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On certain elliptic functions of order three
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P. Du VAL (London)

1. The parametrisation of the general plane cubic curve, in the form
1) ¥ =48 — g.0—gs,
where ¢,, g, are constants, by means of the Weierstrassian elliptic func-
tions
T =fu, y=4ppu
is familiar. There is, however, another canonical form of the equation of
the cubic, in terms of homogeneous coordinates (z,¥,2)

(2) a*+yP L +b6mayz =0,

which from a geometrical point of view is at least as important as (1)
and the elliptic functions by which this equation can be parametrised
have not, so far as I know, received attention. A brief study of their
outstanding properties is the object of this note.

2. We denote by 2 a lattice of complex numbers o = pw;+ qws,
where p, g range over all integers, and I(w,/w;) > 0. (I(r) denoting the
imaginary part of any complex number z.) n will denote the lattice
of numbers nw for all » in Q. o, ®, are a basis for 2. We define also

Wy = —W;— W, @ = 0;— 0.

Q has four sublattices 2P (5 =1,2,3,4) (i.e. subgroups with respect
to addition) of index three, with the bases

wgl) = oy, w(lz) = 3wy, w?) = 20;— W, w£4) = 20,+ 03,
(3) ) (2) (3) (4) 92
wy) = 3wy, W57 == g, of! = —w;+ 2w, wy! = 0+ 20,,

of which Q® contains o; but none of the other three of w;, wy, ws; w,.
30 is a sublattice of index three in each of these; in fact, with fhe con-
vention (3) as to their bases

(4) 30 = (Q(U)@) — (9(2))(1) — (Q(3))(4) — (9(4))(3)‘
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0 ig generated by adjoining w; to 3Q2; in the same way 500 is gen-
erated by adjoining %e; to 2, and Q by adjoining w; (j # ¢) to QO,

3. A change of basis

’ ’
w; = ao,+bwy, w3 = cw;+ dw,,

yhere @,b,c,d are integers and ad—be =1, permutes the four sublat-
tices O evenly amongst themselves, and effects on the cight residue
clagses +w; (mod3Q2) (1 =1,2,3,4) the permutations

(ewy, way 03, 00y), 4 (wy, w3, 0y, @),

(g, w1, Wy, @),
E(wsy —op, w5 —wg),  h(—or, 0 0, —0,),
(5) £ (w4 0y — w1, — ),

E(wsy; — gy — o1, wy), £ (—wyy — oy, 05, @),

+(— 0, v, — Gy 0),

E(wy; 03y —wyy —oy), £ (w5, — 0y gy — 1),

F(— 0y, 0y w5, — ),

where the ambiguity before the bracket affects the signs of all four ele-
ments simultaneously. The changes of bagis effecting the identical per-
mutation are those of Klein’s subgroup Iy, of the modular group I, and
each of the twelve permutations (5) is effected by a coset of I, in I'
(Klein-Fricke, Modulfunktionen I, pp. 353-354.)

.4. In accordance with the usual convention, we take the period
le.mttme of the Weierstrassian elliptic funetion pu to be 22; and we con-
sider the gquasi-elliptic function Zu, defined by

fu=—pu, {(—u)=—1lu,
and satisfying

L(u+t20;) = Lut2n  (i=1,2)

where 7, 7, are constants; from this we define four si Lo
functions ’ simply periodic

hu=tu—"ly  (i=1,2,3,4)
(Where 5, = — 3, — 0y, 5 = 7,— 7,) satisfying
G(ut20;) =L (i =1,2,3,4).
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‘We define also the constants ¢; = 3Z;(3w;) (4 =1,2,3,4). From the
addition formulae for {u, fou we have

1 " (§os)
2 p'(3w)

so that (as @"'v = 69 u—1gs)

(6) 3&,(% UJ,;) = g‘) (% O)i))d,

1
) 3@(%(‘)1) ZZ(@'(%M)

(") p3o) =1d, ' (Go) = igpla—1id.

