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ACTA ARITHMETICA
IX (1964)

On the addition of residue classes modp
by
P. ErpOs and H. HEILBRONN (Bristol)

In this paper we investigate the following question. Let p be a prime,
@y, ..., & distinet non-zero residue classes modp, N a residue class modp.
Let

F(N}=F(N;p; 01505 @)
dénote the number of solutions of the congruence
€16+ ...+ epay = N (modp)

where the e, ..., ¢, are restricted to the values 0 and 1. What can be
said about the function F(N)?
‘We prove two theorems.
THEOREM I. F(N) > 0 if k > 3(6p)"~.
TEEOREM IT. F(N) =2"p~(1+0(1)) if ¥*p* = oo as p — oco.
Theorem I is almost best possible. Put

ay=1,a,=—1, a6,=2, ag = —2, ..., a = (=11 [{{E+1)].

Then it follows from an easy caleulation that F(}(p—1)) =0 if
k < 2(p'*—1). Theorem II is best possible. Define a,, ..., ®, as above
and assume that p*® <k = O(p*”®). Then it follows from our analysis
that

limp2~*F(0) > 1.

D00

In the method of proof the two theorems differ considerably. The
proof of Theorem I is elementary, depending entirely on the manipu-
lation of residue classes modp, whereas the proof of Theorem II is based
on the application of finite Fourier series and simple considerations on
diophantine approximations.

In an appendix we state various further conjectures which we are
not able to prove.
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Proof of Theorem I. We start with a definition. Let by,..., b be
7 distinet residue classes modp. Then B(z) denotes the number of solu-
tions of the congruence
»=b;—b;j(modp), 1<i<l,1<j<L
We recall the inequality
(I.1) B(w+y) = —~1+B(@)+B@),
which is easily proved as follows. Assume that
@ = b;—b;(modp), y = b,—by(modp).
If j = g, this implies that
x-+9y = b;— by (modp).

As there are only I possible values for b;, (I.1) follows. I can also be writ-
ten in the form

(1.2) (1—B(a+y) < (1—B@)+[—B©).

LemMa L1, Let 1< m <1< $p; ay,..., 6y are distinct non-zero
residue classes modp. Then there exists an ¢ in 1 <@ <k such that

Bla) < l—;m.

Proof. Put » = 1+[21/m]. By Davenport’s theorem [1] about the
addition of residue classes modp, applied to the residue classes 0, a;, ..., dy
we obtain % > Min(p—1, rm) distinet non-zero residue classes ¢;,..., ¢
which can be expressed as the sum of at most » residue classes a; (1 <
j <m), which need not have distinct indices j.

As ) :

4 -1
D) Ble) <)) Bs) =11—1),

8=1 z=1

it follows that there exists an s such that

Be) <I—1r™ <10—1)Max((p—1)7 (rm)™) < 31
or

1—B(cs) > }1.
Hence, by (1.2), there exists an a; such that
1—B(a) > 30~ > 3 m(m+21"' = i m,

which completes the proof of the lemma.
Proof of Theorem I. We begin with a definition. If

1<u<3k
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we consider all possible subsets S, of u elements of the classes
Qyy Aoy ooyl 1y (1798

For each subset §, we consider the number L(S,) of distinet residue
clagses which can be written in the form

618 o oot gy,
‘where

0orl if
@i = ;
0 if

a; lies in 8,
a; does not lie in 8.
Next we pub
L(w) = maxL(8,),

where 8, ranges over all subsets of w elements. It is easily verified that
L(l) =2, L(2) =4, and that L(w) = w-+2 for % >2. It is also clear
that L(u-+1) = Lu).

Our next step is to prove the inequality

(13) L(u+1) > L(u)+ 5 (u+2) for

provided that L(u) < §p.

We assume that S, is the set for which L(8,) = L(u). Then we have
L(u) residue classes b, ..., bz which are representable as linear com-
binations of the a; in 8, with coefficients 0 or 1. We also have at our
disposal m = u-2 residue classes a; not in 8, with 1 <4 <2u+2.
Lemma L1 is applicable as

m=u+2 <L) <ip.

