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On a alors daprés (6) Ae*Mk(f) = Aék(t), don

1) = &) — D (2, tjﬁ)(zh 1) )
En admettant 1'égalité

2%
(8) ) = 1222 pour 0 <tE< T,

on a done
D (21, 1)P (2, 1) %1%
AZ QZ *

~On peut déterminer & présent la fonction extrémale & 'aide de 1'équa-
tion (1), dans laquelle la fonction %(f) est celle donnée par (8). En inté-
grant I'équation (1), olt k() est la fonction en question, il vient

LD, ) k() @t _,
J Pl O+E() B(z,1)

d’ol Ton tire par des caleuls évidents 1’équation fonctionnelle

[D(e, ) +EMT ¢ [e4k(H)T
D(z, t) - 2 ’

En posant

; , 1+2)?
k() =¢7, y= aﬁz_az ot () .
2
on vérifie aisément que la fonction extrémale W*(2) = m®d*(z,t) est

de la forme -
2

. 1 ; ; o L—m
W*(2) = me”d! [—q)(ze‘"“”)] =z 2e"(1—m)+ e —nu ...
m Z
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It has been known since the pioneering work of J. Schauder that
the derivatives of a solution of a linear elliptic partial differential equation

(a’) Pzt 2b¢zy + CPyy+ d¢m+ etpy"l‘f(;” =0,

1
@) (b) ac—b > >0,

are bounded interior to the domain of definition if the solution ¢(z, y)
is bounded in the whole domain. In fact, as has been shown by Bers and
Nirenberg [2], the bound depends only on a bound for the coefficients,
on %, and on distance to the boundary. In this form, the estimate can
be used to study the (non-linear) case in which the coefficients depend
not only on (#,y) but alse on the solution and its derivatives.

On the other hand, I have shown by example in [3] that weaker
assumptions will in general not suffice to obtain a bound even on the
first derivatives of the solution.

Important non-linear equations of the form (la), which arise in
practice, satisfy (1b) only in the restricted sense that ac—5* > 0 for
every solution. Since physical and heuristic considerations suggest that
estimates of the sort we have mentioned will hold also for these equations,
it seems desirable to study particular such equations with a view to de-
veloping an appropriate theory. An initial step in this direction was
taken in my paper [3], in which, in particular, I derived bounds on the
derivatives of the golutions of the minimal surface equation

147 wy 144t

(2) W ¢m—27ﬁ‘¢zy7¢uu=07.

U=z V=0, W=V1+%2+vz:

* Presented to the Third Conference on Analytic Functions held in Cracow,
30. VIII, - 4. IX. 1962. This investigation was supported in part by the Office
of Naval Research.
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depending only on a bound for the solution and distance to the boundary.

The methods used to study (12, b) cannot be applied to (2), and to obtain

the result it was necessary to exploit the particular non-linearity of the

equation and to use some general properties of conformal mappings.
The prototype for equations of the form (1a, b) is the Laplace equa-

tion

@) Pezt @ =0

Condition (1b) can be interpreted geometrically as the condition
that the Riemannian metric
(4) ds® = cda® — 2bdady + ady’
induced over the (z,%)-plane by the coefficients is quasi-conformally
related to the corresponding metric induced by (3), that is, to the Euclidean
metric of the (x, y)-plane.

In [3] I have used an analogous consideration to characterize a class
of equations of minimal surface type. Equations
() "’(u7"))¢m+2b(u:v)¢w+c(u’ V)pyy =0, ao—b* >0,
are considered, which have the property that for any (u, v) the metric
(4) induced over the (z, y)-plane by the coefficients is quasi-conformally
related to the metric induced correspondingly by the coefficients of (2).
Setting

1+ wy 144

= W ! g =— W Y= W
the condition is expressed by requiring the existence of a fixed constant e,
such that uniformly in (u, v),

(6) lay +ca—2bp] < 2e4.

a

A = ac—b*,

Alternatively, this condition can be interpreted as requiring the
spherical image mapping defined by any solution to be a quasi-conformal
mapping of the solution surface (as is known, this mapping is conformal
on a minimal surface).

Under the hypothesis (6) and one additional agsumption (), I showed
in [3] that the qualitative estimates obtained for solutions of (2) are
equally valid for the solutions of (5), and as a consequence I was able
to strengthen classical existence theorems for these equations. Thus,
the theory of equations of minimal surface type parallels in an important
respect the classical theory of uniformly elliptic equations.

