we show
[ ¢[ZQ(X)14X = D" [N (Z)"",

but this follows from a (real) change of variables diagonalizing ¢(X)
and @'(X’) and permitting the integral to be decomposed in the faghion
of the classical theta-funetion in one variable. Thus Lemma 2 is proved.

We now use Lemma 2 to find a way of defining four conjugate
theta-functions independently of the choice of basis for . Certainly
On(0, 0; Z, ') is invariant, and by (24b) so is

(0,15 Z,7') = Og(0, 0; Z+ 1, 4.
From (24d) we infer the invariance (under choice of basis for @) of
(1,03 %, 2") = (0, 1; —1[Z, —1|Z")N(Z)""*,

Finally, from (24b) again, we infer the invariance of

wyB(L,1; Z,2') = Og(1,0; Z-+n, Z'4-1).

We can now define the invariant set of conjugate theta-functions belong-
ing to a (classic) form Q with wnit determinant representing only numbers
in OF (or zero) as follows:

(@7) Ogle, d; Z,2') = (w)* T Oglo, d; %, 4").
(Of course the factor (wg)cg‘lz is w, if ¢ and d arve both odd, otherwise it

ig 1.)
We then verify

(28a) 0gle,d; Z41,Z'+1) = Og(c, d4-0; Z,Z")f1,

(28Db) Og(e, d; Z+n, 2" +n') = Ogle, d+1; Z, Z)fs,
(28¢) O0p(c,d; &%, &%2") = 0y(c, &; 4, Z")fa,

(28d) Oole,d; —1]Z, —1|Z') = N(Z)""04(d, ¢; Z,2")f,,

where the new multipliers ave given in terms of the w; in (25) as

( 2 9) f]_ = [wl wﬁ,d“l]"g y I’ y = wg‘l“z el .

v =ty fye ol
LeMMA 5. The multipliers (29) are oll 1 if and only if g lies in 20,.
For the proof of Lemma 5, observe that for all f; to equal 1 (regardless

of ¢ and d) it is necessary and sufficient that wyw,, wi, w,, and w, all

equal 1. From wj = w, = 1, it follows that e¢[(¢7*/2)A] = 1 for arbilvary
2in O (and conversely); thus wi = w, = 1 precisely when ¢ =z 0(mod?2).

The fact that w; =1 then contributes nothing further. We set g = 2k
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and ask when w,w, = e[5> (14 7)%k/2] = 12 Since #°(1+1)/2 = 1(mod?2),
it is seen that the question is answered positively precisely when % lies
in O,, proving Lemma 5.
‘We shall also meed to consider the symmetry operation of inter-
changing %, 7' with —Z', —Z (which preserves the half-planes (16a)).
LeMMA 6. If Q' denoles the conjugate of @, the

Ogle, d; —%', —Z) = 0o, d; Z, Z"e(gnedVm).
For proof, we verify that

Oqle,d; —2', ~B) = 3 e1ZQ’(4'+on'Q2)—dQ'(4', '2)]
A"
gummed over A’ which is also arbitrary in O™ Thus the net effect is
precisely the same as replacing 5 by 7" = 11——21/m; and we can apply
Lemma 3 with y = —Vm and ¢’ = g(mod2).

In the cases (15) we note that all of the forms cited are equivalent
to their conjugates under an easy sign-permutation. Hence g = Og:-
Generally, when @ and Q' are equivalent, the conjugate operation does
not affect 6, unless m and g are both odd; then it becomes a question of
the factor (—1)".

'We might conclude this section by noting first that 0y is not inde-
pendent of the choice of % (belonging to 2, but not to 2}). If we replace
1 by 1-+2y, then a possible sign-change e[gedy 7* /2] is introduced into 6. Mo-
reover we note that the functions @ or fg ave never identically zero, since
whene¢ =d =0,0y =1at ¥ = —Y' = co while the other values of ¢ and d
are connected by the functional equations. Of special interest is the fact
that the four conjugates are identically the some if and only if @ is an even
form. If Q is even, it is simple o verify that ¢ = ¢ = 0; while the converse
ig established by expanding the first few terms (but the details can be omit-
ted as this converse result is not needed).

4. Main theorem and applications. Collecting all our previous
results we find we have proved the following:

MAIN THROREM. Let Q be a (classic) n-ary quadratic form with wnil
determinant and coefficients in O representing only numbers in OF (and
zero). Let a value g be determined as in (13) by its semidiagonalized form.
Consider the invariant set of conjugate theta-functions

(31) Og(e,d; 7, 2) = 2e[ZQ(A—1—m;Q,/2)+dQ(/1, 7))+ g /4]
AED“

Then the functional equations (28a-d) for the generators (21) of ®* will have
constants fi, foy fas fa determined by ¢ and d and precisely by the value of
q modulo 29;.
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The most immediate application is that we have a transcendental
proof of the invariance of ¢ modulo 20, under change of basis of Q! Fur-
thermore, the value of ¢ modulo 290, is effectively the “genus invariant?”
that makes the functional equations (28a-d) valid.

