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Introduction. Let F be a bounded closed set in the complex plane C.
Let b(2) be a real function defined and bounded on . Put

V™, =[] {G—Cdexp[—b(t)—b(&],
oi<ksn
where ¢ = {&, 1y ..., L} 18 & system of n-41 points of O. Denote

by b(z) the greatest lower semicontinuous minorant of b(z). A system
of points of B

1) 7™ = (™, 9, ..., 15}
defined by
(™, b) = maxV (™, b) = sup V{¢", )
e 1 e ]

is called the n-th extremal system of B with respect to b(2).
Suppose the transfinite diameter d(¥) of F is positive and define
for every n =1, 2,... the function

z—n
7§ — i

oDz, B,b) = max{[ ”
@ Wiz

|exermscn).

We prove that the sequence {’l'/dii,l) (2, E, b)} is convergent at every
finite point z¢C to P(z) = P(=, E, d)

(2) ®(z) = lim VP (2, B, b), 20,

N0

& (2) being the Leja’s extremal function of E with respect to b(z) (comp.
[9], [17]). Leja defines ® as a limit of the sequence {Vd—ig.T)} given by

* This paper is a slight modification of the author’s doctoral thesis (1960).
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(2.5). The advantage of our definition of & relies on the fact that it admits
a straightforward generalization to the case of the space C" of n complex
variables (see [227).

In section 4 we give a generalization of Tchebycheff polynomialg
(With respect to b(z)) and prove some of their properties in terms of @,

For b(2) = 0 the extremal points (1) were introduced by Fekete [1].
In the case that b(z) is continuous the extremal points (1) and the func-
tion @ were introduced by Leja [9] and investigated later by him and
his students in connection with the conformal mapping of simply or
multiply connected domains on gome canonical domaing and with the
Dirichlet problem (for bibliography see [17]).

The purpose of this paper is to prove new properties of the function &
and to apply them to the effective construction of generalized (by Kellog-
‘Wiener or Perron) solution of the Dirichlet problem.

One of the most important properties of @ we prove in this paper is
given by the following result:

Let 0y 20, i =1,2,..., % ond let a =2a; > 0. If

1
be) = - [aby(2)+... + abi(2)],

then
k

n@“i(z’E, bfi)

i=1

< ?%(z, B, b), ze0.

As a simple corollary from this inequality we get:

If real functions p(z) and b(z) are defined and bounded on E and if
0 <2 <A then

[D(2; By p+4b)(D (2, B, p) IV <[ (2, B, p+1'0)[B (2, B,p)I, 2.

Moreover, the function

(3) u(e) =u(z, B,p,b) = lliinLog[Q’('z, B, p+2b)[D(2, B, p)]
0
is harmonic at every point outside of Z.
This result and a theorem on approximation of continuous functions

by harmonje functions, proved in section 8, enable us to obtain the
following theorems:

I Let B be a wnion of the boundaries of p+1 (p = 0) domains D,,

Dy, ...y Dy, o two of which have common points. Let b(e) be an arbitrary
real function defined and lower semicontinuous on E. If
= LogV1+ or

p(2) = Log|(z—a,)\.. (2~ )|,
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k
where ;> 0, Yoy <1, a;eD;, coeD,, then
i<

(4) w(z, B, p,b) = b(2) zel.

for

If, moreover, b(z) is continuous and all the domains are regular with
respect 1o the Dirichlet problem, then wu(z, E,p, b) is a solution of the Di-
richlet problem for every component of OF with boundary values b(z).

II. Let D be a domain dontaining oo in its imterior. Let D be regular
with respect to the Dirichlet problem and let b(z) be an arbitrary real funcmo%
defined and bounded on the boundary E of D. Then

1
(5) wu(z, H,Db) =1im—iLog[¢'(z,E, )|o(z, E,0], =20,
Lo
is the least Perron solution of the Dirichlet problem for D with boundary
values b(z).

II1. If b(2) is continuous on E and E is a boundary of the unbounded
component D = D(E) of CE and d(E) > 0, then the function w(z) given
by (5) is o Kellog-Wiener solution of the Dirichlet problem for D with
boundary values b(z).

Theorem I may be considered as a generalization of results by Leja
[9], [12] and Inoue [5].

From the practical point of view it is useful to know what are the
functions such that for some 1> 0 we have P(z, B, ib) = exp[ib(2)]
for 2¢H. In section 5 we give a necessary and sufficient condition that
this equality hold. In section 6 we characterize a family of functions for
which the equation @ = exp[b(z)] for z¢E holds for some A >0 and
which is dense in the class of all continuous functions (under some general
conditions on E).

The last section is devoted to remarks on the effectiveness of the
method of the extremal points. We show that in prineiple the method
is really effective; it is possible to compute the function &(z, F,b) (and
other extremal functionals) with as small error as we wish performing
only a finite number (may be very large) of practically realizable oper-
ations.

It is worth-while to mention that the main and almost the only tools
used in this paper are the Lagrange interpolation formula and the ma-
ximum principle for subharmonic functions. These elementary tools
enable us, however, to give the solution of the Dirichlet problem that
plays the fundamental role in the theory of functions.

