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§ 1. Introduection. Let K be a plane closed bounded convex domain
with the origin O as an inner point. In the usual vector notation, let
K+A denote the set of points X+ A with X in K.

Let A be a lattice in the plane. We say that (K, 4) is a lattice
covering of the plane, if the plane is covered by the sets K--4 with
AeA. We define the density 6(K, A) of this covering by

1) 6(K, 4) = a(K)/d(4),

where a(K) is the area of K and d(A) is the determinant of 4. We define
the density of the best lattice covering by K as

2) 6(K) = inf6(K, 4),

the lower bound being taken over all lattice coverings (K, 4).

If X is any set in the plane, we say that (K, X) is a covering by K,
if the plane is covered by the sets K+ A with AeZX. If B is the square
|| < t, ly| <t, we define 6*(K, X, B) as follows. Let N (B) be the num-
ber of sets K-+ A, with A <X, which have a point in common with B.
Then we take 6*(K, 2, B) = o«(K)N(B)/a(B), where a(B) denotes the
area of B. We define the density of the covering (K, X) by

(3) 6*(K, ) = limint6*(K,, ¥, B).

Note that, if ~ happens to coincide with a lattice 4, then 0*(K, A) =
6(K, A). We define the density 6*(K) of the best covering by K to be

(4) 0*(K) = int6*(K, X,
the lower bound being taken over all coverings (K, X).

* Professor R. P. Bambah wishes to thank the U. 8. National Science Funda-
tion for a grant.
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L. Fejes T6th [1] has proved
TaEoreEM 1 (Fejes T6th). If h(K) is the area of the largest hexa-
gon inscribed in K, then

(8) 0" (K) > a(K)/h(K).
If K has O as cenire
(6) 0*(K) = a(K)/h(K) = 0(K).

The proof depends on a construction replacing sets K44 covering
a hexagon H by polygonal subsets which cover H without overlapping,
on Buler’s formula V—E-+F =1, and on an inequality of C. H. Dow-
ker [2] about the areas of polygons inseribed in a convex domain. The
construction of the non-overlapping polygonal covering is rather compli-
cated and has been discussed in detail by R. P. Bambah and C. A.
Rogers [3].

In Part I of this paper we prove the rather similar

TarROREM 2. If $(K) is the area of the largest triangle inscribed in K,
then
(" 6*(K) > o(K)/(24(K)).

If K has O as centre
(8) 0*(K) = a(K)/(Zt(K)) = 0(K).

Our proof is independent of Dowker’s inequality and is based on
a construction, which is similar to the one due to B. Delaunay [4] used
by H. 8. M. Coxeter, L. Few and C. A. Rogers [5] to discuss coverings
of n-dimensional space by spheres, and which seems to us to have many
advantages over that used by Fejes Té6th.

We remark that neither (5) nor (7) are best possible when K lacks
a centre. Inequality (5) is the stronger in some cases, for example if K
is a triangle, but (7) is stronger in other cases, for example if K i§ a regu-
lar pentagon. We also, in § 5 of Part I, make some remarks on the cor-
regponding problem of packing convex domains.

In their paper [3], Bambah and Rogers algo announced:

TemorEM 3. Let K have O as centre. Let Ay, Ay, ..., Ay = A4, Ayy,
oy Anym be points such thai:

(1) the polygon AyA,...4A, is a Jordan polygon bounding a closed
domain II of area a(ll);

(2) for each r, with 0 <r < m, there is a point common to the sets
-K+-Ar5 K+Ar-l;

(3) the points Ayyyy ..., Apypm are in the interior of IT;
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(4) for each point X of II there is an integer v with 1 <r < n+ m,
such that X is in K+A, and the segment XA, is in IT.
Then

(9) a(Il) < (2m+n—2)t(K)

where t(K) is the area of the largest triangle inscribed in K.

It is not difficult to deduce the result (8) of Theorem 2 from The-
orem 3; but (9) is rather more precise and is best possible in many cases.
Bambah and Rogers did not publish their very complicated proof of
(9) as they felt that it had been superseded by Fejes Téth’s work. How-
ever, there has been interest in the inequality, especially since N. Oler’s
proof [6] of the analogous Zassenhaus-Oler inequality for packings, and
it appears desirable to give a proof. In Part IT of this paper we give
a proof which is considerably simpler than the original one. Our new proof,
like our proof of Theorem 2, makes use of regions connected with X,
which Zassenhaus (7) has called ‘domains of action’. These domains of
action have been extensively used by the students of Zassenhaus in pa-
cking problems, and many of their properties are well known to the wor-
kers in the field. But we will prove all the properties that we require in § 3.

Part 1

§ 2. Some properties of strictly convex domains. In this section we
suppose that K is strictly convex. We consider two sets

K, =4K+A4, and K, =A,K+4, with 1, >0,1,>0 and 4, = 4,.

‘We prove the existence of a line having separation properties similar
to those of the radical axis of two circles.