5. Any three of the four guantities ¢; (¢ =1,2,3,4) satisfy one
or other of the eight relations

(8) Cq;j:EG,'iEZCk = 0', cij;ezcjjzsck =0

where ¢ = exp(4=i). (We denote the square root of —1 by i, to distin-
guish it from 4 used as a variable suffix.) For the product of the left hand
members of (8), substituting ¢} = 3a;, and removing the factor 81, is

(9) [(@; 4 @+ @) — (@ 0+ a0+ a; a;)F —12a;0;0,(0; + a;+ ax);

but from (6), using the values of p"u, p""u as polynomials in Pu, ay, @,
ay, @, are found. to be the roots of

1 1
(10) t4—592i2—gst—28‘g§ =0;

dividing this by {— a5, Where aj is the remaining root, ai, a;, a; are seen
to be the roots of

Pt 0,7+ (0 — 3g2) 8+ (ah— %g20n—gs) = 0;
and putting the symmetric functions from this into (9) it reduces to
(39:)° — 120 (@3 — § 9200 — )

which vanishes, since a; is a root of (10).

6. For any given choice of ¢,j,k from 1,2, 3,4, the same one of
the relations (8) must hold for all lattices 2£2. The homogeneity of fu
shows that it must be the same for 2n.0 as for 22; and each c;, for the
lattice (2/w;)2, whose basis is (2, 27), where T = ,/wy, is easily seen to
be a function of 7, analytic throughout the open upper half of the 7 plane,
I(z) >0, so that the relation in question iy an identity between ana-
lytic functions of 7. But for the triangular lattice, with ;: wy: @,
=1l:s:¢,wehave ¢;:6:¢ =1: & : ¢, again from the homogeneity of
tu, so that ¢+ e'c;+sc; = 0. Moreover, a change of basis permutes
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the eight quantities +¢; (¢ =1, 2, 3,4) in the same way as it permutes
the eight residue classes 4 o; (mod3Q) in (5). Thus the four relations

are
0y — 03— 86, = 0,

—0 +&ley—ec, =0,
(11) )

£C;— £Cy —¢ =0,

o+ e6y -+ ¢y =0

of which any three are linearly dependent.
7. We now define the four functions
(12)  gi(w) = Guteli(u—Ro)+ e (utdo) (1 =1,2,3,4).

These are elliptic functions of order 3, with period lattice 282, having
simple poles with residues 1, ¢, ¢ in points congruent to 0, 3w;, —fw;
(mod 292), and satisfying

(13) gi(utFo) =egi(u) (i=1,2,3,4).
Their values in the eight residue classes 4 $w; (mod 202) are seen to be
=30, —fw; 30, —fo, 3o, —3o; fo, —Foy
gi(u) = oo co b 0 0 eby 0 £2hy
(14) gy(u)y= 0 by, oo co g%, 0 0 &by
gs(u) = &b, (1] 0 &2h, o oo 0 by
gi(u) = &b, 0 by 0 b, 0 =) co

the zeros being given directly by (11); where for instance
_ i
by = §(ee1+ eyt o) = ;/? (61 —6,)

on subtracting %(c%,+ec,+¢;) = 0; and similarly
V3by = i(e3—ey),

(15) V3, =i(e;+e¢,),
V3b, = —ifer-cy),
V§b4 =1i(e;—¢,),

VBeb, =i(e40), V3 = —i(o,+ay),

Veh, = —i(oi+e5), V3e'h, =i(e1—0,),
V3eb, = i(e,—e,),

V3eb, = i(es—oay),

Vgezbs =i(e;+¢,),
V36, = i(cy—cy).