The author wishes to express here his gratitude to Professor Leja
for the suggestion of the theme of this paper and for his valuable guidance
while preparing it.
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S o o

1. Extremal points of a set with respect to a function. Let C be
the open complex plane, ¥ — a closed subset of & = (+ {oo} and b(z) —
a real function defined at every finite point of E such that

(11)

0 <m= inf {¢"®Pmax(l, |z))} <

_Sup {7 max (1, 2))} = M < oo.
el (354 00) el (23 00)

If F is bounded, inequalities (1.1) are equivalent to the assumption
that the function b(z) is bounded on E. Because of (1.1), the function
b(z) is bounded on every bounded subset of E.

If F is unbounded, we assume oo is a limit point of .

‘We define w(z, () for (2, {)eEXE by

(1.2)  ofs ) =
le—¢lexp[—b(2)—b(L)], if 2z and ¢ are finite,
chmfgplz—ilexp[ —b(2)—b(L)] = mee~"®, if z is finite and ¢ = oo,
lhmsupm.,e‘b") =0, if 2=¢{=oo.
800

By (1.1) we have m < < M, and

(1.1 o(z,{) < Ize"’"’le“”“’Jr 12670~ 2 Mo~ < oo,
where b, = infd ().
2eHl
Bxample 1. B = {¢| sl >1}, b(s) = e, oz, &) = lo— tl - =
RIS l2¢]
z ¢
le—¢]

Example 2. B =0, b(s) = V14 o}, w(z, () =

Vit RIVIT IR
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The function

b(#) =lm{ inf

650 [#—2|<d,2,2 el

b(¢')} = liminfb(2)

22,8 cF

is lowersemicontinuous on ¥ and the function

(12" ©(2, ) = lsg—lexp[—b(2)—b(0)], 2, ek,
is uppersemicontinuous in Ex E.
Denote by
2™ = {po; Pry .y Bn}, n=1,2,...,

a system of n-+1 points (distinet or not) of the set # and put

Vo™ = [ Ipi—pdl,
oi<kgn
n
@3) V", 0= [[ o =Ve"exp[—n 5],
o<i<k<n k=0
(1.4)

A0 (p, b) = H w(pl,pk)—(n |pi—psl) exp [ —nb (p)—

(k;&‘b)

n
> bm)]-
k=0
(k;u) (k)

In the sequel we shall always assume that the points of the system
p™ are numbered in such a way that
(L.5) 40", b) < AO(p™,b), §i=1,2,...,n
Let {l,} be a sequence of real numbers such that

,>1, =n=1,2,...,; lml, =1.

N0

(1.6)

‘We shall denote by

L.7) &M = (g, M, L, EPY,

a gystem of n+1 finite points of F such that
<L V(E™, D).

or shortly &™) = {&, &, ..., &},

(1.8) Va(B, b) = sup V(p™,b)

»MCE
In view of (1.1') and (1.6) such a system certainly exists.
The function o(2,{) being uppersemicontinuous on ExH, there
is a system 9™ c B

(1.9) 7™ ={n™, 9™,..., 9}, or shortly 4™ = {ny, n, ..., 7},
such that
(1.10) V(n™, b) = max V(p™, b).

McE
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One can easily check that
(1.11) V™, b) = V,(B,b), =n=1,2,..
Indeed, let
PO = {Pooy Pors -y Py v =1,25.,

be a sequence of systems of n--1 points of B such that

g™ =limp,; and limb(p,) =bH™), i=0,1,...,n.
Then, because of (1.3), we have
Lm ¥V (p™?, b) = V (9™, b).
From (1.8) we get
V(p(n'y)’b)<vn(E7b)’ r=1,2,...,

whence
V(.ﬂ(n)’ b) < Vn(E: b).

Due to the obvious inequality b(2) < b(2), 2B, we have o(z,()
< w(z, (), whence

V(B b)< Vo(B, b) = V (1™, b).

This completes the proof of (1.11).

A system 4™, given by (1.9) and (1.10), will be called an n-th extre-
mal system of B with respect to b. For a fixed » there may of course exist
more than one system (1.9).

A system &™), given by (1.7) and (1.8), will be called an n-th ewtre-
mal system of B with respect to b and {l,}.

If E is closed and bounded and b(z) = 0, then points of the system
(1.9) are well-known Fekete’s points of E. If b(2) is continuous the points
(1.9) were first considered by F. Leja [9], [17]. It iy known [17] that
there exists the limit
(1.12) v(B, b) = lm [V (5™, b)]/me+D

N—r00
which is called the ecart of the set B with respect to b. Since V(£™,b)
< V(8,0 =V(n"™,b), n=1,2,..., we have

(L13)  o(H, D) = L[V (&0, b)) — Lm [V, (B, b+,
N—>00
If B is closed and bounded and b(2) = 0, then v(H, 0) = d(%) is
called the transfinite diameter of B. It is obvious that if & is bounded then
a necessary and sufficient condition that o(#,b) >0 is that d(Z) > 0.

