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ACTA ARITHMETICA
IX (1964)

Diagonal equations over p-adic fields
by

B. J. BrrcH (Manchester)

1. It has heen conjectured that every form of degree d in at least
d’4-1 variables over a p-adic field K has a non-trivial zero in K. How-
ever, a8 yet it has not even been proved that there is a constant I'(d)
independent of K such that every form of degree d in at least I'(d) variables
over a p-adic field has a non-trivial zero in the field. It is the purpose
of this note to fill this gap.

In view of the results of Brauer [3], we can deal with general forms
(though with an enormously large number of variables) if we can deal
with diagonal forms; so it will be enough to prove

THEOREM. Given d, there is a constant G(d) such that any form

Eaim‘f
=1
with coefficients in a p-adic field K and s > G(d) will have a non-trivial
zero @ over K.
Our proof of the theorem is a moderately straightforward, though
messy, computation; for some of the variables #; we substitute expan-

sions 1+ 3 n'y;, where o generates the prime ideal of K and the y;, are
=1

units; and in § 2 we analyse what the powers (1+ 3 #'y;,)* look like. This
=1

enables us to prove our result fairly easily, and fairly efficiently, in cer-
tain favourable cases — this is done in § 3. Introducing devices to avoid
various difficulties that arise, we gradually widen the scope of our methods,
until in § 4 we can prove our theorem in general.

Unfortunately, the arguments of § 4, though not difficult, are inef-
ficient; so our final result involves an inordinately large number of va-
riables.

Our results may be applied to prove theorems about the solutions
of equations over algebraic number fields — see [1]. Results similar to
our theorem, but with a far better estimate for G(d), have been proved
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previously for prime degree d by Lewis [6] and by Gray [5]; for rational
p-adic forms Davenport and Lewis [4] have proved the best possible

result, that a form 2 a; 2% over a p-adic field has a non-trivial zero when-

ever s > d* 1. Warmg s problem is discussed in [2],
paper to this.

T would like to thank Prof. D. J. Lewis for going through this
note with me; unfortunately we were unable to find any notable simpli-
fication. o

In what follows, K is a p-adic field with ring of integers o, units U,
and prime ideal p = (). The rational prime above p is p, the ramifica-
tion index is ¢ so that (a°) = (p), and the vesidue class field k = ofp
has p' elements so that Np = p'. We write d = p'm, with (m,p) =1,
and we write (m,p'—1) =D

a companion

2. If o is an element of K, we write w(a) for the power of = exactly
dividing a, so that z~*@a is a unit. We call w(a) the weight of a; it is con-
venient to take w(0) = oo. For a polynomial g over K, we write w(g)
for the weight of the lightest coefficient of g.

If now f(z, ¥) = > ¢;(@)y’ is any polynomial in a variable y and other
variables @, we define A(y; f), the level of y in f, as the least weight of
the coefficients of terms of f(x, ) that really involve y; so

My; f) = minw(¢).
7>0

In this section we compute the level of y in (14 n'y)? for various
values of £. We know )

1 ()

i=1

(14a'y)’

<.

suppose that j = p"k with (k,p) =1, 0 <7 <I; then we know that

w6 =) o o) —one
So
(( ) :m”) = (I—r)e+p"kt,
and
My @4y = min[(l—r)e+p't].
We deduce o

LemMa 1. If ef(p—1)t = p", a power of p, then

My; 1+ #'y) ) = (l—ryet+e/(p—1),
and the coefficients of y*" and y*"™' both have this weight.

icm®
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Otherwise, there is precisely one term of least weight in (1-+x'y)%;
involves 4™, where r s defined by
0 for
1 for

e <{p—1)t,
e>pYp—1)t

ro=

and otherwise

P <ellp—1)t <p”
and now

Ays U+ = (—r)e+p't.

3. In this section, we prove Lemma 3, which is & particular case of
our theorem; in order to make the motivation clearer, we first prove
Lemma 2, whose statement is similar to that of Lemma, 3, but with an
extra condition added.