(14) means that if the points of the lattice %2 are divided into rows
parallel to w;, these are in cyclic order (from left to right, looking forwards
along w;) a Tow of poles, a row of zeros, and a row of values by, eby, b,
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It may be remarked that from (9) it is possible to express the symmetric
functions of the four quantities (¢, & ¢,)*, (¢; & ¢,)* rationally in terms of
Js, g3, and a cpbe root of A = g,—27g3; and hence to show that the 24
quantities +&b; (¢ =1,2,3,4; j =0,1,2) are the roots of
AZ
1 (15 4+ 8¢,)° + 8 AL - 244° (1 + 8g,) = o
8. If (w;, w;) denotes any one of the four ordered pairs (w, wq),
(g, — 1), (w3, —0g), (@4, ws), We see from Liouville’s thecrem that
g (%) gi(—u—3%w;) iz a constant, the zeros of each factor coincid-
ing with the poles of the other. As at v = % w; each factor has the value
b;, the constant value of the product is bi. At the origin, as the pole of
the one factor has residue 1, the derivative of the vanishing factor is b}, ie.

gi(—3w) = —0i.

The product g;(u)-gi(w—3w;) g(u+4w;) is also a constant, the poles
of each factor being the zeros of the next, in cyclic order. At the origin,
the first factor has a pole with residue 1, the second a zero with deriva-
tive —b%, and the third the value b;; the constant value of the product
is accordingly — bi. We have thus

b} (—u
ety = b BT

16 i 2 i) =

9, Since the transformation u — u-+ %w; multiplies g;(u), gi(—u)
by factors s, s* respectively, it leaves gi(u), gi(—w), and g(u): gi(—u)
unchanged ; i.e. these are functions with the period lattice 02 instead
of 20, and with poles only in points congruent to the origin (mod 2020),
of orders 3 in the first two cases, and 2 in the last. Also as g}(u)+ gi(—w)
is even, its poles are only of order 2. Thus this and g; (u) g;:(—w) are func-
tions of order 2, with the same double pole; there is accordingly an iden-
tity, which we can write

(17 gl (u)+ gl (—u) = 6m;bigi(w)-gi( —u)+bi.
The value b% of the constant term is obvious, as the values of u that make

one of g;(u), g;(—w) vanish make the other equal to a cube root of B.
The constant m; however remains to be found.

10. To find explicitly the algebraic identity between any two ellip-
tic functions, we have to eliminate gu, #'u between the rational expres-
sions for the given functions in terms of these, and the identity

(18) U = 4p°u—gapu—gs.
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Now using the familiar identity
P'u

pu—pv

(which still holds if ¢ is replaced by ¢;, the linear terms on the right can-

celling) and putting for each of the arguments «, v in turn the constant
value w;, we have

= (u+0)+ E(u—v)—2lu

(19) 8i(w)+gi( —u) = Vil (u— } ;) — £ (u+ Booy)]
_ oy [ 8 Gw)
-V e
and
(20)  gi(u)—gil—u) = 2L u—i(u— 3w) —Gy(ut Fooy) = =
ou— e’

and solving‘ these for pu, p'u in terms of g;(u), g;(—u), and substituting
the result in (18), we obtain after quite straightforward simplification

(21)  gi(w)+gi(—u) = 2V3ig;(u) g, (—u)+3V3i (i..@__},cq)
e 27

11. Comparing (21) with (17) we obtain

(22) B =3,/§i(i.& _icq) e e
4 c: 27 Y Bl T — .
i V3,

These in turn give us further relations b
: etween the constants. On t
one hand substituting from (22) in (6) we have n e

(23) ORo) = —mibi, 3V3' (Jar) = ib(8mi+1),

and on the other hand substituting from (15) in the second of (22)
)

41 —c
= 1 ¢
™ g = )y &y = A
3T G+ 03 Cy ¢y
Co e
m, = _ 2 —¢
T ate’ ™= ,  &my = 2,
(24) (N 06—, oo,
— ¢ ¢
My = omy = —— 2 %
’ 3 = &my =
Gt orte,’ ? cy—¢,’
Gy [
= 4
My y EMy = &my = o
cl_cz 62—03 ’ 4 c P .
3—C1
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12. The function g,(%)-+g,(—#) is even, and of order 2, having no
pole at the origin, but simple poles with residues +V3i at u = L3,
(mod 28). Similarly, &’g;(u)+ eg,(—u) has no pole at u = §w,(mod 2%2)
but simple poles at w =0, — %w;(mod 22). Thus the quotient