icm
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Let

(1.14) 4y = sup {min 49 (p™, b)},

p R n=1,2,...,
»

where 49 (p™, b) is defined by (1.4).
By the method used in the case that F is bounded and b is conti-

nuous (see [17], [9]) one can prove that in our case the sequence '{ﬁ/zr:}
is also convergent and

(1.13) o(B, b) = LimV4,.
Nr00
2. The extremal function @(z,H,b). Starting from this section
we shall always assume that the set F is not finite. Given n and an ar-

bitrary system (™ = {£,, &y, ..., &} of n+1 distinet finite points of B,
we define the polynomials

n
i 2— Ly ;
(2.1) IOz, (™) = [ l i=0,1,..,n
b 'y Ci_Ck’ bl ] ? ]
Lzt
(2.2) OO (z, (™, b) = LW (2, (™)), § =0,1,...,n.

Next we define for every n =1,2,... the functions

(2.3) o0 (2, B, b) = max|0%(z, £, b)),
(@)
n
(2-4) (2, B, b) = D) |89z, £, b)),
=0
(2.5) ¢,(f)(z, E,b) = inf {max|q§(")(z, C‘”), )},
ce &
n
(2.6) 2Pz, B, b) = int D80, (), )|,
Mcr {0
(2.7) QS)(zy B,b) = ltp(")(z’ 5(")7 ),

where &M is given by (1.7).
Let B* = F*(b) denote the set of all the limit points of the triangular
sequence (1.7).

THEROREM 2.1. If »(®,b) >0, then:

K
1° The sequences {YOP (2, B,b)}, i =1,2,3,4, are convergent to
the same limit ®(z, B, b) at any finite point z<C,

(2.8) B2, B,b) =LimVIV(z, B, b), i=1,2,3,4.
N—>00


GUEST


216 J. SICIAK

L e T —
20 At any finite point of the complement of B the sequence {V O (2, H, b)}
converges to @(z, H,b)

®(s, B, b) =limVPP (e, B, b), #<CE",

N—>00

(2.9)

the convergence being wniform in o neighborhood of any finite point zeCH*,
The function Log®(z, H,Dd) is harmonic in OE*.

Proof. The proof given by Leja [9] for the casge that ¥ is bounded
and b(2) is continuous, is also valid for the more general situation we are

[ pp—
dealing with. Leja shows at first in his proof that the sequence Vol

is convergent. He does not consider at all the sequence {7;/(1),9)}. The proof
we are giving here is different from that of Leja and its advantage relies
on the fact that it can be repeated if one wants to prove the theorem 2.1
for extremal sequences defined suitably in the space C™ of n complex
variables (see [22]).

1° At first we shall prove that the sequence {%DTP} is convergent
for every ze(. For this purpose let us observe that
(2.10) |9 (2, €M, D) <16, zeH, i=0,1,...,n (8 # o).
Indeed, if this inequality were not true, there would exist a finite
point 2/ eB and a subindex &, 0 <i' < n, such that
n
([T 1o —&d)e™ > w( [ 18— &l) e,
k=0 k=0
(Fest) (k%)
whence by (1.3) we would have
V({Eoy ey Ei--l)zly £i+1y vy E’n}) >an(£(”)’ b)? V’IL(E’ b)-

This, however, contradicts the definition of V,(E, b).

Let z be an arbitrary fixed point of O, let » be an arbitrary fixed
positive integer and let m be an arbitrary integer greater than or equal
to n. There exist two unique integers % and r such that m = kn+r and
0 <r < n. By the Lagrange interpolation formula and because of (2.10)
we have

m
@11) (89, &, ) <1 DT |00 (z, £, b)le, 6 =0,1,...,m,
J=0
whence

(VD™ < B (1) V- g0,

where by, = ixgb(z). Qur agsumptions on b(z) imply that b, is finite. Since
7
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nk/m —1, m[k—mn, byr/m — 0, as k — oo, We have

VP < Vi, lim inf VO,

M—>00

(2.12)
So

n=1,2,...

lim supfi/zb_‘,p < limian(DT,‘).

Therefore the sequence {7/@53)} is convergent to a limit ®(z, F,b)
(finite or mot). Observe that as far we did not use the assumption that
v(H, b) > 0. To prove that the sequences (6@}, i =2,3,4, are con-
vergent to ®(2) = O(z, B, b) it is enough to show that

2.13) O <L, <TL,OP < (n+1P5eP < (n+ 1RO, n=1,2,...

Let (™ = {Zy, Ly, - -+, L} De an arbitrary system of n+-1 finite and
distinet points of B. Then by the interpolation formula of Lagrange and
owing to (2.10) we have

n
]¢(i)(z, f(n): b)[ <ln2|¢(k)(zy c(n)’ b)l: i =0, 1y my
k=0

whence the inequalities &P <1,6# and &P < (n+1) 1,02 follow.
The inequalities @ < &% and & < @) are a direct consequence
of the definitions (2.3)-(2.6).