(*) It seems likely that the additional assumption (stated in {3], §1, equation
(8)) is a consequence of (6). This has been shown in cases of particular interest by
Jenking [5]. This assumption can also be interpreted geometrically with the aid
of quasi-conformal mappings, of. [4].
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The estimates obtained in [3] exhibit the correct general structure
and indicate that |Fp| can grow exponentially with the bound on |g|,
but they are not best possible, as some of the constants which appear
are much too large. In an effort to sharpen these results I have now ap-
proached the question from a very different point of view. It turns out
that a simple “comparison lemma”, valid for a fairly general class of
equations (5), leads to results which are both sharper and stronger than
those I could give in [37] (2), and show, in particular, that it suffices to
assume ¢ bounded on one side(?). These new results indicate some dif-
ferences in behavior between the solutions of (5) and (6) and those of (1),
notably in the manner by which the solution is controlled by its boundary
values. In the special case of the minimal surface equation the new esti-
mate, in an important sense, cannot be improved.

The following sections are devoted to a statement of results and
a brief sketch of the method of proof. Detailed demonstrations will appear
elsewhere.

1. The comparison lemma. Let ¢, (x, %), ¢2(2, y) be solutions of (5)
in a region ¢ bounded by a Jordan arc I', and suppose ac—b >0 in
some convex region # of the (u,v)-plane which includes the values
achieved by these solutions. It follows from a theorem of Bers [1] that (5)
can be written as a divergence. That is, there exist functions 6(u, v)
and A(u, v) such that

a ]
(7) a—ﬂ(u,v)—i——{;;/l(u,v) =0

for any solution of () for which (u, v) < #. I shall assume that it is possible
to choose these functions in such a way that

(8) 0 (u, v)+ A*(u,v) <1

throughout £ (*).

(2) Some of the results of [3], notably the bound on |yg| in terms of the area
of the solution surface, seem however not accessible to the methods of the present
paper.

(*) Independently and somewhat previously. Jenkins and Serrin [6] have ob-
tained results of this sort for those equations of minimal surface type which arise
from variational principles. For the minimal surface equation, the estimates (9),
(10) and (11) of the present paper are superior in the sense that the constant x/2 in
the exponent is sharp. See, however, footnote 6.

(%) See footnote 1. In the special case of equation (2) we may write 6 = w/W,
A = v/W, or, alternatively, = —uv|/W, A =1+u2/W. Only the first choice
satisfies (8).
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LeMMA. Let Dz, y) = o1 (%, y¥)—@u(@, y) and suppose I' can be di-
vided into two parts by subarcs I't and I'", such that

Hm O(z,y) >0, lm &(,y) <O0.

(@U=T+ (@)~

Then at any point Pe @ at which @(P) = 0, there holds V®D(P) 0.

The application of this lemma lies in the following consideration.
Suppose one is given a solution p(z, ) of (5) in & unit disc X, such that
lpl < M in X, ¢(0, 0) = m. Suppose #% is the entire 4, » plane and that
(6) and (8) hold throughout #. One shows first that for any division
of the boundary I' of X into subares ™", I, and any >0, there will
be a solution ¢z of (5) in X guch that

M+e on I'*,
far = —M—e on I.

The construction of such a solution is not difficult for the minimal
surface equation, but I have had to invoke a considerable apparatus
to prove the existence in the more general case. In general, no such so-
lution will exist if the hypotheses (6) and (8) are not satisfied.

The next step is to show that I't, I'" can be so chosen that ®ar(0,0)
= m, and that the direction of Py (0,0) coincides with that of Fp at
this point.

It now [Vou(0,0) < [Fp(0,0)], we let &-> oo, keeping ¢(0,0)
= m and the direction of Ve, (0, 0) fixed. One shows that then Vo (0, 0)]
—>co. Thus, at some point in this process there would hold Vg, (0, 0)
= Vp(0,0), contradicting the lemma.

Thus, the inclination of the (relatively simple) comparison solution
@n(2,y) dominates that of any given solution whose magnitude does

not exceed M. (Since s is arbitrary, we may assume ¢ = 0.) This is the
central idea of the method.

2. Estimation of the comparison solution. For reasons which
will become apparent, it is convenient to replace the comparison surface
defined above by a solution defined only in an inscribed quadrilateral
@, and achieving constant values --M on the sides. The lemma, together
with the maximum prineciple for solutions of (6), shows that such a sur-
face cannot be less steep at the origin than the one originally chosen.