&g (w)+egi(—u)—b
gi(w) gy (—u)—by

has simple poles at u = 0(mod2Q), simple zeros at % = o, (mod22),
and the finite value —1 at ¥ = —%w,(mod2Q). Its values at the re-
maining residue classes - w;(mod22) can be written down directly from
(14), and are found to be those of —g,(u)/b,; and as these values include
all the poles and zeros of both funetions, and some finite values as well,
it follows from Liouville’s theorem that the two functions are identically
equal. In the same way, any of the eight functions g;( +u) (t=1,2,8,4)
can be expressed homographically in terms of any of the pairs g;(4-u)
(j 5= 4). In particular,

galu) Sgy(u)fegi(—u)—h

b, gi(w)+ g (—u)—b !
~~gs(“) _ eg;(u)+&°g (—u)—eb,

b, fgwtem(—u)—b’
g, (u) _ 8g1(“)+32g1(—'”/)—‘52b1

b, e, () g1 (—u)—b !

(25)

and the other homographies all follow from these by replacing « by —u,
together with ordinary linear transformation theory.

13, If we substitute
g:(u) : ga(—u): —bs
= &g () + 6@ (— u) — by: gy (w)+ g1 (— ) — by 1 ga (W) g1 (—w)—by
in the homogeneous equation (17) for i = 2, it becomes
(3 6my) (g} (w)+ g} (—u) —b}) = 18 (1 —ma) by-g1 () g1 (— %),

which must be the same as (17) for i = 1. Thus we see that

1—my
= 1+2m,’
and similarly
S—emy  e—eMmy

= e+ 2m;y = &+ 2my,
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In fact the twelve quantities dm; (1=1,2,3, 4;j=0,1,2) are the
transforms of any one of them under the twelve homographies

1—m & —em s—&'m
m—> My y o3 3 y
14 2m e+ 2m & -+ 2m
B 1—é'm 2 1—
(26) ] om, 2 ’ e; m , e( m),
e 2m &4 2m 1--2m
. 1—em &(1—m) e—m
&'m, ~ , , .
l & - 2m 1+2m &= 2m

These form a tetrahedral group. Its invariant vierer subgroup, whose
elements interchange my, my, My, m, by pairs, consists of the top
row of (26), the other rows being ity cosets. We shall call a get of
twelve values of m, which are in this way the transforms of any one of
them by the twelve homographies (26), an m-set.

14, The three m-sets in which not all the twelve values are distinet
are the fixed points of the involutory elements:

m=—}14V3), —}e(1xV3), —}I(1+V3),
counted twice; and two equianharmonic sets, each counted three times,
and each consisting of one fixed point of each of the four pairs of inverse
elements of order 3 in the group, namely

m=0,1,¢e¢; and m=oco, —}, —}e, —}.
The equations
(27)  (8mf+20m*—1) =0, mP(m’—1* =0, (8m*+1)® =0
of these three singular m-sets satisfy the linear identity

(8m° +-20m* —1)*— 64m® (m* — 1) — (8m* +1)° = 0,

and every m-set has an equation which can be expressed as a linear
combination of any two of (27).

15. The four stationary values of any elliptic funection of order 2
are the roots of a quartic equation whose absolute invariant J is equal
to the absolute invariant J = g3/27¢% of (1). Now g;(u)+gi(—u) is of
order 2,.aJnd being even, its stationary points are the origin and the three
balf period points. But from (19), as the origin ig the pole of gu, the value
of g;(u)-+g;(—u) there is —2V3ic; = —2m;b; by (22); and by (20) the
half period points, being the zeros of p'u, are the zeros of @i (%) —gi(—u)
Thus, as (17) can be written in the form ' ' ‘

[gi () + go( — u) 1P — 6m; by [gs () 4+ g (— u) '~ 4b
= —3[gi(u) —g:(—w) [gi () + g, (~u) - 2m;b,;],
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the four stationary values of g;(u)-+g;(—w) are the roots of
(8- 2m;by) (£ — 6m; b2 —4b%) = 0.