Tn order to prove that the function &(2) is finite at every point 2¢C,
let us observe that

™
0 |z— L& 1 .
|8 (2, £™ b)) =( e e Tm +=20,1,...,n,

Iy |€P€R] AD (™ [ p)
(ki) -

whence

(2.14) oY (2, B, b) < B"(2)[dn,

where

(2.15) R(z) = suplee~"®—ze7"0| < |2le~"0+ M.
LB

Therefore
(2.16) Dz, B, b) < R(»)v(B, D) < oo, ze0.

2° To prove (2.9) we shall first show that for sufficiently large =
217)  m(ON (2, B, b) < [OP(z, &M, )] < Bz, B, b), 2<CE",
where m(z) > 0 depends only on z. In view of (2.4) and (2.7) the second
inequality is obvious. In order to prove the first one, let us observe that
180 (=, £, b)]
AD(E® ) |z—& gP¢o
AO (&M, B) G g—g|’

= |0 (2, EM, b)| i=0,1,...,m.
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By (1.5), 4D, b) = 49(M,b), 4 =0,1,...,n, and in virtue
of (1.1) we have

le— &ife™"® [l — £| e~ > inf (jo— £]¢="®) fsup (Je— ¢[e ") = m(2) >0
LeB* LeB*

for ¢ =0,1,...,n and n sufficiently large. Hence and from (2.3) algo
the first inequality of (2.17) follows. Thus (2.9) is proved. To prove that
the convergence in (2.9) is loco uniform and that the function Log®(z)
is harmonic at any finite point of CH™ it is enough to observe that for
every finite point 2¢CE* there is a neighborhood U and an integer ny

such that for » > n, the functions Log?/[di(”(m, &™ b)| are harmonic
and uniformly bounded in U.

Levma 2.1. If P(e) is @ polynomial of degree less than or equal to n
and |P(z)] < M exp[nb(2)] for z2<B, then

(2.18) P(2)] < MP"(2, B,b), ze0.
Proof. By the interpolation formula of Lagrange

.
H

kn

P < M* 3|00, &, b)) = MR, B,b), k=1,2,..
=0

whence (2.18) follows by (2.8).

Let F be a bounded closed set with d(E) > 0. Denote by D(BH) the
unbounded component of CF. Then Log &(z, E, 0) is a generalized Green’s
function of D (E) with its logarithmic pole at co (see [8], [2]). Therefore
inequality (21.8) is a generalization of well known Bernstein-Walsh in-
equality (see [23]).

From (2.10) and lemma 2.1 we get the following

THEOREM 2.2. The funciion $(z, H,b) is the least upper bound of

all the functions 'lb/an(z)[, n=1,2,..., where P,(2) denotes an arbitrary
polynomial of degree m such that |P,(z)] < exp [nb(2)] for zeH.
COROLLARY 2.1. &(z, H,b) = &(z, B,b), ze0, where b(z) =

Hm{ inf b(z")} 4s the greatest lower semicontinuous minorant of b(2).
350 |g—2'|<d

This implies that for constructing D(z, B,b) we may take extremal
points of B with respect to b.

3. Some fundamental properties of @ (2, B,b). From this section

on we shall always assume that o(B, b) > 0 (except the contrary is clearly
stated),

(3.1) D2, B,b) <™, zcH.

This inequality follows from (2.10) and theorem 2.2.

(3.2) D(2, B,b) =™, 2¢0;

by = infb(z).
el
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Indeed,

109z, £, b)] = [LO (2, &9)| 6™, i=0,1,...,n; 2¢O,
whence

n n . N

oz, B,0) = 31000, 89, 0)] > 3 10, &) > &

iz izo

since

1= ) IO, &) < ) 119z, &)

n
1=0 =0

o,

Therefore (3.2) follows from (2.8).
(3.3) If b and b, satisfy (1.1) and b(2) < by(2) for zeE, then D(z, H,Db)
< D(2, H,b;) for 2¢C. .

(8.4) If b,(2) = b(2)+¢, ¢ = const, then (=, B, b;) = D (2, H,b).
(8.5) If B, c B, then &(2,H,b) < D(z, B, b) for z¢C.

The last three properties of @ follow directly from (2.6) and (2.8).
(8.6) The function ®(z,E,b) is lower semicontinuous in C.

Indeed, by (2.8) and (2.12)

Dz, B,b) = sup Vi, @D (z, T, b)

n=12,...

for =zeC.

"
Thus @ is an upper bound of continuous functions ¥ &P, whence the result.

k
(87) Lt >0, i=1,....% and let a=Fa;>0. If
&

D) == [ (@) + auba(o)],
then

k
[] &%, B,b) < °(2, B,b),  2<C.
i=1

Without loss of generality it is sufficient to prove the inequality
for & = 2 and for rational «;, ¢ =1, 2. Let o; = p,/q;, 0, = Pa[¢s, Where
P1y Gy Poy g» aTe positive integers. We may assume ¢ = ¢, = ¢- Put
P =p,+p, and let &) = (£ &1 . £ i =1,2, be nth pin)itrema.l
systems of B with respect to b, and b,, respectively. Let &P = {&,
Ely.ovy Epn)} be a pu-th extremal system of F with respect to

Do) = [ )+ @by (@)

Given 2,¢C, let ¢, and 4, be such that

1919 (20, £, b)| = D) (20, By be),  k=1,2.
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By the Lagrange interpolation formula and owing to (2.10) we have
I[P (5, E®D, b)) PO (2, ™2, by) 1]
2 i
< ) Wexp (p%
2

Iz, gom
ple )l & &7,

whence
(DD (2, B, b) P OD (2, B, b2) 2 <B DLz, B, ).