A. The Forms in Q(V3). Turning our attention to the forms ¢,
@1, @2, Q5 for Q(V3), we see all values of ¢ in (15) are congruent modnlo
29, and the theta-functions ave symmetric (see Lemma 6). Now it was
seen in[2], §32, that the holomorphic solutions of the functional equations
(28a-d) with all f; = 1 and » ==4 form a vector space of dimengion 3
over the complex numbers. The Higsengtein series

Lg M Blue(us), 14 Y 24D (p)e(u%)
ey e

are already known ([1],[2]); hence these functions together with the “un-
known” [OWT* (see (19b)) constitute a basis. A check of the first few
coefficients yields the representation theorems (1b), (4b), (5b), and (6b)
a8 required.

B. Reduction to modular identitics im one variable. While we do not
repeat the proof of the basis theorem just cited, we recall that the Siegel-
-Gotzky technique avoided the genus argument by working directly with
a one-(complex)-dimensional submanifold of the bicomplex space (16a).
Many unusual number theoretic identities emerge if we do this (1], §9,
(3] § 42).

To see this possibility in the simplest light, let us henceforth vestrict
@ to be @, an even form, so all four theta-functions coincide:

(33) Oy (%, %) = D 6[2Q(A)] =1+ ' Ry(w)e(us).
et 162D

Here, as usual, Ry(u) is the number of representations of Wy = u (for
u in 20%),

‘We next define two modular forms in one complex variable {7 in the
half-plane Im U = 0, namely

(34a) w(U) = 0%( U, —U)
and, when N(z) = —1'or &> 0> ¢ we define
(35a,) P(U) = g, (sU, &' T).

U._‘hen by specializing the appropriate equations from the set (28a-d)
we find y(U) and o(U) satisfy identities of the type

(36) D(U+E) = B(U), B(--1/U) = U G(I);
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gpecifically,
(37a) p(U) = D(U) for & =1Vm,
(87h) p(U) = O(U) for £—1.

Now there are certain well-known ([4], [6]) solutions to (36) by Hi-
senstein series in special cases. Let us define for # even

2 (>
Gl U) =1——-

38
(38) B L

exp2nilU - o,_y (1),
where oy(r) is the sum of the s-powers of the divisors of r (referring to
positive rational integers), and B, represents the Bernoulli numbers
(By=1/6, B, = —1/30, B, =1/42,...). Then if 4ln, we find that
G, (U) satisfies (36) for & = 1.

From &,(U) we can construct, for »n even,

(39)  Hu(U) = [Go(UV'm)+(—m)" G (TVm)/[1+ (—m)"],

(normalized, like @G,(U), so that H,(oo) = 1). Then if n is even H,(U)
satisfies (36) for & = Vm.

Assuming that & is holomorphic and bounded at oo, there exists
a well-known procedure (due to Poincaré) for constructing the most gen-
eral golution to (36) in terms of the Klein or Hecke Invariant I(U) (cor-
responding to # = 0 in (36)), which maps the fundamental domain onto
the I-sphere. The details are quite standard ([1], § 8) but we shall quote
only the simplest type of result for the present:

Levma 7. Consider solutions to the funcitional equation (36) which are
holomorphic and bounded at oo.

If £ =1 and n = 4 or 8 all such solutions are proportional to a single
solution, mecessarily @,(U) (and indeed Gy = G3).

If &= V2 and n = 2,4, or 6 all such solutions are proportional to
a single solution, necessarily H,(U) (and indeed H, = Hj, Hy = H3).

If & = V3 and n = 2 or 4 all such solutions are proporiional %o o single
solution, necessarily H,(U) (and indeed H, = Hi).

C. Divisor identitzes. Obviously, Lemma 7 leads very naturally to
identities. 'We can rewrite (34a) and (35a) as

(40a) p(0) =1+ Y '7(a)exp2nial/Vm,
a=1

(41a) p(U) =1+ D) s(b)exp2ribU,
b=1

‘where
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aym
(40D) rla) = D Ro(2a+20Vm),
b=—aVin
bjym . ,
(41Db) s) = ) Rif(2e+20Vm)g) (N (e) = —1),
[

summing, of course, only over integral values of b or a.

It will then follow that for the values specified in Lemma 7, r(a)
and s(b) are related to the divisor funetions o,_; by (39) and (38) as fol-
lows:

20\ oy (8) + (—m)""* 01 (afm)
2m
(41c) $(b) = ""“]g,"dn.«](b)y

n

where o,_y(...) 48 interpreied as zero for momintegral a'rgumem.' -
It is still required that an even form ¢, ewist to Inink.e the 1'dent1i;1es
(40c) and (41c) realizeable! There is a rather elajbol.'a'te~ m:lthme'bw theory
on the existence of even forms ([11], [9]) into which it is 1101? NECORIALY
to enter. We merely note that for various values of m with N (s) = —1
it may well happen that there are many even forms @,; nevertheless
for each of these @, (possibly with different Ry-functions) the s(b)-func-
tion will be always given by (4lec) for n =4, 8. -
‘When m = 2 an even form coming under Lemama 7 (for n = 4) i8

(422) Qo = 2(E+b&+ B+ B+ &E+E)+2V2 (L &+ Lb+ &)
For this function, from the methods of [1], it follows that R,(u)
= 48D (u[2); hence (41c) becomes

by B
D D(a+bV2) = 5oy (b).