First, we need to define two equivalence relations on the elements
of o.

DFFI‘\TITI()’\I If a,beo, we say that a,b are X-equivalent if we can
write a/b = % where ¢ is an integer and ¢ is a unit congruent to
a dth power modulo z.

We say a,b are Y-equivalent if a/b is a unit times a dth power —
that is to say, if d|w(a)—w(b).

Note that since the multiplicative group %* is cyclic of order p’'—
there are just Dd X-equivalence classes; here D = (d,p'—1). If ¢ and b
have the same weight, then they are X-equivalent if and only if a/b is
a dth power modulo .

Levmuma 2. Suppose that (p—1)te. Let

Dd—1
2 X+ 2 bY?

be a form over K, where there is just one coefficient a; in each X-equivalence
class and just one coefficient b; in each Y-equivalence class. Then we can
find X, Y not all zero in K such that f(X, ¥) = 0.

Proof, (i) By absorbing powers of x into the variables X, ¥ we may
suppose that all the coefficients a, b are in 0, and have weights less than d.
Rearranging if necessary, we may suppose that b; has weight § for j = 0,

.,4—1 and that a; has weight % whenever ‘D < w < ¢D-+D.

fX,¥)=

(ii) Take ¥; =1+ ) #'y; for j =0,...,d—1, and write X =z,
&

50 that
Dd—1 1

5’ a;af 4 Y’ b1+ Y’nyﬂ) ;

we will sometimes call varlables z and y aumlmry variables.

(X, Y)= Fla,
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We will choose first the 2’s in order of increasing ¢ and then the
#’s in order of increasing j+dt as elements of 0 to make ¥ (xz, ) vanish.
(At the time a given auxiliary variable is chosen we only need its residue
class modulo z; more often than not, we will choose an auxiliary variable
to be zero.)

(iii) We prove by induction on r that for 0 <{r < d we can choose
&y, ...y Tpy_y S0 that

Dr—1 a-1
(3.1) N wai+ Y =0 ().
=

=0 )

In fact, this is certainly §0 for r = 0; suppose now that we have
chosen @, ..., @p,_; to satisfy (3.1), with 0 <{r << d—1. Then ay,,...,
apryp- ol have weight # and are in different X-equivalence classes;
so either

Dr—1 d—1

A — 0 (4]
E a[m,i-|—2 by =0 (2")
i=o i=o

and we have a solution of

Dr-D—1 d-1
(3.2) }: aof+ Y b =0 (7
7=0 J=
with #p, = ... = #p,yp_; = 0, or else the sum on the left of (3.1) is

X-equivalent to —a; for some I between Dr and Dr+D—1; we can
then choose #; to satisty

Dr_1 a1

a a —
Z @@+ org+ Y =0 (a'),
=0 7=0

giving a solution of (3.2) with o; = 0 for ¢ % I, Dr <4 < D(r+4-1).
(iv) We assert that for every u with u >p’ there is at least one
variable y; with level u in P,

AYu; T) = p.

In fact, write A(y; (1+ Y #'y)%) = 4, for short. Then it follows
f==1

immediately from Lemma 1 that 4, < p' and that 0 < A=Ay < p* for
all t > 2. Now, A{y;; F(@,9)) =j+4, where j may take any value from
0 to d—1; for any u>p', we choose 2, so that 4, <y < A-+7p", and
then j = p—4;.
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(v) Since (p—1)+te, by Lemma 1 there is precisely one term of
! a
(1+ 3 =)
8=1
involving g; whose coefficient has weight 4; in fact,
¢ -1
d a d 1
(14 Ztuf = (1t Zwuf'+ () 27 ey

where r i3 defined as in Lemma 1 and % = (I—r)e+p'i. We can write

(;},} = Mu,, where u is a unit, and we note that as y runs through

all the residue classes modulo = so does y”r.