Thus, by (2.8) and (1.6), &"1(zy, B, b)) P™" (2, B, by) < D" (2, B, b).
The proof is eompleted.

(8.8) Let e(2) satisfy (1.1) and let v(E, ¢) > 0. Let b(2) be a real function
defined and bounded on B and let 0 < 4 < A Then

[@(z, E,e+ zb)]”‘ < [g@, E,e+A'D) ]1”‘ o
b(z, T, ) 0@, 1 '

Suppose at first A and A’ are rational: A = pfg, A’ =p’/q’. We have
7’ 1, ( P —
et b =— e+——b)+ - e].
g P Ipyg p (gp—pael
Therefore by (3.7)
v (z, B, e+ %b) STy T, 6) < PP (z, B, e+ -?Tb),
q
whence the desired inequality follows, if 2 and A" are rational. If 1 and A’
are arbitrary, there are sequences of rational numbers {4,} and {,} such

that A, ™ Aand A, » 4. Let b,(2) = b(#)+b,, where b, = infh(2). By (3.3)
2]

&2, B, e+ b)) < (2, B, e+ 2'0) < Dz, H,e+,) < Bz, B, e+ 1,by),
whence owing to the first part of our proof
[qf'(z, E, e—l—lbl)]‘/‘ﬂ [@(z, B, e+ anl)]‘/‘"
o TV g Y

Dz, B,e) Dz, E,e)
< [di (2, B, e+ Z,',,bl)]l/l;L [@(z, B, e+ Z'bl)]llﬂ;,
= < . *
Dz, B, e) D(z, I, e)
These inequalities and (3.4) imply

®(z, B, i
exp (2/hn) [——(—;—(z-%j—bl] <exp(V /zn)[

whence the result follows.

Bz, B, e ib) ]m;
D(z, B, e) ’
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(3.9) Let E be bounded and let b, = infb(z), B, = supb(z), —oo <b,
zeE 2eE
< By < co. Then

@ (2, B, e+ Ab)
D(z, B, e)
and the function w is harmonic in CH.

The limit w(z, E, e, b) exists because of proposition (3.8). The in-
equalities b, < u < By, 2¢C, follow from the inequalities P (2, B, e) <
Oz, B, e+ b)) < P2, E, ¢)e™®, which are consequences of (3.3) and
(3.4). The function « is harmonic in OF because of 2° of theorem 2.1, of
(3.8) and by the Harnack prineiple.

(3.10) If E is closed and bounded and d(B) > 0, then Log &(2,H, b) is har-
monic outside of B*(b) and it has a pole of order one at oo, %. e.

lim &(z, B, D) :}’

200 l2| [

1
by < u(z2,H,e,b) =lim7Log < B,, #zeC,
o

0= o(B,b)>0.

Moreover,

o = Hm[ V(B — &) (B En)] 67601,

Indeed, the functions Log[|®@(z, &7, 5)|""/|2|], » =1,2,..., are
harmonic and uniformly bounded in a neighborhood of co; the result
therefore follows from (2.9).

Property L. Let E.(z) = {2|2eE, |z—z| <7}, r>0. We sy
B has the property L at z,e B, if for arbitrary two real numbers & > 0 and
# > 0 there exist two numbers § >0 and N >0 such that every poly-
nomial P,(z) of degree less than or equal to » satisfying the inequality

Po(2)] < M, zeB.(2),
satisfies also the inequality
Po(e)] S M(14+¢)*, if |e—z) < dand n>N.

It is known [7] that every continuum (not reduced to a single point)
has the property L at every its point. It is also known [11] that if F is
a boundary of a domain D(®) containing point co in its interior, then B
has the property L at 2,¢F if and only if 2, is regular with respect to the
Dirichlet problem for D(E). We shall write # < L, if and only if ¥ has
the property L at every its point.

Let ™ = &M, M, ..., (), n=1,2,..., be an arbitrary trian-
gular sequence of finite points of B such that {7 5= (" for ¢ £ j, n =1,
2,... Let

n
I, 1) = [[ =t =), §=0,1,0m,

0
(et)
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and let N
M (2,7, {™) = max |29 (e, C(n))];
(#)

where j' denotes an arbitrary integer such that |Ef —z| <r. If mo point
of ¢™ Ties in |¢—z,| < 7, We put M (2, 7, (™) = 0. The following lemma
has been proved in [18]:

LEMMA 3.1. If 2, is a finite limit point of the triangular sequence
&My, j=0,1,...,m n=1,2,..., then for every r >0 we have

limsupyll/jl_(zo, r, ¢M) > 1.

Ne00

(3.11)

We shall now prove the following property of ®(z, H, b):
(8.12) If b(z) is lower semicontinuous ot 2 e B* (D), then

O (2, B,b) = expb(z).