Lemwva 1. Let K, and K, have inner points in common. If one is con-
tained in the other their boundaries intersect in at most one point, otherwise
their boundaries intersect in ewactly two poinis.

Proof. Let F,F, and F, be the boundaries of K, K; and K,. First
suppose that one, say K,, is contained in the other. Suppose that P is
a point common to F, and F,. Let y be a tac-line to K, at P. Then y
is also a tac-line to K, at P. Further K, and K, lie on the same gide of
y and meet y only at the point P. Hence P is a self-corresponding point
in the direct similitude taking K, into K,. As 4; 5 4, this similitude is
not the identity. Since K is strictly convex, it follows that P is the only
point common to F, and F,.

‘We can now suppose that neither of K,, K, is contained in the other.
Then we can choose a point H on F, not in K,, a point O in the interiors
of K, and K,, and a point J on ', not in K,. Then the segment CJ will
contain a point, H' say, of #, in the interior of K,. So both the arcs fo
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F, joining H and H' have points in common with ¥,. Hence F,nF,
contains ab least two points. It remains to show that F,nF, cannot have
more than two points. ' . .

Suppose that FinF contains three points X, ¥, Z. As K, iy strictly
convex XYZ is a proper triangle. The points

X, = 5N (E—A), Vo= 47 (Y =4,

i=1,2, lie on F, and the triangles X,Y,2,, X,X,Z, are S.imila.r and
similarly situated. Suppose 4, 7 . ‘Without loss of. gen.erahty we can
suppose that A; < 1,. Then X,V.Z; and X,Y,Z, are in dlrecff similitude
with a centre, ¢ say, and 0, X;, X, lie in this order on the line O_X:IXE,
Similarly for CY;Y, and 0Z,Z,. As ¥ is strictly convex, C cannot lie on
a side of the triangle X,Y,Z,, for if O is on ¥,Z, then ¥y, Z,, ¥,,Z,
are at least three distinet collinear points on F. If ¢ was interior to the
triangle X,Y,Z,, X,, ¥1,Z, would be also interior to this triangle and
so interior to K. Hence C is exterior to the triangle X,¥,Z,. We may
thus suppose, without loss of generality, that OZ, lies in the angle less
than = between OX, and CY,. For convenience of description we will sup-
pose that X,¥, is horizontal and above . Then X,Y, is horizontal and
between X,Y, and C. Let X,Y, and X,Y, meet the line 0Z,Z, in points
U, and U,. Then U, and U, are inner points of K and so the gegment
U,U, is a proper sub-segment of the segment Z,Z, joining the two dis-
tinet points Z,Z, of F. Hence one of Z;, Z, is above X,Y, and the other
is below X,Y,. This is impossible as X,¥,Z, and X,Y,Z, are in direct
similitude.

We obtain a gimilar contradiction when A, = A; and ome triangle
is a translation of the other.

LevMA 2. Suppose that K,, K, have common inner points but neither
is contained in the other. Let X, Y be the two points of FynFy. Then the
part of Fy on one side of XY Uies in K, and the part of F, on the other side
of XY Uies in K.

Proof. Let H be a point of F; not in K,. Then the part of I, on the
side of XY remote from H lies in K,. Consequently the part of F; on the
same side of XY ag H lies in K.

LEmMA 3. Suppose that neither of K., K, is contained in the other.
Let E; be the set of points not in the interior of Ky, for i =1, 2. Then the
sets

Z; = 171 (Z—A4),

K,nE, and
can be separated by a siraight lime.
Proof. If K, and K, have no inner points in common, the result

is classical. If X, and K, have common inner points the result follows
from Lemma 2.

K,nE,

icm
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§ 3. Some properties of the “domains of action”. In this section we
continue o assume that K is strictly convex with O as an inner point.
Thus there will be a unique function f(X) such that:

(1) K is the set of points X with
FX) <1

(2) f(tX) = #f(X) for all X and all ¢ >0.
Further this f(X) will be continuous for all X and will satisfy
FE+Y) <f(X)+A(T),
for all points X, ¥, with striet inequality unless X = ¢Y for some £ > 0
or Y =0.
Let X' be a discrete set and suppose that (K, Z) is a covering. We

define the domain of action D(IX, 4, X), or simply D(4), of K at A
with respect to 2 by

D(A)=D(E, 4, %) = {X|f(X—4) <f(X—B) for all BeX}.

LeMMA 4. If AeX, D(A) contains A as an inner point and is a closed
subset of K--A bounded by a continuous curve. Each ray through A meets
the boundary of D(A) in a single point. If BeX and B # A then D(A)
and D(B) have no inner points in common. Further

U D(4)

Aex
48 the whole plane.

Proof. Since (K, X) is a covering, given any point X of the plane,
there will be a point B of & with f(X—B) < 1. As X is discrete there
will be only finitely many such points B of X. Hence there will be a point
A of X for which f(X —A) takes its least value. Then X ¢D(4). This
proves the last assertion of the lemma; it also shows that, if Xe<D(A4)
then f(X—A4)<1, so that XeK+A. Hence D(A)C KA.