S0 we obtain an ¢ in 1 <4 < 2u+2 éuch that a; not in 8,

2<u<ik—1

Bla) <im.
We mnow define §,,, as the union of 8, and a; Then, by Lemma I.1,
L(u41) > D(8up) = L)+ (1—B(a) > L(w)+5m

which proves (I1.3).
By addition, it follows immediately from (L.3) that either L(w) > $p
or that

u—1

L(w) > 44 Y (n+2) > 55 (w-+1) (u+2)

n=2
for all » < }%k. Hence, putting ¢ = [(6p)*], we have in any case
L) = $p-

Turther we may assume that §; contains ai, ..., a.
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We now apply the same argument to the 2i residue classes @z, ..., ay.
Again a linear combination of at most ¢ of them will represent at least
half the residue classes modp.

Thus we have 2 (not necessarily disjoint) sebts each containing at
leagt half the residue classes modp. From this it follows at once that
every N is representable as a sum of an element of the first set and of an
element of the second set. This completes the proof of Theorem I.

Proof of Theorem II. We start by introducing some notations.
Small latin letters denote rational integers, and therefore by implica-
tion residue classes modp. Small greek letters denote real numbers.

A=1logp, p*<k<p,

but until we reach Lemma IT.5 it will be assumed that k < p*°A. The
letter m with or without suffices will denote an integer in the interval
1tk <m < k. 8 is a given sequence of % non-zero distinet residue clag-
ses mod p, denoted by a,, ..., a;. For some permissible values of m we ghall
introduce subsequences S, which we denote, without fear of misunder-
standing, by a;,..., a,.

For r == 0(modp) we put

n

o(r) =o(r, 8z) = Zﬂinz(‘mmn/}’),
n=1

y(r) =y, 8) = ofr, Sm)(m'sphz)_l-

3

We note that y(r) =y, > 0, where y, is an absolute constant. For
given 8, we call r oritical it y(r, S,) < A.

The symbol O implies absolute constants only. The symbol o refers
to p — co uniformly in all other variables, unless stated otherwise.

If for 8 no value of r is eritical, we take no further steps until we
reach Lemma II.5. Otherwise we define

b= Min}’("’; S7174)(A6+k_””/);

where we admit all residue classes r == O(modp), all m in k< m <k
and all subsequences §,, of Sy, containing m terms. For the remainder of
the paper let ¢, m, 8,, be the residue class §, the number m and the sub-
sequence S, for which the minimum is attained.

As some r is critical for §y, it follows that

w0 < Miny(r, 8)4° < 4.
rFEQ

4=y (44 k—m),
we have

Volbk—m+A) < A", m>k—yia.
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Further, for each subsequence S, of 8, where m' > 1k we have
y(ry Bm) = (8, Sm)-

LeMMA IL1. Let r == s(modp) be a eritical value of S,.. Then there
ewist integers 4 and v such that vr = us(modp), (u,v) =1, 1<v <4,
1<u <4 '

Further, assuming that the residue classes sa, (1 < n < m) are repre-
sented by nwmbers in the interval [—%p, 3p], these numbers are divisible
by v with at most 2A4°m’p~? exceptions.

Proof. Without loss of generality we may assume that s = 1 and that
la,| < 3p for 1 <n<m.

From Dirichlet’s principle it follows by a classical argument that
we can solve the congruence vr = u(modp) subject to

1o <4, 1< <pd™, (u,0) =1.

‘We write
or =u+gp.
Because s = 1 is critical, the inequality
sin? (i, [p) > 44m*p™*
has at most }m solutions. Similarly, becaunse r is critical, the inequality
sin? (wra, [p) = 44Am*p~?

has at most im solutions. Hence, for at least m* > {m values of a,
(say ay, ..., Gye) we have
2,.—-2

§in?(ra, [p) < 44m®p~%,  sin’(ara,[p) < 44m*p~%;

o] < APm,  ra,—pg.) < Am.
The last inequality, multiplied with v, gives
‘ua’n”‘p (")gn-qa'n)l < A Pmo < A3l
Putting
hn = Vn— q0n,
this becomes
(IL.1)

The sequence a, contains m* terms confined to the interval
[—Am, AVn]; hence it contains two terms a',a” such that

[ — phy| < Am.

1<a —a <24Pm(m* —1)"! < 44+ 0(1).
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As by (II.1) for some h
[u(a"’ —a')—ph| < 24%m = o(p),

it follows that % = 0 since

fu(a" —a')| < ful (447" +0(1)) < 4pA7+o0(p) = o(p).
And % = 0 implies
' lu| < |ul(a” —a') < 24%m
If |u| < A°, the first part of our lemma is proved. Hence we may
assume
(IL.2) A < juf < 24%°m

We now consider all integers of the form wz where |o| < AY*m. They
contain the sequence wua,, 1< n < m*.