In fact, by the lower semicontinuity of b(z) for every &> 0 there
is 7 > 0 such that b(z) > b(z)— ¢ for ze B,(%). If a point &M of the extre-
mal system (1.7) belongs to E,(z), we have by (2.2)

(@9 (2, &M, b)| > 129 (e, £7)|exp{n[b(z)— e}, 2<C,

whence
O (20, B, b) = M (2, 7, £™)exp {n[b(z) — €]}

Therefore, by (3.11) and (2.8), P (2, H,b) > exp[b(s)— ], whence
because of the arbitrariness of ¢ >0, we have @(z, E,b) > expb(z).
The result follows now from (3.1).

(3.13) If E has the property L at zyeB, b(2) is upper semicontinuous at
2 and D(z,, B,b) = expb(z,), then D(z) is continuous at 2,.

Since, by (3.6), @ is lower semicontinuous, it is sufficient to prove
that @ is upper semicontinuous at 2. Let ¢ > 0; by the upper semi-
continuity of b(z) at 2, there is r such that b(z) < b(e)+¢, 2B (%),
whence and from (2.10)

<1, 2eB (%)

1 .
T (2, E(ﬂ)’ b) o~ "b(z)+el
n

By the property L of Il at z, there are § > 0 and. N > 0 such that

<A+ 3)n7

1
T & (2, E#M | p)e~"PEote]
n

it [2—2| < 8 and » > N. Thus

DD (2, B, b) <l(L+ e)’exp{n[b(eg)+el}, |e—2| <8, n 2N,

icm
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whence
O, B,b) < (1+e)e'D(z, B,0), |o—z]| <4,

which gives the result in view of the arbitrariness of & > 0.

Since Log ®(2) is harmonic outside of E*(b), (3.12) and (3.13) imply
(3.14) If B = L and b(2) is continuous in E, then @ (2, B, b) is continuous

in O and D(z) = expb(z) for zeE*(D).

CoroLLARY 3.1. If E < L is bounded and b(z) = 0, then Log®(z,
E, b) is the Green function of D(E) with its logarithmic pole at oo, [8].

All the properties of @, except 3.7, 3.8 and 3.9, proved in this section,
were found earlier by Leja (in the case of bounded F and continuous
b(=); see the quoted papers).

4. A generalization of Tchebycheff polynomials. Throughout this
section we shall assume that F is closed and bounded and that b(z)
is ateal funetion defined and lower semicontinuous in E. Let ¢™ = {¢;, ...,
¢,y be an arbitrary system of n finite points. The absolute value of

(4.1) Wiz, c™,b) = (g—ecy)...(s—c™)exp[—nb(2)], 2B,

is an upper semicontinuous function in F and therefore it takes its ma-
ximum at a point of E. Similarly ag in the case of b(z) = 0 one can prove
that for every n = 1,2, ... thereis a system ¢™ = {¢,,..., ¢,} = C such
that

(42) iy = min {max |[W(z, o, b)[} = max|W(z, &, b)],

Mo 2C 2¢E

and, moreover, the points of ¢ lie in the convex envelope of E (see
[10], [23]). Ome can also show that |W(z, ¢™,b)| takes its maximum
on E at least at n-+1 points of B, whence it follows that the function
W(z, ¢™, b) (satisfying (4.2)) is unique.

|

The polynomial T, (z) = T, (z, B, b) = exp[nb(2)1W (2, ¢™, b),n =1,
2, ..., will be called the n-th Tchebycheff polynomial of B with respect
to b(z). The polynomial i’n(z,E, 0) is, of course, the n-th Tchebycheff
polynomial of ¥ in the ordinary sense.

We shall also consider the polynomial T,(2) defined by

(4.3)  p, = min {max|W(z, ¢™,b)} = mzx[Tn(z)exp[——nb (2)]].

cMcy 2l Ze.

In (4.3) the minimum is taken with respect to ¢™ <= B, while in
(4.2) it iz taken with respect to all systems ¢™ = ¢. The polynomial
T, (2) need not be unique.
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Tt follows directly from the definition of i, and g, that fimin < fim s
and finin < fnfiny My =1,2,... This implies the existence of the

limits
(4.4) 4(B,b) =1lim Vi,
N—>00
n
(4.5) 4(B,b) =LimVp,.
N->00

It is obvious that

(4.6) #(B,b) < p(B,b).

THEOREM 4.1. jf E is closed and bounded and &(E) > 0, then the se-
quence {7171,1',,&(2)[ [un} s comvergent at any point zeD(E) (D(E) is an un-
bounded component of CE) and

(4.7) HmV [T, (2) i = (2, B, b), 2eD(B),

(4.8) p(B,b) =o(B,b), ¢ '(B0b)= im[¢(z, B, b)/l2[].
Proof. By (1.10) we have
(4.9) (2—7m)exp[—nb(2)]|

= |{no—

max [(g—1)...
2k

N1)+« - (90— 1) 0XP [ —0b (1)1,

whence and from (4.3)

< |(mo—m).- . (no—
and, by (3.10),

nn)lexp[—nb(n))], =»=1,2,...,

(4.10) u(B,b) < o(B, b).