The invariants of this quartic are

Gy = 12btm;(mi—1), Gy = bE(8m:4-20mi—1),
A = G—27G% = —27b1* (8mi—1)°

and hence

64mi (mi—1)°

=210 = — L _
(28) I = G:[2765 (8mé+20mi — 1)

Thus the twelve quantities &m; (4 =1,2,3,4; j = 0,1, 2) are the roots
of an equation which can be written

64m®(m*—1) —J (8m°+20m* — 1)’ = 0,
(29) (8mP+1)°4 (J —1)(8m*+20m* —1)* = 0,
J(8m* 1)+ 64 (J —1)m*(m®—1)°* = 0.

16. Bach of the twelve quantities &'m; (1 =1,2,3,4; j =0,1,2)
is by (24) a function of 7 = w,/w,, analytic throughout the open upper
half of the v plane, and having the group I}, as group of automorphisms.
If m = m(z) is any one of these, v — m(z) is & mapping of the fundamen-
tal region of I',, as shown for instance in Klein’s Fig. 81 (loe. cit.) onto
the m plane, which can be taken to be his Fig. 80 (but turned through
a right angle, and with the shaded and unshaded regions correspondingly
interchanged); the lines and circles in the latter figure are the loci

Im)=0, I(em)=0, I(£m)=0,
Pm+12 =3, [2mtel =3, 2m+f =3,

whose intersections are the fourteen points forming the three singular
m-sets (27); and a fundamental region of the group (26) consists of any
unshaded region of the figure together with any shaded region adjacent
to it (with suitable inclusion of only half the boundary of the region.)
Which of the regions in Fig. 80 corresponds to which of those in Fig. 81
depends of course on which of the gquantities &m; we have taken to be
m(t).

17. We now define g;(u) to be an elliptic function of order 3, with
period lattice 242, having a triple pole at the origin, with leading ferm
1/u®, and a triple zero at ¥ = ;. It is evidently of the form — 3p'u-t
+Apu-+B, where 4, B are constants, determined by the conditions that
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@i(3w;) = @i(§;) = 0. Tt is easily found that

1 3
(30) @(u) = *g@ﬂ—olgm-k— 2z "i‘g%-

It is clear that each function gf(u) is one of these functions g;(u), but
constructed for the period lattice §0Q0 instead of 20Q. In fact, if (¢, j)
is either of the ordered pairs (1, 2), (4, 3), we have

g(u]29) = gi(u | 329), gl |20) = —g;(u] §R9).
Replacing 2 by 20, 00 these give in virtue of (4)

piln | 20) =gj(u [ 229),  ¢(u|20Q) = —gi(u|20).

Thus, noting that as the poles and zeros of ¢;(u) are all triple its cube roots
are three distinct functions, and defining f;(u) to be that one of these
whose leading term at the origin is 1/u, we see that

(31) fi(u|29Q) =g;(u]200), f(u]|20) = —gi(u]209),
(4, j) still being either of the ordered pairs (1,2), (4, 3).

18. Applying the property (13) of g;(u) to £;(«), we have the results
fi(u+20;) = & (w),

where now (¢,4) is any one of the ordered pairs (2,3), (3,1)
(4,1), (4,2), (4,3); and also

(33) fi(ud20,) = £;(u)

since 2w; is an element of 200,

(32) £i(u+20;) = efi(u),
) (1,2),

(% =1a2!374)1

19. From (30) we have
‘%(’”’H‘%(—“) = —2¢;(pu— }c}) +(}ga/ci—}o}),
BG4) () p(—v) = (—pu+1gpu+t1g)+ (apu—3gje;—}d
—(pu—%ei),

after some simplification, and making use of the fact that }ei is a root
of (10). Identifying cube roots on both sides of (35) that have the same
leading term —1/u’ at the origin,
fi(u) L (—u) = —(pu—1d}),
8o that
B(w)+ 1 (—u) = 208, (w) £;(—u)+ (hgnfo;— 3ed).
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This is of course the cubic identity satisfied by f;(x) corresponding to
(17) for g;(u). Writing it analogously

£w)+ 5 (—w) = 6mibif;(u)- £;(—u)+ b,
we see that

b = 1g.0i—

c = ¢
(35) p (3 wd),
3mib; = ;.