(vi) For each u = d, fix a pair of suffices j(u), t(x) so that the auxi-
liary variable ;. ., Which we denote by Y for short, has level 4 in F,
AYy 3 F) = .

Write F*(y) for the form in the variables of the sequence {Ymr
obtained from F by choosing the «’s as in (iil) to satisty (3.1) with » = d,
and setting all the auxiliary variables ¥ not in the sequence {¥»} equal
to zero. Write F3 (y) for F* with y,, set equal to zero for x >2. We assert
that for each 1 >d we can choose Yays ++-y Yoy S0 that

(3.3) Fiy) =0 ().

We prove this by induction on 1; the induction starts, since (3.3)
with A=d is just (3.1) with r =d. So suppose Y@ -+ -3 Yp—yy have been
chogen to satisfy (3.3), we have to show we can choose Y to satisty (3.3)
with 141 for 1. As in (v), we have

Fray) = Fr(y)+uyly (74,

where « is a unit. As 3" runs through all the residue classes modulo sz,
we can certainly find y,, to make Fi,, =0 (a**?),

(vii) We have thus shown that for each 1 > 0 we can find X®, Y&
with the variables Y® units and f(X®, ¥®) = 0 (2.

Take a limit point (.Y, ¥) of the sequence {X?, ¥®}; then f(X,¥) =0
as required.

LeMMA 3. Let

S, 1) = D aXi+ ¥ 47}
where there are just 141 coefficients a; in each X-equivalence class, and

Just 1+1 coefficients b; in each Y-equivalence class. Then we can find X, ¥
not all zero in K such that f(X,Y) =0.
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Remark. We have omitted the condition ef (p—1) from Lemma 2.
Accordingly, stage (v) of the proof of Lemma 2 breaks down for certain
values of £; in fact when e¢/(p— 1)t is a power of p less than p’, there may
be more than one term of

2
a
(1 + 2 nsys)
$=1

of level % involving y;; and (3.3) is no longer necessarily soluble.

For the moment, call %; exceptional when ¢/(p —1)¢ is 2 power of p.
The choice of an exceptional y, is liable to be useless, so one must find
a dodge by which one may avoid needing to use exceptional y’s. There
are various ways of doing this; the method we use is not the most effi-
cient, we use it because it leads fairly easily to a proof of Lemma 4 in the
final section.

Proof of Lemma 3. Dividing through by b,, we may suppose that
b =1. As in Lemma 2, we may suppose that all the coefficients a, b
are in o, and have weights less than d. We can thus write

1 Dd—1 d—-1
f(X Y Z [2 “Lk—Xm—!‘ S‘ b)kYﬂc]
k=0 1=0

where by, has weight j and ay has weight «w whenever ¢D < w < iD-+D;
for each & there is just one ay in each X-equivalence clags.

Write [e/d}1+1=E, [e/d] = E*; possibly H = 1. Substituting
7y for Xy and o Yy, for Y, we get

Dd-1

f= ) a"" [2 ag o+ 2 b Y]

k=0

Substitute

B* oo
4 im, {
Yoo =1+ § 7 Yoor E TRy,
=1 i=e

i
Yio =1+ Y a™y  for  (j, k) = (0, 0);
=1

then by Lemma 1,

t—-1
d !
v = (1+ Zn Yire)” +(pl) Aty (@) for 1<t < B,

B* -1
Yo = (1 + 2 A Yo0s+ 2 ﬂszs)d—i— dn'z, (vvk*'i"“l)
8=¢€

8=1

for all t > e
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We have thus
]
f=Fw,y,=2) 2121;7:

with ep =0 unless j =%k =0, g, = 1, and the levels of the various
auxiliary variables are given by
Mag; F) = dBE+-[i/D],
AQYpe; F) = dBk+j+1d,
AMzy; B) = el 1.