From (4.3) we have |T,(2)/u < exp[nb(2)], 2<H, and therefore
by (2.18)
(4.11) T (@) [pal™ < B2, B, b), n=1,2,..,
whence

(Vi)™ *hmﬁlT w(2) [l < i [@ (2, B, b) [Jel1 = o7 (B, D).

Z—ro0

Thus ¢(®, b) < u(F, d) and this together with (4.10) implies equa-

tion (4.8).

To prove (4.7) consider functions

1
E.(2) =Log®(#, B, b)"’;L”LOngn(z)//"nla n=1,2,...,

icm
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that are harmonic in D(E) and uniformly bounded in every compact
subset of D(E). Owing to (4.11) and (4.8) we have R,(z) =0, zeD(E),
and lmkR,(c0) = ljm[g“‘—l/yn] = 0, respectively. Therefore, by the
principle of Harnack, we have R,(2) — 0 uniformly in every compact
subset of D(E). Thus (4.7) follows.

By the same argument one can show that u(E,d) = o(®,d) and
that in the complement of the convex hull of E the sequence {%T,b(z)l [t}
is convergent to @(z, B, b) (see [10], [23]).

To end this section we shall prove that the sequence {1177:—,,}, given

by
(412) pp = sup {min|(&—Ly)...(G— Lioy) (Gim Cign) - (G— ) €260}
Mcy 0
is convergent to o(E, b):
(4.13) 1imVy, = o(¥, b).
Indeed, if
7(2) =infle—{|, R(z) =max[z—{],
te %]
then )
7(2)[yn < inf {m‘a,x|¢(") (2, £, D)1} < R(2)"fyns
e @)
whence .
@V < VOD (=, B, B)le] < B@)[[elVyal, 7 =1,2,...

Since lim 7(2)/le| = limR(2)/|¢| = 1, this implies that
200 . o
1/imsupVyn,

- . n—
1/limint Vy, <o (B, b) <
N—a00 N—»00

whence (4.13) follows.

5. A necessary and sufficient condition that &(z, E,b) = expb(2)
for zeB. Having in view some applications of #(Z, E, b) to the construc-
tion of solution of the Dirichlet boundary value problem, it is important
to know what are the functions b(z) such that P(z, E,bd) = expb(2)
for zeH. At first we shall state the following suffieient condition:

TuzorEM 5.1. Let B be closed and bounded and let d(E) > 0. Let b(2)
be a real function defined and continuous in B. A sufficient condition that
D (2, B, b) = expb(z), 2B, is that there ewist function V(z) = V(z, B, b)
such that:

(i) V(z) = b(2), 2eB;
(ii) V() is continuous and subharmonic in C;
(iff) Lim [V (2)—Liog|e|] ewists and is finite.
Z—>00

Colloquium Mathematicum XI. 2. 15
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Proof. By (3.10) and (3.12) Log®(e), where &(z) = D(z, B, D),
is harmonic outside of B*(b), limLog[®(2)/le|] is finite and P(z) = Pl

2300
for zeE*(b). Therefore the function R(z) = V(2)—Log ®(2) is subharmonic
in OB and R(2) = 0 for z<B*, whence by the maximum principle R(z) <0
for zeCE*. Thus R(z) <0 for z¢H, i.e. V() = b(z) < Log®(z), zel,
whence by (3.1) the result follows.

W ghall now show that the condition the sufficiency of which we
have just proved is also necessary, it F satisfies the property L at each
its point.

TuporeM 5.2. If B c L and ®(z, 1, D) = expbh(r), zcll, then the
function V(2) = Log®(z, B, D) satisfies conditions (i), (ii), (ili) of theo-
rem 5.1.

Proof. Condition (i) is satisfied by the assumption. In view of (3.13)
and (3.10), V(2) is continuous in ¢ and sabisfies (iii). It therefore remaing
to show that V () = Log® (¢, I, b)is subharmonicin 0. Let K = {z | Iz —z|
<7} and B’ = {z | jpg—2| = r}. Let 0(z) be a harmonic function in K,
continuous in K-+K' such that

Log®(z, B,b) = v(z), <K .
‘We shall show that
v(2) = Log®(z, B, b), =zeK.

The function
w(z,8) = —¢|/[®(z, B, b) P, B, b)],

ig continuous in C xC and it is an absolute value of a holomorphic fune-
tion (of one variable when the other is fixed) in a neighborhood of an
arbitrary point of CF*. This implies by the maximum principle that all
extremal points of O with respect to ¢(2) = Log®(z, B, b) lie in E*(b),
whence E*(b) = 0*(¢), and consequently Log®(z,C, ¢) = Log®(z, I, b),
ze(. By (3.5) we have

Log®(z, K',p) >10g® (2,0, ¢).

The function Log®(z, K', ¢) is by (3.14) and (3.10) continuous on K,
harmonic in K and (because of (3.1))

2,00,

Log®(z, K, p) < ple) = Log @ (e, B,0) = v(2), #ek,

whence Log®(z, K',p) < »(2), #eK. Therefore Log®(z, H,b) <v(?),
ze K. The proof is completed.