If AeX and XeK+A4, then

F(X—B)>1 > f(X—A)

for all but a finite number of points of X, say the points 4, By, ..., B,.
Thus
D(4) ={X |f(X—4) <f(X-By), i =1,2,...,7}
Writing
94 (X) = max{f(X—A4)—f(X—B;)},
1<l

we see that D(4) is the set of points X with ¢4(X) < 0. As f(X) is con-
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tinuous it follows that ¢4 (X) is continuous. Hence D(4) is closed, and
any point X satisfying ¢4 (X) < 0 is an inner point of D(A); in partie-
ular, 4 is an inner point of D(4).

Let y be any half-ray with 4 as end-point. As D(4) is closed and
bounded, there will be a point P of y in D(4) furthest from A. Let @ be
an inner point of the segment AP. For ¢ =1,2,...,7 We have -

f(P—A) <f(P—By).
If B; is not on the segment AP nor on P4 produced beyond A4,
FQ—A)+f(P—Q) =f(P—A) <f(Bi—A) =f(B;i—Q+Q—A4)
<f(Bi—+f(@—A).
If B; were on AP we would have
fP—B;) <f(P—4),
and P would not be in D(4). If B, is on AP produced beyond A,
fQ—A)+f(P—Q) = f(P—4) <f(Bi—4) = f(B;i—Q+Q—A4)
<F(B—Q+F(Q—4).
So, in the possible cases,
fQ—4) < f(B:—Q).

As this holds for i =1, 2,...,7, we have ¢4(Q) <0, and @ is an inner
point of D(4). Thus each ray through A meets the boundary of D(4)
in a single point. It follows that D(A4) is bounded by a continuous curve.

If A and B belong to X, and D(A4) and D(B) have a common inner
point @, then @ lies on segments AP and BP’ lying in D(4) and D(B),
and, as above,

4(Q) <0, ¢p(Q)<0.

Hence

f(@—4) <f(@—B), f(@—B)<f(@—4),

which is impossible. This completes the proof.

We now define a point to be a vertex, if it is common to three or more

domains of action.

LeEMMA 5. Let V be common to domains D(A), D(B), D(C). Then
f(V—4)=f(V—B) =f(V—-0)<1 and ABC is a proper triangle
ingeribed in

—f(V—A)E+TV.

icm
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Proof. As V is common to D(4), D(B) and D(C), we have
[V —4)=f(V-B) =f(V—0) <1.

Hence 4, B, C lie on the boundary of —f(V—A)K+V. As K is strictly
convex, it follows that the triangle ABC is proper.
Remark. Note that V does not necessarily lie in the triangle 4 BC.
LeMmA 6. If A B the set D of points X with f(X—4) = f(X—B)
has points on both sides of the line AB arbitrarily far from this line.
Proof. Without loss of generality take 4 = 0, B = (1, 0). Then
it is enough to show that, for each y, there exists a point (= (y), ) in D.
Let y, be fixed. Choose 1 > 0 so large that y = y, meets the boundary
of AK in two points P, @ with x coordinates #(P), (@) with x(P) < z(Q).
Then B =P-+4B and § =@+B lie on the boundary of AK+B. Then
P does not lie in AK-+B and S does not lie in AK. Thus

f(P)—f(P—B) <0, [f(8)—f(8—B)>0.

Since f(X) is continuoms, f(W) = f(W—B) for some point W on the
segment P8. So this segment meets D and the result follows.

LeMMA 7. D(A) has at least one vertex. If D(A) and D(B) meel there
are points C,C’ of X on opposite sides of the line AB, such that D(A),
D(B), D(C) and D(A), D(B), D(C’) have common vertices.

Proof. Given 4 X, we can choose P on the boundary of D(4) and
then choose a second point B of X with P eD(B). Thus the first assertion
follows from the second.

Let P be a point common to D(4) and D(B). We take 4 = 0 and
B = (1, 0), as we may without loss of generality. Let y be the ray AP;
we ghall measure angles from this ray in the anticlockwise direction.
Since the set D of points X with f(X —4) = f(X—B) is unbounded and
has points with y arbitrarily large and positive, while D(A4) is bounded,
we can choose a point Z of D, not in D(4), which has positive y coordi-
nate and lies above the broken line APB. Then the ray AZ makes a posi-
tive angle 6, with y and 6, is less than the angle between y and the nega-
tive x-axis. Now the ray AZ meets the boundary of D(A) at a point U
short of Z. Just as in the proof of Lemma 4, it follows that f(U—A)
< f(U~B), so that U is not in D. Let 6, be the lower bound of the
angles 6, such that 0 < 6 < 0, and the ray AT which makes an angle
6 with y meets the boundary of D(4) at a point 7 not on D. Let AV,
the ray that makes the angle 6, with y, meet the boundary of D(4) at V.