We deduce that for every p > 0 there is a variable of F with level
u. In fact, if p > e(l4+1), A(z; F) = p for t = p—el. If u <e(l+1),
take &k = min(l, [u/dE]), and write 7= [(u—kdE)d"']. If now
min(z, B*) > 1, take ¢ = min(r, B*) and j = u—kdE—td; we certainly
have j<d since pu—WE—E*d <(I+1)e—Id[e/d]—1d—d[ejd] < d;
and 80 A(yu; F) = u. Finally, if u4 < e(l41) and either u—kdE < d or
e<d we have u—kdE < d; for in fact if e<<d then F =1 and
p—kd <max(d, e(1+1)—1d) < d. Take w=p—kdE; then A(zy;F)=p
for wD <i < (w+1)D

Now we can prove the lemma. For each level i, choose a set of
auxiliary variables with level 1 in # — this set of variables is to con-
gist of either a single variable ¥ or a single variable 2z or a set of D varia-
bles x, one in each possible X-congruence class. Set all other variables
in F equal to zero. When this has been done, write F,(z, v, 2) for F with
all remaining variables of level 2 and above set equal to zero. Then

F(x,y,2) = F(x,9,2) ( l)~
We prove by induction on A that we can solve
Fy(m,y,2) =0 (a);
this is trivial when 1 = 0. But now, for 1 > 0, we have

FA+1(m; Yy 2)—Fa(2,y,2)

Dd—1 d—1

[V alkm1k+ S’ b,k(l—i- Y‘n y,“—}—sjkzlntzl)d]

=0

Za’b—prk k28 e () with w-dBk =1,

- b,-k(fﬂ) aBBEA () with dBtj+1d = A,
dn'z, (@*t')  with t4el = 2

according as our set of variables of level 4 in F is a set of #’s or a 4 or a 2.
In any case, we can certainly choose this set from o so that

F}.TJ =0 (s H—I)
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Hence, for every 4> 0, we can find X, ¥ with the ¥’s units so
that f(X, ¥)=0 (7). Hence we can solve f(X, ¥) =0 p-adically, as re-
quired.

4. In this section, we prove our main theorem in general. We de-
duce it quite easily from Lemma 4, which will be proved on the lines of
Lemma 3.

LeMMA 4. Let & be any set of X-equivalence classes. Let f(X) =
= Y a.X? be any form over K with at least 21+ 2 coefficients a; n each
X-equivalence class in &. Then either f represents zero non-trivially over
K or else —f takes a value not in any of the equivalence classes in &.

Proof. Let representatives of the equivalence classes in % be

Y1y -+o1 V5 We may suppose that all of y,, ..., y, are integers with weight
less than d. Thus, we may suppose

o

. "
f == —Ej (Z 4 X &+ E biky;lk)

=0 i=1 i=1

where ay/y; and byfy; are always units congruent mods to dth powers
(here we have renamed some of the variables of f as X’s, some as Y%,
and we have set any left over equal to zero).

As in Lemma 3, we suppose that by, =1, and substitute

K
Xy = o™y,

B* ©

7 Y, tm, \T ¢
I'oo=1+21” ﬁ‘/oot‘{‘zﬂzﬂ
t=1 t=¢

n*
Yoo = o [L4 D] tor (,7) # (0, 0);
=1

so that f(X, Y) = F(s,y, 2). Bach variable of ¥ will have a level in I
as before, F'; denotes ¥ with all auxiliary variables of level A and above
set equal to zero. If ¢ is an integer in one of the equivalence clasges in
&, then as in the proof of Lemma 3 there is a variable of ' with level
equal to the weight of ¢; and if this variable is an x, there is a variable
@ of F' whose coefficient is in the same class ag ®. Consequently, if the
variables with levels less than 1 have already been chosen s,o that
F,=0 (=), then, taking ¢ = —F,, we see that we can choose the va-
riables with level 1 so that Fy,, =0 (2*+)).
Suppose then that we try to solve the congruence

(4.1) Fi(@,y,2) =0 ()

icm

Diagonal equations over P-adic fields 289

for A =1,2,3,... If (4.1) is soluble for every 1, then we can solve
F(z,y,2) = 0 and so obtain a non-trivial p-adie solution of f(X, ¥) = 0.
Otherwise, there is a A such that we have a solution z, ¥, 2z of (4.1), but

Bz, y,2) =0 (o)

is ingoluble. Then by the previous paragraph, —F, is in none of the equi-
valence classes in &; so —f takes a value not in any of the equivalence
classes in &.