‘We proceed to count how many of these x satisfy
(I1.3) | — phy| < A3m

for some suitable integer k,. If b, is fixed, the number of # in the inter-
val (IL3) is obviously

<14+ 2)u|" 4% m,.
On the other hand, it follows from |#| < A'®m and (IL.3) that
] < | APmp=t - A mp
Hence the number of # in |z| < A'*m satisfying (I1.3) does not exceed

(142 ju| 74 m) (L4 2 ju} A Pmp = + 24 mp™")

< (142~ A% m) (2 + 2 [u] APmp~T)

= 2+ 4A’mp " 4 2 {u| APmp~ 4 4 ]|~ A% m

< 244 A'm? “1+4/12 2 -1_}_4/1—1/2

= o(m) < m*.

As the set of ur with |®| << A'®m contains the set wa, with 1< n

< m*, (IL1) is not true for all # < m*. Thus (IL.2) is disproved, and the
first part of our lemma is established.

Next we note that h, = 0 implies v | a,. We now return to our orig-
inal sequence S,, and remove from it all terms for which either

sin’ (xa, /p) > A~*  or sinz(-nm,,/p) > A4,

icm
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Then we have for the remaining terms
o] <7 7'ATp(L+0(1))  and e, —pgal < = A7?p (14 0(1))
or, after multiplication with ¢, using our previous notation,

|4ty — ph] < n' AP (14 0(1)).

Hence
< (mtHoD)p < p,

V| Gy

< |uaty|-+o0(p)
hn = 0,

P |l

The number of terms we have omitted is
< Ao )+ o)) < 245m’p "
This finishes the proof of the lemma.

LeMmA IL.2. v =1 under the conditions of Lemma IL 1.
Proof. We have by Lemma IL.1 a subsequence Sp. of §, represen-
ted by @i, ..., Gy say, such that

> m—24m3p 2,

v|sa, for *

—%P<3“n<%p; IL<asm.

For this subsequence we have

o(vls) = Zsinz(nsan/(pp)) < '0‘22 (rsa,[p)

< v 2 (En) Z sin? (nsa,/p) < (% '1)‘17:)22 sin® (nsa,/p)

= (Jv7 ') um®p " < pm*p~?

> 2 conftradicts the minimum definition of x as
m* = m(l—24mp~%) = m+o(m) = k.

TeMya I1.3. There ewists an m, in the interval

A21 3-—2<m0<m

which for » >

and o subsequence Sp, Of Smy SGY Gry ...y Gmg, such that

—19, 3-2

Z sint (rsan/p) <
Proof. From the series

m
= 2 sin? (nsa, [p) < AmPp~?

n=1

o(8, 8n)
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we remove all terms for which
lsin (zsa, p)| > 47"

The number of terms removed is

m—my < (40 (s, 8,) < APmPp~?
and

mo my

2 sin® (rsay, [p) < 47 2 sin® (nsay, [p)

n=1 n=1

< A %0(s, 8p) < A~ Ymp~2.
LeMMA II.4.

(IL.4) (8, 8m) = pm’p?
AL5)  o(us, Sp) = w'umip ' +0 (A7 "m’p™)  for 1< |u| <42,
where mq is defined by Lemma I1.3;
(IL.6) o(ry 8p) = Am’p™*  for the other r 5= 0(modp).

Proof. (IL.4) follows from the minimum definition. (IL.6) is a
congequence of Lemmsa II.1 and Lemma IL.2.
To prove (IL.5) we note that for all a,? s 0,

(IL.7) sin®(ta) — *sin’(a) = O(*sin*a).
< jgt

?8in’a = #a’4-0 (f'a*),

(IL.7) is true because for 0 < a
sin’ (fa) = £a* 0 ('),

in
1 = O(f’sin’a) =

whereas for i < a <
sin(ta) < O(#*sin‘a).
From (IL7) and Lemma II.3 we obtain for ¢ =0
o(te, Bp,)— 1o (s, Bmg) = O A~ Pm*p=?).
This gives (IL.5) as

o(ug, B} < a(us Bum)y (s, 8my) = umip=2.
Lemma IL5. If 8, = Hcos('nmn/p), then
»—1
D 1B =o(1)