Since D(4)nD is compact, it follows that V is in D(4)nD and so
is in D(A)nD(B). Further, for each a > 0, thereisa 6in 6, < 6 < 6+ a,
such that the ray making angle § with y meets the boundary of D(4)
at a point not on D and so in some D(C) with ¢ # A, 0 #B. As X' is
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discrete, there are only a finite number of choices for the point C of X.
So for a suitable choice of O in Z, for each a > 0, there will be a § with
6, < 0 < 6, a for which the ray making an angle 6 with » has a point
U () in both D(4) and D(0). Since D(C) is compact and V is the
limit of such points U(0) of D(C), it follows that VeD(C). Thus C is
a vertex common to D(4), D(B) and D(C).

Now the contour I', consisting of the negative z-axis, the broken
line AVB, and the positive s-axis beyond B, divides the plane into two
domains, which we may call the upper and lower domains. Further for
suitable values of 6, just larger than 0,, the point U(0) is a point of
D(C) in the upper domain. Now the segment OU(6) lies in the interior
of D(0), except for the point U(). So this segment meets neither the
segment AV in D(A) nor the segment VB in D(B). Further CU(6)
lies in the convex set —f(V—A)K+V with 4, Band C on its boundary.
Hence CU (0) lies in the part of —f(V—A)K+V in the upper domain.
As O is on the boundary of —f(V—A4)K+V it must have positive
y-coordinate.

Repetition of the argument shows that there must be a vertex V',
not necessarily different from V, common to D(4), .D(B) and D(C'),
where ¢’ is a point of X with a negative y-coordinate. This proves the
lemma.

§ 4. The triangulation of the plane and the proof of Theorem 2.
We shall obtain Theorem 2 as a simple consequence of

THEOREM 4. Let K be sirictly convex and let (K, X) be a covering. Then
there exists a triangulation of the plane with vertices at points of Z, such that
the area of each triangle does not exceed t(K).

Proof. Consider the set of vertices of the domains of action D(4).
By Lemma 7, this set is non-empty. For each V in this set, we construct
a get T(V) as follows:

Let A,, ..., A5 be the points of X for which the sets D(4;) meet at V,
and let T'(V) be the convex hull of these points 4, ..., 4.

By Lemma 5, the set 7' (V) is a proper polygon for each V. Further
Ay, ..., Ax lie on the boundary of the set —AK--V, where 0 < A =
F(V—A4,) <1, and f(V—A4) > Afor'all 4 of X with 4 £ 4,, ..., or 4.

If we had T(U) =T (V) and U # V, then there would be at least
three distinet points 4,, 4,, 4; common to the sets

—AK4+U  and —uK+V

for some positive A, u. This is impossible by Lemma 1. Thus different
sets T'(V) correspond to different vertices V. The number of subsets
of 2, which can be chosen in any bounded region, is finite; and hence the
set of vertices V is discrete.
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Let T(U), T(V) be two sets corresponding to distinet vertices U
and V. Let 4, ..., 4, be the vertices of T'(U) and By, ..., B, those of
T(V). Then 4,,..., 4, lie on the boundary of a set —AK+U, with
A>0, and no points of X lie in the interior of this set. In particular,
By, ..., B; do not lie in the interior of the set. Similarly, By,..., B lie
on the boundary of a set —uK-+V, and A,,..., 4, do not lie in the
interior of this set. By Lemma 3, the points 4, ..., 4, can be separated
from the points By, ..., B; by a straight line. This shows that T'(U) and
T(V) do not overlap, ie. they have no common inner points.

The set | J T(V) is non-empty. Our aim is to prove that it is the whole
plane by proving that it has no boundary. This boundary is clearly
& subset of the union of the boundaries of the sets 7'( V). Let AB be an
edge of one of the polygons T (V). Then D(4) and D(B) meet at V. By Lem-
ma 7, there will be a point ¢ of X on the side of AB not containing 7(V),
such that D(4), D(B), D(C) have a common point, V' say. Then the
triangle ABC is a proper triangle and is a subset of T(V’). Thus the
inner points of the segment 4B are inner points of T(V)o T(V') and
do not belong to the boundary of {_JT(V). Further, if 4 is any verbex
of one of the polygons T(V), then we can find a succession of polygons
with A as common vertex, each meeting the previous one along an edge
through A. As at most finitely many polygons meet A, this suceession
must lead back to T(V). Hence 4 is an inner point of (JZ'(V). Thus
UZT(V) has no boundary, and so is the whole plane.

Since T'(V) lies in —K+V, on triangulating the polygons T(V)
in the natural way, we obtain Theorem 4.

Proof of Theorem 2. Suppose that K is strictly convex. Choose
k so that K is contained in |#] <%, |y| <%. Let ¢ be large and consider
the square B of points with |#] < t, |y| < ¢. The vertices of those triangles
of the triangulation provided by Theorem 4 which meet B, lie in the
square B': |z| <?+2k, |y| <?t+2k. The number of these vertices is
thus at most N (B’). Let V, B, F denote the numbers of vertices edges
and faces of this configuration covering B. As the configuration is con-
nected, by Euler’s theorem

V—E+F =1.
When we add the edges of each triangle, each edge occurs at most twice.
Hence
3F <2E.
So
V=14+E—F =21+ 3F > }F.
Thus F < 2V < 2N (B'), and

a(B) < Pi{K) < 2N (B)(K).
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Hence
N(B)a(B') = (t/(1+4k))*[26(K).