20. Differentiating £(u) = ¢;(u) as given in (30), and recalling that
o' = 6p’u—4%g,, we obtain
88 (u) £; (u) = —3(pu—1}&) —cp'u—2cipu+ g+ 4ot
=33 (u) £ (—u)+ 26,8} (w),
whence
£i(u) = 2mibit; (u) — £ (—w).

Further, since g;(u) is the same funection as f;(«), with a different period
lattice, and with the constants m;, b; in place of m,, b;,

(36) gi(u) = 2myb;g; (u)—

Eliminating g;(—u) between this and (17), we see that 2 = g;(u) is a solu-
tion of

gi(—u).

d d 2
(—”f — Zmibim) (i’i + 4m, bim) = (@ — B
du du

21. The addition and duplication formulae for these functions can
be found from the fact that for any constants A, B, 0 the funetion
Ag; (u)+Bg;(—u)+Cb; has zeros whose sum iz = 0(mod20), say a,
B, —(a-+p). Putting for brevity

b2 = gi(a), b, = g:i(8), biwy = gi(—a—§),
bigy = gi(—a), by =g(—B);,  biys = gi(at )
(g, 95), (23,ys) are the common solutions of

Axz+By-+C =0,

we see that (2, %),
@y —2may—1 =0,

whence, eliminating #, v, ¥,, ¥; are the roots of
(4> —B%)y*+ 3B (2mA*—BO)y*+ 3C (2m;A*—BO)y
and from the coefficients of the two middle terms

Yo = — By1y2+0(§1+9a)
? By +9:)+0

- (A3+Ca) =0;
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But since (zy, ¥1), (%.,Y,) satisfy Ado+By+4C =0,

A:B:C = (—1): (@—m): (1Y — D),
whence
Y3 — By
Yy = =
D1Y1— BYs
or
(0)g}(—B)—gi(B)gi{—a)

gilatp) =1

gi(a)g(—a)—gi(B)gi(—B)

Similarly, for the case f = a, using (36) we find that the condition for
Ag;(w)+Bg;(—u)+0Cb; to have a double zero at w = «, so that the re-
maining zero is at # = —2a, is

A:B:0 = (2mw—y3) : (2myy,—ai): (2mimy 9, +-1),
whence
_ yi(oi+1)
R
or
g:(— a)[g}(e)+b}]
80 =" a—el—a)

22. The rational expression of g;(u) in terms of f;(u) is an elliptie
function transformation of order 3, expressing a funetion with period
lattice 22 in terms of the same function with period lattice 2Q0®. One
form of this is
£ (— ) £ (u) - £, (w)

i (u) £ (—w)

where (¢,4, k) is an even permutation of (1,2, 3), and

gi(u) =

ﬁl(—ib)'fz(_u)'fa
1 (u) f,(—u)

These are easily proved by remarking that the product of the multipliers
on the right, for any of the translations u —u+2w; (4 = 1,2, 3, 4),
is unity, by (32), so that the right hand member has period lattue 20
that the zeros and poles are the same for both members; and that bo‘rh
members have residue 1 at the origin.