= —bVE

(42b)

(Of course, here we have adapted the D-function of (2) to rvefer to Q('I/Q),
where & =1-+V2 .) On the other hand, (40¢) becomes

alv2

_}j D(a-+DbV2) = oy(a) - dog(a/2).

b= —afy2

(42¢)

When m = 3, we have an even form (n == 2), namely

(43a) Qulfry £) = 284+ 2V3 £, 6,285,
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hence for 7 = 2¢ we have for the vector Eo=(&,..., &)

(43}3) QO(E) :Q*(Ely 53)++Q+('5n 1 €n)-
For n =4, by (6b), Ry(p) = 24D (u/2) and
alVs )
(430) D D(a+1y3) = 3 (a)+ 90y (a/3).
besa))'3

(There is of course no analogue of (42b) since N(e) = 1.)

When m = 5, the theta-function presents a more complicated situ-
ation ([5]) as there are ten conjugates (not four). The data for the corres-

ponding result for n = 4 can be extracted, however, from Maass’® work
[8]. There the following even form was displayed:
(Ha) Qo = 2(E+ 84 8- &8+ 8 +2e (6 6+ &)+ 26 (8 6+ £8,),

where & = (1+ V| g)/2, and it was shown that R,(u) = 120D (). Hence
our methods yield the following identity:

b3 ad b'V/F\
> D( ) = 2a(0)

t=-by§

(44D)

(where the summation is restricted to ¢ = b(mod2) of course). The details
of (44b) are omitted since they come under a different formalism.

D. Rational results. The summation functions 7(a) and s(b) actually
can be interpreted as “rational” functions. To take the simpler case,
we see
(46a)  r(a) = number of representations "ot Qo = 2(a-}- bl/';n:)

with e prescribed and b unspecified,
or, if we write @, =
tional part”, then

(45D)

WO+ Vm@P in terms of a “rational” and an “irra-

r(a) == number of representations of QF = 2q4.

Only one case really works out elegantly. Take Qu(&, &) in (43a)
and note that if & = @ —a,t-a, 1/3‘, & = mawwlt—{—wzl/ 3; then the ration-

al part of Q. v 20" (@, 2.)+ 2Q™ (x5, #,) where Q* is the (nonclassic)
form

(46) Q" (w1, @) = @ +-m o tah.
Thus the rational part of (&) in (43b) becomes (for n = 2t)
Q(t) == Q’{‘(mu @)+ QM (@, Put);
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and r(a) for (43b) becomes (say) r;(a), the number of representations of
QO = @ in terms of the 4t-tuples of rational integers (zy,...,my). Tt is given by

=3) (a3
( 45) af =3 o)
r{a) = —\—1]" -

Byl 14(-3)

for ¢+ =1 and 2, according to Lemma 7.

In the case of V2 and V5 the rational ostenary forms corvespond-
ing to (47a) are too complicated for the identity of type (40¢) or (41c)
to be worth explicit formulation. Of course these rational forms (unlike
the algebraic forms) have nonunit determinant.

In order to present the simplest type of identities we ignored somne
very interesting noneven cases such as the “sum of four squares” in Q(V2)
and Q(l/g) where the theta-functions 6g(1,1; U, —U) and 04(L, 1;
eU, £'U) satisfy the system (36). A partial treatment of these cases appears
in [1], [2] but a more thorough treatment of identities, indeed a treatment
embracing a larger number of tield types, must wait for a later occagion.

(47b)
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1. Let p be a fixed prime and » an integer > 1. Let Z, denote the
ring of integers (mod p”). By a funciion f over Z, will be meant a mapping
of Z, into itself; that is, f(a)eZ, for all acZ,. Two functions f, g over
Z, are equal provided

fa) = g(a)(mod p™)
for all aeZ,.

A polynomial F(x) is a function of the type
(1) F(x) = ap+ oo+ aa*-+. ..

When n = 1 it is well known that every function over Z, can be repre-
sented as a polynomial. When n >1, however, this is no longer true.
For example, the function defined by

0 (a=0),
1 (a=0)

(af EZ,I) .

(2) fla) =

cannot be represented as a polynomial. This follows from the observation
that for any polynomial #(z) we have

3)

clearly (2) and (3) are not compatible.

The representation (1) is, of course, not unique. When »n = 1 the
representation is unique provided degF(x) << p. When n =1, let F(x),
G(w) be two polynomials such that

(4)

F(a-tp) = F(a)(modp);

F(a) = @(a)(modp™)
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