Taking limits as ¢ — oo we obtain
¢*(K, Z) = limint 6*(K, 2, B') = liminf N(B')a(K)/a(B’)
tsco t-+00

> a(K)|(24(K)),
ag§ required.
The extension to the case when K is not strictly convex is immediate
as a general convex set K can be covered by arbitrarily close strictly con-
vex gets.

§5. Packings of convex domains. Fejes Téth [1] proved that
there is no packing of an open convex domain K that is closer than the
closest lattice packing of K. In this section we show how this result can
be obtained by use of the proof of Theorem 4 above and Lemma 4 of the
paper [8] of C. A. Rogers. In this way we obtain a considerable sim-
plification of Rogers’ proof of Fejes Téth’s result.

By replacing a general convex set K by half its difference set, we
may reduce the general case to the case when K has O as centre. By re-
placing K by a sequence of strictly convex sets convering to K from with-
in, we may reduce this case to the case when K ig strictly convex and
has O as centre. In proving that the density of a packing K44 with
A X is not too large, we may suppose that it is not possible to adjoin any
point to X without two of the resultant sets overlapping. This ensures
that the sets 2K +A with 4 ¢X form a covering of the plane. By intro-
ducing the domains of action D(A) corresponding to the points of X
and the closure of the set 2K, we obtain a system of vertices V and sets
T (V). This leads to a complete triangulation of the plane. If ABC is one
of the triangles of this triangulation, the corresponding sets K--4,
K+4B, K+ are disjoint and there is a vertex V such that 4, B, C lie
on the boundary of a set AK+V with 0 <A <2. Indeed, as K44,
K 4B have no common point, we have 1 < A; and, as V is in the interior
of gome set 2K 4 A4; with 4;¢X, we have A < 2. It now follows from
Lemma 4 of [8] that a(ABC) = }d(K), where d(K) is the lower bound
of the determinants of the lattices giving rise to lattice packings of K.
The proof can now be completed by a slightly modified form of the proof
of Theorem 2.

Part II

§ 6. Modified domains of action. For the proof of Theorem 3, we
define a new type of domain of aection which take into account
the finite nature of the sibtuation. Let II, 4,,..., 4,,,, be as in the sta-
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tement of Theorem 3. Let X denote the set {4;} and let I' denote the
bounding polygon A,4;...4,. For A<X we define D*(4) = D*(K, I,
Z, A) to be the set of all points X such that (i) the segment AX lies in
IT and (ii) f(X—A4) <f(X—4;) for all 4; in X for which the segment
XA; lies in JI. It is convenient to say that a point X is covered within
II by the set K+ A if the segment XA lies in IIn(K +4). By condition
(4) of Theorem 3, the points of IT are covered within /7 by the sets K+ A
with AeX. It follows that D*(4)C K-4+4 for each 4 and that
II = D*(4).

dex

LemwmA 8. If K is strictly convex:

(a) If P lies in D*(A), the whole segment PA lies in D*(4);

(b) If P lies in D*(A4), the segment AP cannot contain a point @, other
than P, of any D*(B) with B # A;

(c) D*(4) is closed.

Proof. Let P be a point of D*(4). Then the segment AP lies in II
and f(P—A) <f(P—4;) for all 4; of 2 with PA; in II.

Let @ = P lie on AP. Suppose @ eD*(B) with B = A. Then @ # A.
Also QB lies in IT and f(@—B) <f(@—A). Hence B does not lie on BA
produced beyond 4. If B were on the segment AP then we would have
PB in IT and f(P—B) <f(P—A) and P could not lie in D*(4). So B
does not lie on the ray with end-point P obtained by producing P4 beyond
A. Hence

f(P—4) =fQ—A)+f(P—0Q) >F(Q—B)+f(P—¢)
>f({Q—B}+{P—Q}) =f(P—B),

using the strict convexity. As PeD*(4), this implies that PB does not
lie completely in I7. But the broken line PQ, @B does lie in /1. Hence
PQB is a proper triangle which must contain a vertex of the boundary
I' of I. Since I" has only a finite number of vertices, and P is not a ver-
tex, by choosing a vertex (' in QPB such that CP makes the smallest angle
with QP, we can ensure that I" has a vertex € in the triangle QPB such
that OP lies in I7. Then, since f(P—B) < f(P—A4), it follows from the
convexity that f(P—0) < f(P—A). Hence P cannot lie in D*(4). This
contradiction shows that Q cannot belong to D*(B) with B == A. Thus
(b) is proved and (a) follows.