Another form of the transformation follows from the fact that
the even function

(37) gi(1)+ gi(— u)+ 2m;b;

(=)

gy (u) =
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has a double zero at the origin, and simple poles with residue +V3i at
% = +%w;; the same funcbion of (w—3%w;) is

(38) & g () + egy(—u)+ 2m;by;

thus the guotient of (38) over (37) has a triple pole at the origin, a triple
zero at w = %o;, and the value —1 at = —}w;; and as g;(u) = £ (u)
hag the same poles and zeros, and the value b} at u = — 2w, it follows
that

5L *gi(u) + egs (— u)+ 2m; by
gi(w) g (—w)+2mb;

Replacing » by —w in this, and eliminating g;(—wu) between the two,
we have

fiu) =

efd (u)+ 2 £ (—u)— b

Blu)+ 55 (—u) =0
23, We can regard as the corresponding modular relation the equa-
tion connecting my;, m; obtained by eliminating d;, b, ¢; from (22),
(35); since m; plays for these functions the same part, of a constant de-

termining the shape of the lattice, as the modulus % does for the functions
snu, enw, dnwu. This relation can be written in either of the forms

[ (8mi+1)(8mi’+1) =1,

(39) gi(u) = 2m;b;

3+ ,3+8ﬁ0

(40)
m3 1
—— = 8mi+1 =— .
l mm i+ ia+1

In terms of any one of the twelve modular functions which we denote by
m(t) this relation has the expression

= — 3> (8w (r)+1)(Bm*(z))+1) = 1.
We also have from (22), (35) the relation
m;b; = V3im;b;.
24. The application of these results to the cubic curve is obvious.
The parametric equations
wryrz =gi(u):g(—u): —b
lead Ito the equation of the curve parametrised, in the form

By 2 bmmyz = 0
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by (17). The lines # = 0,y = 0, 2 = 0, cut the curve in its nine inflexions

=0, +%w; (j=1,2,3,4). The 18 projective transformations of

the curve into itself

(41) (z,y, 2) — all permutations of (z,y,#), (e, &'y, 2) and (2, sy, 2)

correspond to the 18 transformations
w—> +u, +ut+do;, (=1,2,8,4)

with the . following correspondences between the generators

U —> — U, (#,9,2) > (y,2,2),
(42) w—>utdo;, (2,98 > (e, 5y, 2),
u—utfo;, (2,9,2) >, a,9),

the last of these following from (16), with (¢, j) related as there.

25. The 216 projective self-transformations of the inflexion confi-
guration transform the cubic into the twelve curves

2yt 2+ 6dmymyz = 0

which are all the members of the hessian pencil that have the same ab-
solute invariant J. In this group, (41) is an invariant subgroup whose
cosets correspond to the individual elements of (26); in particular,
(@,y,2) > (w,y,e2) corresponds to m —em, and

(®,9,2) > (Fot+ey+2, sty +z,a+y+2)

to m — (1—m)[(1+2m);
of order 216.

(1=1,2,3,4;j=0,1,2),

and these, with (41), generate the whole group

26. From (36) we see that the stationary points of the rational
function @z on the curve are the zeros on it of the polar of (0,1, 0),
¥*+2mzx, a5 we expect. Caleulating the derivative
a ( Agi(w)+Bgi(—u)+0b;
du \ A'g;(w)+B'g;(—u)+C'b;

in the obvious way from (36),

we can verify also that the stationary

Ax+By--Cz
oints of the rational function ——-or——F—
» . Ao By+07
curve of the polar of (BC'—CB', CA'—A(', AB'—BA'),

27. The results of Seetions 22, 23 give us the following theorem,
which I have not seen stated elsewhere (though it is rash to claim ag
new any result in so thoroughly explored a field):

are the zeros on the

icm®
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If m,m' are related as in (40), then
X:Y:—2m'Z = e+ 0+ et Aty

is a unirational transformation of the eurve

(43) oy bmayz = 0
into
(44) X4+ Y3420 6mXYZ =0,

in which each point of the latter curve is the image of three points of the
former; the linear system

(45) Mea® + &y +2)+ (@0’ + ey’ +2°) 42 (@ +4° +2°) =B

trace on (43) a linear series compunded with an involution of order 3,
whose projective model is (44). The system (45) is in fact (being a net)
compounded with an involution of order 9, each of whose sets lies by threes
on three curves, (43) and those obtamed by replacing m by em, &m, all
three of which are equally transformed into (44).

Regu par la Rédaction le 14. 8. 1963
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