Equation (7) is an integrability condition assuring the existence of
a function 9(w,y) such that v, = @(u, y), —yy = A(u, v). Since, by
(?), [49] <1 for any solution, it follows that vu (@, y) tends to finite
limits at the two points B and D of discontinuity on the boundary of Q.
We may assume these limits have values =44, and one may show &1
a8 M — co. Thus, the boundary of @ is mapped by ¢+ iy onto the
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boundary of the rectangle R: {py = £M, —d <yy <8; yu = +9,
— M <oy < M} In fact, gy+iyy maps the surface Far defined by
@@, y) one-to-one onlo R. Because of (8), the mapping 48 quasi-conformal
of S onto R. In the special case of (2), pu+ipu defines a conformal map
of the surface. )

Consider now the spherical image of &5, and map this stereographi-
cally onto the equatorial plane. There results the function

»U—1v
y(z,y) = W

which is analytic on a minimal surface, quasi-conformal in the more
general case (5) and (6). Form the function —logy(@,y) = v-+1d, and
observe that # is known on the bo-
undary segments of @, 7 — 0 at B
and D. Considered as a function
of gar+ipar, T =0 on the segments
ypy = +06, while ¢ is known on
the other segments as soon as the
points of discontinuity of this
function can be determined. These
points ean, however, be estimated D

(for equations with symmetry pro- $=-M

perties — in particular (2) — they

are known exactly). This infor-

mation suffices to yield an

estimate for 7 at the image of the origin in the mapping, and hence the
desired estimate for [Vpy| at the origin. For the minimal surface equa-
tion, this final estimate can be obtained from the geries development
of the analytic function 74 49; for the general case I have found it ne-
cessary to apply relatively sophisticated results from the theory of quasi-
-conformal mappings.

3. The principal results. We study first a solution ¢(z,y) of the
minimal surface equation, defined in the unit dise #*4y* <1, anq bounded
in magnitude by M. Let ¢(0,0) =m, set u = M—m, define y, =
emgechom, o= 4r.

TmorEM 1. Under the above condition, there is an absolute constant C
such that
@ IVep(0, 0)] < Fyme™*+Cu.

The constant C can be . estimated ewplicitly.

COROLLARY. Suppose m = 0. Then

(10) Ve(0, 0)] < 36 40M.
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In these results, the factor =/2 in the exponent cannot be im-
proved (°), as can be shown by example.

In Theorem 1, note that y,, < 2 for all m, M, so that the estimate
can be made independent of these quantities. Since the addition of an
arbitrary constant does not change the property of ¢(z, y) to be a solu-
tion, we are led to an estimate requiring only a one-sided bound on ¢(z, y).

THEEOREM 3. Let (xz, y) be ¢ positive solution tn the wnit disc of the
minimal surface equation (2), and suppose ¢(0,0) = m. Then

(11) We(0,0) < e(n/z)m+0m’

where C is an ewplicitly Tnown absolute comstamt (°).

In extending the above results to the general equations (5), (6) and
(8), it is convenient to introduce the dilation ratio K of the mapping
defined’ by ¢+ iy as a function of v-¢9. Because of the assumptions
(6) and (8), K is bounded, depending only on the equation and not on
the particular solution considered.

) THEOREM 4. Suppose (6) and (8) satisfied by the coefficients of (5),
wfnforml/y Z'n all (u,v). Let p(x,y) be a positive solution of (B) in the unit
Z@sgsm’—l-y‘ <1, and suppose ®(0,0) =m. Then, for any v > 1, there

ol

(12) Pp(0, 0)| < CemmEm,

where C 4s an absolute constant, independent of the solution comsidered.

This estimate leads to a form of Harnack inequality, which holds
for all equations of minimal surface type. Let

T
c=—K%.
2 Y

Then there is an absolute constant O with the following property:

) THEOR‘EM 5. Suppose (6) and (8) satisfied by the coefficients of (5),
u'fwformly :/n, all (u,. v). Let p(x, y) be a positive solution of (B) in the unit
dise & +9* <1, with ¢(0,0) = m. Then at distance r from the origin

there holds
exp (o‘ Li )< e
1—7) " 14+Ce™log(l—r)

Jor all r sufficiently small that the denominator on the right is positive.

(13)

) (5? I am indebted to Professor J. B. Keller for an interesting heuristic reason-
ing wh.wh suggests that (n/2)M is the best exponent. This discussion will appear
in conjunction with the full exposition of my results.

(6) Professor J.B. Serrin has observed that a different choice of comparison
surface leads, with more elementary proof, to a s‘mlar result.
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Thus, for all positive solutions bounded by m at the origin, there
is a uniform subeircle interior to which these solutions remain bounded.
Jenkins and Serrin have shown by example that, unlike the case of har-
monic functions, this subecircle cannot be extended to the entire dise
oy < L

In [3] I have given various existence theorems, which are conse-
quences of the estimates of that paper. New and stronger existence theo-
rems, which follow from the improved estimates in the present work,
will appear in a forthcoming paper.

Added in proof. After this material was sent to press,
I obtained sharper and more general results than those indicated here.
Details are included in the full exposition, which appears in Archive
for Rational Mechanics and Analysis 14 (1963), p. 337-375.
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