To prove (¢), let {X,} be a sequence in D*(4), converging to a point X.
Then, for fixed A, with 0 < 1 <1, the point A+ 1{X,—A} of AX, con-
verges to the point A-+A{X—A} of AX. As AX, lies in I7 and II is
closed. it follows that AX lies in IT. If X is a vertex A* of I', let & be
the distance from X to the broken line A; ,A4;,,..And;...4; . Tf X is
not a vertex of I', but lies on A4;_;4;, let & be the distance from X to the
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broken line 4;4;,.,...4,4,...4; ;. If X is not on I'let § be the distance
from X of I. Then, in each case 6 > 0, and, if Y eIl and Y is within
the distance & of X, the whole segment XY lies in I7. Hence the segment
XX, lies in IT for all sufficiently large values of #. Now suppose that
X is not in D*(4). Since AX lies in I7, there is a point B = 4 in X such,
that X «¢D*(B), BX lies in II and f(X—B) < f(X—4). By the conti-
nuity of f(X), we have f(X,,—B) < f(X,—A4), for all sufficiently large n.
Sinee X, e¢D*(4), this implies that BX, does not lie completely in I7.
Since the broken line BXX, lies in IT for n sufficiently large, it follows
that the closed triangle BX X, contains a vertex of I"not coinciding with
" B. 8ince I" has only a finite number of vertices and X, converges to X,
it follows that there is a vertex, C say, of I' on BX not coinciding with B.
This is impossible as X «D*(B). Consequently X must be in D*(4); it
follows that D*(4) is closed.
Remark. We refer to the property (b) as the non-overlapping
property of the sets D*(4).

§ 7. The triangulation of I7 and the proof of Theorem 3. In this
section we prove:

TEEOREM 5. Let K be stricily convex and suppose that the conditions
of Theorem 2 are satisfied. Then IT can be triangulated by a system
n+2m—2 triangles each lying in a set K+X for some X.

. Proof. We prove the theorem by induction on % = n-2m—2.
First suppose that # = 1. Then n = 3, m = 0. For convenience we write
4y=A4, A, =B, 4, = 0. Now I is the triangle 4BC and I is its boun-
dary. ‘

Suppose that a side, BO say, of ABC contains a point D with

f(D—4) <min{f(D—B), f(D—0)}.

Let M be the midpoint of BO. As K is symmetric and K +B, KE+0
have a common point, we have f(B—M) =f(0—M)<1. We may
suppose, without loss of generality, that D lies on BM. Then

FlA—M) <f(A-D)+f(D—M) <f(B—D)+f(D—M) = f(B—M) < 1.

Thus 4, B, ¢ lie in K+ M and the required result holds in this cage.

We can, therefore, suppose that none of the sets D*(A4) , D*(B),

D*(0) meets corresponding side BO, CA, AB of AB(. Now the three
closed sets D*(4), D*(B), D*(0) cover the triangle ABC and
A¢D*(B)uD*(0), B¢D*(C)uD*(4), C¢D*(A)uD*(B),

BOND*(A) =@, CAnD*(B) =@, ABAD*(C)= 0.
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It follows, by a well-known topological result(!) (see, for example the
lemma on page 54 of [9]) that the three sets have a common point,
M say. Then

ABOC —E+M,

and the result follows.

Now suppose that &k = 2m-+n—2 >1 and that the theorem has
been proved for all m,n with 2m+n—2 < k. We consider two cases:

I: some edge .A;4;,, of I' has a point D which lies in a domain of
action D*(4) with A4 5 A; and 4 # A;

II: no edge of I' contains such a point.

Case I. Suppose that BC is an edge of I' that contains a point D
of a set D*(4) with A # B and 4 # C. Then D belongs to the set 4
of points X of BC with AX CII and

f(X—4) <min{f(X—B), f(X—0)}.

As f(X) is continuous the set 4 is closed. So we can replace D, if neces-
sary, by a point D of A at which f(X—A4) assumes its minimum value
for X in A. As X has only a finite number of points, we may suppose
that A is chosen from the possible points to ensure that the correspond-
ing minimum value f(D—A) has its least possible value. Then we have:

(1) DA lies in II;

(2) f(D—A) < min{f(D—B), f(D—0O)};

(8) if D' is on BC, A’'eX, A’ £B, A’ = (C, D'A’ lies in II, and
f(D'—4') < min{f(D'—B), f(D'—0)}, then f(D—A4)<f(D'—4").

It is clear from (2) that D # B and D 5= €. We now show that the
triangle ABC lies in JI. We shall prove that A DB lies in IT; the proof that
ADQG lies in [T ig identical.

Suppose that ADB is not contained in I7. Since the broken line
AD, DB is contained in I7, it follows that the triangle ADB contains
a vertex P of I" not on AB. Let the line through P parallel to AB meet
DA at A’ and DB at B’. If the triangle A’DB’ were not contained in 7,
the argument we have just used would yield a vertex P’ of I'in A'DB’
not on A'B’, contrary to the choice or P. Hence A'DB’ lies in II. Let
the line through P parallel to AD meet B'D at the point D’. Then PD’
lies in A’DB’ and so lies in I7. By similar triangles, PD'/AD = D'B'[/DB.
Since f(D—A) <f(D—B), this implies that f(D'—P) <f(D'—B’) <
f(D'—B). Also f(D'—P) < f(D—A4) <f(D—0)<f(D'—0). Thus D'P
lies in I7 and f(D'—P) < min{f(D’'—B), f(D'—0)}. It follows from
property (3) that f(D—4) <f(D'—P). This is impossible ag PD’ is pa-
»_‘Wis in fact quite easy to avoid an appeal to this result by giving a proof,
using the methods of this paper, and making use of special properties of our sets.
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rallel to and shorter than AD. Hence ADB lies in IT as required.