Proof of our theorem. Define H (¢) = (214 3)4 "1 (D)% for
1 <o <d. We will prove by induction on d— o that if & is a set of o
X-equivalence classes, and f= ¥ a,X? is any form with at least H(o)
coefficients in each class in ¢, then f represents zero properly.

This is certainly true when o = d, by Lemma 3; so the induetion
starts. Suppose then that f is as described. Since H(o) > [(21-+2)D*d+
+11H (0+1) we may write

DaH{a+1)

=3 AXO)+f(X)
k=1

where each f; has at least (21+2) coefficients in each X-equivalence class
in % and f, has at least H(o-+1) coefficients in each class.
We may suppose that no f, represents zero properly, since other-

wise so would f. Hence by Lemma 4 each —fj represents a value in an

D2H(o+1) ) DH 4

equivalence class not in .80 — Y f,(X®) represents a forme’ by Y%
k=1 =1

with none of the coefficients by in aﬂ;y of the classes in . By the pigeon-

hole principle, there is an equivalence class containing at least DH(oc+1)

of the coefficients b,. Let a representative of this class be y, so that — X' fx
DH

represents a form y > w, Y7 with each u, =1 (w). Now, we can solve
i=1

D H{o+1) ,
Syf= —1 (m); so X f; represents y 3 wu;Y§ with each uy=1 (7).
=1 i1

Adjoin the class of y to &, giving a set &’ consisting of o+1 X-equiva-
lence classes; then f represents a form f' which has at least H(o+1,d)
coefficients in each of the o+1 classes in &

By the induction hypothesis, £’ represents zero properly. So f repre-
sents zero properly, as required.

8

Hence f = 3 a;af represents zero properly whenever s> (214 3% %
=1
x (D*d)*~!. This" proves our theorem.

This estimate for ¢ may be improved fairly easily, bub at present I
do not see how to get an estimate which is a power of &, rather than
a dth power.
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Some remarks on a method of Mordell
in the Geometry of Numbers
by

P. MULLENDER (Amsterdam)

1. Some years ago Lekkerkerker [1] gave a short analysis of a meth-
od of Mordell in the Geometry of Numbers, by which sometimes an
estimate can be obtained for the critical determinant of an »-dimensional
star body by reducing the problem to an (n—1)-dimensional one. In
this note we add a few remarks that may lead to further elucidation
of the method.

2. We consider two distance functions ¥ and ¢, defining two star
bodies K and Kg, both of the finite type, in an #n-dimensional (Eucli-
dean) space X. We suppose there is a group £ of automorphs of Kp,
all having the property that the contragredient transformation is an
automorph of Ky, i.e. we suppose there is a gronp of non-singular n Xn-
matrices A, such that F(4.z) = F(») and G‘(Aim) = G(z) for all weX,
A denoting the transposed inverse of 4.

It is not difficult to prove that, if R is the k-dimensional linear sub-
space of X generated by %+1 linearly independent points, including the
origin o, of the lattice

A = {1} | X = L.u, Ue U},
where L denotes a non-singular n X n-matrix and U the set of all points
of X with integral coordinates, then the (n—k)-dimensional subspace
8 of X through o and perpendicular to R is generated by n— k-1 linearly
independent points of the contragredient lattice

A= {wle = LNA(‘, uel},

where I is the transposed inverse of L. Further, denoting the k- and

(n—k)-dimensional lattices R ~ 4 and 8~ 4 by 4 and 7, respectively, we
have for the determinants

@) () = —z = .
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