=1
as p - oo, kp~P » o,

iom
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Proof. We note first that if ¥ < Ap**, then m and m, are defined
and
lim mym~' =1,

P>

lmmk™' =1,
P00

For r =& 0(modp) we have

16,1 < [ leos(mran/p) < {m™ 3 cos® (mra, p)|™*

= {L—malr, S} < 6 S
Hence if » is not critical for 8,,, (II.6) is applicable and
1Bel ge—(l’/ﬂ)Amﬁqn—z <p—z

as eventually m®p~? > 4.
If (II.4) is applicable, it gives

= |B_y| < e WEmIt - arentEt _ (1),

Bs] =

whereas (IL.5) if applicable gives for 2 < |u| < 4*

2, mIn—2 —11,,8,,—2 _ 3,—2
]ﬂml < o~ Audpmep=44+0(a~ Hmdp <e (1/2) |ujyymp ,

2 2 ¢ OB . ggrmyTE(1 _ g=0mTmsTHL  g(1),

U=2

D) 1Bul <

2<uy <4’

This completes the proof of Lemma IL.5 if k < Ap*® and if at least
one 7 is critical for Sj.
Otherwise, we still have for r» == 0(modp)

1Brl << e~ WReSR)
If & < Ap**® and no critical r exists, we have
B} < e~ HRSH o~ WP~ - p2

eventually. Finally, if k> Ap*®,

D)

1<n<e+1)/2

= (140 (1) > 14°

sin’(nn/p) = 8 nip~t

1<n<(k+1)/2

o(r,8x) =2

and
1Bl < e—AS,a < e ___p—z

eventually. This completes the proof of the lemma,
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k
Proof of Theorem IL Put 4 =} a,. Then
n=1

p—1 k
F(N) =p—12 ewZﬂirN/p”(1+e2nirunlﬁJ)
=0 n=1

p—1

— p-—lzk 2 em’,,(A-zN)/pﬂ”

=0
p—1

|P(N)—p~'2" <p72* D) |6, = o(p'2")

r=1
by Lemma IL5. This proves the theorem.
Finally, if % is even, p*® <& < 0(p*")

a =1, ay = —1, a3 =2, ay = —2, ..., a_, = %k, ap = —}Fk,

then 4 = 0, 8, > 0. Hence

»—1
F(0) = p7'2*(14 3 B,) =p72" (14 5.

ra=x]

An easy calculation shows that

k2
B = [ ] cos*(mnfp) ~ @I

N=1
which does not tend to zero. This shows that Theorem II ig best possible.

Unproved Conjectures.

CoNJECTURE 1. It is possible to replace the constant 3-6* in Theo-
rem I by the constant 2.

This is fairly plausible. Let 8% be the sequence
G=1, ay=—1, a3 =2, a, = =2, ..., @ = (—1)*[$(k+1)]
and let G(8S;) be the number of residue classes N for which

F(N;p; 8) = F(N;p; a1y ..., 02) > 0.
Then we can state
CONJECTURE 2. G(8) = G(8%) for all 6 >1.
This would of course imply Conjecture 1.

For ecomposite moduli Theorem I and IT cease to be true. It iz how-
ever reasonable to formulate

CoNyEOTURE 3. F(0) > 0 for k> 2p'*, where p s not necessarily
a prime.

icm

Addition of residue classes modp 159

This conjecture may also be true for finite abelian groups of com-
posite order p, and possibly even, mutatis mutandis, for non-abelian
groups.

Finally we mention a more complicated, but probably easier problem.

CoNJECTURE 4. Let n,s,l,...,1; be positive integers, such that
Lt...+l,=n. Let af (1 <o <s,1<4<L) be n residue classes modn
such that af) == af)(modn) for 1 < u < A < o. Then there emisis a non-
void subset T of the integers 1 < o < s, such that for ¢ in T we can choose
a Ao) in 1 <A<, with the effect that

D) affh = 0(modn).
sin?

Ag the paper goes to press Dr Flor informs us that Conjecture 4 fol-
lows from a recent result by P. Scherk [2]. We also want to draw the
attention of the reader to a theorem by P. Erdos, A. Ginzburg and A. Ziv
[3] which states that each set of 2n—1 integers contains a sub-set of
n integers, the sum of which is divisible by #.
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