We now know that ABC lies in II. If ABC contain a point A’ of X
other than 4, B or (, a simplified version of the above argument would
lead to a contradiction to the choice of A and .D. Hence no member of X
other than 4, B,C lie in the triangle 4BC.

Now there are three possibilities to consider:

(i) A, B, C are consecutive wvertices of I' in some order;

(ii) B and € are vertices of I" and 4 is in the interior of IT;

(iii) B and C are consecutive vertices of I" while 4 is a vertex of I
adjacent to neither B nor C.

In case (i), we may suppose that 4,B,( are consecutive vertices
of I. If we remove the points of ABC, not on AC, from I7, we get a clo-
sed domain IT* bounded by the Jordan polygon I™ obtained from I' by
replacing the edges AB, BC by the edge AC. Let Af, ..., Ar_, = A}
be the vertices of I™ and let 2* be the set of points Af,..., 4%, = A},
Apiryooy Apym. Then Ay, ..., Ay, lie in the interior of I7*. Since
DA is in D*(A), while D*(B) lies in the angle bounded by the lines B4,
B0, it follows from the non-overlapping property of the sets D* that D*(B)
is contained in the triangle ABD. So II* is covered by the original sets
D*(4) = D*(K, I, X, A) with AeZ*. But if two points X, 4 lie in
IT* and XA lies in II, then clearly X4 lies in IT*. Hence IT* is covered by
the sets D*(A) = D*(K,IT*,2Z*, A) with A eZ*.

Let #*, m* be the numbers for II*, Z* corresponding to n,m for
II, 2. Then

n*2m*—2 = (n—1)4-2m—2 =k—1,

so that, by the inductive hypothesis, IT* can be covered by %—1 non-
overlapping triangles each lying in a set of the form K 4-X. Since f(D—4)
< min{f(D—B), f(D—-0)}, and f(A—B) <2, f(B—0) <2, it follows
as in the case n-2m—2 =1, that ABC lies in K+ M, where M is the
mid-point of BC. Adjoining the triangle 4BC to the triangulation of JT*
we obtain the required triangulation of II. So the induction is complete
in this case.

In case (ii) we form a closed domain I7* by removing from II the
points of the triangle ABC not on the sides AB and AC. Then IT* is
bounded by the Jordan polygon I™ obtained from I' by replacing the
edge BO by the two edges B4, A0. We take * = X'. Then IT* is cove-
red by the domains D*(A) = D*(X,I1,X, A) with 4 eX*. Suppose
that a point X of IT* does not belong to any of the domains D* (K, IT*,
2%, 4) with A <3*. Then for some 4*eZ* we have X <D*(K, I, z, A* )
but X ¢ D*(K, IT*, *, A*). Hence the segment 4*X of D* (K, 1II, =, A%
lies in I7 but not in II*. 8o X lies outside the triangle ABC or on one of
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the sides AB, AC, while some point of A*X lies in the interior of 4BC.
Since A, B, 0 are the only points of X in ABC, it follows that A*X must
meet AD at some point other than A. This is contrary to the non-over-
lapping property of the domains D*(K,I7, X, 4). Consequently, the
points of II* are covered within IT* by the sets K-+ A* with A*eX™.
Defining the integers »*,m* for II*, Z* in the natural way, we have

n*H2m*—2 = (n+1)+2(m—1)—2 = n4+-2m—8 =k—1.

Now the induction can be completed as in case (i).

In case (iii) the removal of ABC from II splits it into two polygons
IT*, II** say. Now X splits into two sets Z*CJI* and Z*™ CIT™. Ag
before the non-overlapping property of the domains D*(K,II, Z, A)
ensures that IT* is covered from within by the sets K-+ A* with 4*X™,
and similarly for IT** and XZ**. Let »*,m*,n**,m™ Dbe the integers
associated with these pairs of sets. Then n*-+n** = n+1 and m*+m**
=m. Asn* >3, n** > 3 this implies #*+2m*—~2 < &k and »**+2m** —
—2 < k. By the inductive hypothesis, the polygons I7* and II** can be
covered by n*4-2m*—2 and n**-+2m**—2 non-overlapping triangles,
respectively, each contained in a set K+X for some X. Adjoining the
triangle ABC to the union of the triangulations of IT* and II** we obtain
the required triangulation, as

14 (n*4-2m* —2)+ (n** 4 2m** —2)
=n* L™ —14-2(m*+m™*)—2 = k.

This completes the proof for case I.

Case II. We now suppose that no edge of I' contains a point in
a domain of action that is associated with a vertex of I" other than the
end-points of the edge. Let BC be any .edge of I'. The mid-point D of
BC lies in the closed set D*(B)nD*(C). As B is not in D*(B)nD*(0)
the angle 6(X) that the ray BX makes with BC is a continuous function
of X on D*(B)nD*(C). So we can choose a point ¥V of D*(B)nD*(C),
so that 0(X) attains its maximum value on D*(B)nD*(C), say the value
6,, at V. As we are in Case II, the point ¥ is not on I', unless it coinci-
des with D. In either case, if « is sufficiently small and if X is sufficiently
close to B on the ray BX making the angle 6,-+ a with BC, the point X
will be in the interior of IT and in D*(B). So, if a is sufficiently small the
ray starting from B at an angle 6, o with BC meets the boundary of
D*(B) at a point U(a) other than B. As we are in Case II, Uf(a) is not
on I' and so belongs to some D*(4,) with A,eX, 4.+ B. For a> 0,
the ray BU(a) does not meet D*(B)nD*(0). Hence A, C. Letting a
tend to zero through a suitable sequence we easily obtain a point A of
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¥ other than B, 0, with V in D*(4). Now VA, VB, V( all lie in II,
and f(V—A) = filV—B) = f(V—C) = 4 <1 for some 2 Further 4,B, (¢
lie on the boundary of —AK-+V.

Since VB, VC and BC lie in II, while V = D or V is an inner point
of IT, the whole triangle VBC lies in II. Now consider VBA4. Suppose
that VBA does not lie in I7. Since AV, VB lie in IT, this implies that there
is a vertex of I"in the triangle VB4 not on AB. Let P be a vertex of I" in
VBA at the greatest possible distance from 4AB. As V is D or is an inner
point of 77, it follows that PV is in I1. But, by strict convexity, f(V—P)
< f(V—A) =f(V—B), which is impossible as VeD*(B). Thus VB4
lies in 7. Similarly, V.AOQ lies in I7.

As VeD*(A)nD*(B)nD*(0), it follows by this last argument, that
no point of Z other than 4,B,C lies in VAB, VBC or V(OA.

We consider two cases: (a) when V lies in ABC; (b) when V does
not lie in ABC. In case (a) we can complete the proof just as in Case I
using the non-overlapping property of the domains D*(4;) with 4;e2
and the fact that the segments VA, VB and VC lie in D*(4), D*(B)
and D*(0), in place of the result in Case I that DA is in D*(4).

In case (b), as VA lies in IJ but V¥ is not in the triangle ABC, it
follows that V lies in the angle at B or in the angle at C. Without loss
of generality, we can take V in the angle at B. Then

fv=0 <1, f(V—-4)<1, f(0—-4)<2.

It follows that the triangle AV, lying in IT outside the triangle ABOC,
is covered within itself by K44 and K-C. The triangulation can again
be completed, just as in Case I, uging this fact and the fact that VA,
VB and VC lie in D*(4), D*(B) and D*(C), in place of the result that
DA is in D*(4). '

This completes the proof of Theorem 5.

Proof of Theorem 3. When K is strictly convex the result fol-
lows immediately from Theorem 5. When K is not necessarily strictly
convex the result follows on applying the strictly convex case to strictly
convex domains approximating K from without.

§ 8. A result on packing. In [8] C. A. Rogers hag given an outline
of hig proof of a result (Theorem 2 of [8]) on the packing of convex domains
that iy very similar to our Theorem 3. In this section, we indicate how his
result may be obtained from our Theorem 5 and some of his simpler
lemmas. In the first place the general case can be reduced in the usual
way to the case when K has O as centre. So we may suppose that K is
open and strictly convex with O as centre and that A,,4,,..., 4, = A,,
Apiry ey Anym satisfy the conditions of Rogers’ theorem. We may also
suppose that there is no point which can be adjoined to the points 4,, ...,
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Apym to form a system Ay, ..., Apim, Auim +1 also satisfying the condi-
tions of the theorem. If the sets 2K+ 4; with 0 < i <n+m do not
cover the polygon bounded by the Jordan polygon 4,4,...4, from with-
in, we can find a point, 4* say, in IT which is not covered within I7 by
the sets 2K+ 4;, with 0 <i <n+4m. Using the special case ¢ = 0 of
Lemma 3 of (8), it follows that A* could be taken as an extra point 4, Smale
This shows that IT is covered from within by the sets 2K-4-4;, with
0 <i¢<n+m. Now the conditions of Theorem 5 are satisfied and we
obtain a triangulation of IT into s+ 2m—2 triangles each within a set
2K+4X for some X.

Now consider a triangle, say ABO0, of the triangulation. Let K’ be
the closure of K. Then we can choose 4 with 0 <1< 2 and a point V
so that ABC CAK'+4V and A has the smallest possible value. Then
A, B, C lie on the boundary of AK+V. As in §5 above, it follows that
a(4ABC) > $d(K). As this holds for all ABC of the triangulation, the
required result follows.
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