COROLLARY B.1. When proving that Log®(z, H,b) s subharmonic,
we did not use the assumption that O(z, B, b) = exp (b(2), e B. Therefore:
If BEcL ond b(z) is continuous, then Log®(z, ®,b) 48 a continuous
subharmonic function in C.

icm
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COROLLARY 5.2. If the function ®(z,H,b) is continuous in C, then
Log®(z, B, b) is an upper envelope of all functions U(z) that satisfy (ii)
and (iii) of Theorem 5.2 and the imequality U(z) < b(z) for z¢E.

Indeed, R(2) = Log®(z, B,b)—U(z) is superharmonic in CE*(b)
and R(2) > 0 for 2<E*(b), therefore R(z) > 0 everywhere, whence U(?)
< Log®P(z, B,b) for zeC. This completes the proof of the corollary.

Remark 5.1. By more sophisticated tools one can prove that the

function
V (2) = limsupLog (¢, B, b)
2’z

is subharmonie in € for an arbitrary closed and bounded set E with
d(B) > 0 and for arbitrary real and bounded b(z). This is a consequence
of Theorem 2.2 and of the general theorem which states that an upper
envelope of a family of loco uniformly bounded subharmonic functions
is a subharmonic function (see [19]).

6. Some families of functions b(z2) such that P(z, H,b) = expb(z),
zel. .
(a) We shall write b(2)eR(E), if D(z, B,b) = expb(z), ze k.

(6.1) Let T be o subfamily of R(E).- Then
b (2) = supb(e)
beT'

belongs to R(H).

Indeed, since b (2) = b(2), 2¢ B, beT, we have O(z, B, b) = & (2, B, b).
Hence, owing to (3.1) we have exph(z)= O(z,F,b) < (2, B, b)
< expbh(z), zeH, beT, and thus (6.1) follows.

(6.2) If e(2), e(2)+b(2)eR(B) and 0 <A <1, then e+IbeR(E).

Indeed, by proposition (3.8) we have ®(z, B,e+b)[D(2, B, e) <
[D(z, B, e+ 1b)[O(z, B, e)]'", 2B, whence by (3.1)

D2, B, ¢+ 1b) = D(2, B,e)expib(e) = exp[e(2)+4b(2)], =2¢E,
q. e.d.
(6.3) If by, ..., bpeR(B) and a5, a, ..., oz are non-negative real numbers
k

such that a = Y a;> 0, then

i=1
1 k
=— § a;b;eR(E),
.a
i=1

and, moreover,
3
[] 2%z, B,b) = #(2, B, b),

t=1

zeC.
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Let \
1 .
o (?) =ZLogU®"L (e, B,b), 2<C.

By assumption we have g(2) = b(#) for ze . The function |z— {|x
x exp[ —p(2) —(£)] is by (3.10) the absolute value of an analytic function
at any point z¢H. Therefore all extremal points of the closed plane ¢ with
respect to g(#) are contained in F, whence D(z, B, b) = Pz, C, p). Since,
by (3.1), D(2, 0, ¢) < expp(2), 2¢C, we have, in virtue of (3.7),

I
B(e, B, b) = expa(e) = [[] ¢z, B, 0|
=1
If F <« B and beR(E), then beR(F).

This follows from (3.1) and (3.5).
Let ¢(r) be a convex function defined for » >0 such that ¢ (r) is
positive and continuous. Let w(z) be a function defined and continuous
in ¢ such that Logw(z) is subharmonic in € and the limit

Lim [w(2)/[2]"] = #

(6.4)

exists and is positive (as an example of w(z) we can take the absolute
value of an arbitrary polynomial of positive degree, and for ¢(r) we may
take exp r or 7% a>=1).

THEOREM 6.1. Under the above assumptions, if b(z) = ¢[w(2)], then
there is Ay > O such that AbeR(E) for 0 <1< 4.

Proof. Let 7, be so large that ¥ is contained in F = {z | w(2) <7y}
‘We shall now prove that AbeR(F), if 0 <A< Ay = 1[#oke’ (v,)] and
the result will follow from (6.4). Let

1 w(z .
Zc(ro)—}—%LOg 1"()’ if

0

2eCF,
V(z) =

Ae[w(2)], if

In virtue of theorem 5.1 it is enough to show that V (2) is a continuous
subharmonic function in ¢ such that Lim[V(s)—Log |#|] exists and is
finite. The limit exists and is finte by the definition of V(#). It is also
obvious that V() is continuous in € and subharmonic at every finite
point which does not belong to the boundary I’ of F. We shall now prove
that it is also subharmonic at every point zyeF'. Let O, = z| |2 — 2|
= p}, ¢ > 0. The theorem will be proved, if we show that for sufficiently
small o

zel.

2n

1 . g
Vie) < 5= [ Viatoat.

Q

(1)
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The function

1 -
g(r) = Ze ('ro)—',—i Log :- —e(r)
v [}

is defined and continuously differentiable for > 0. Since g(ry)) =0
and ¢ (ry) = (Aa—21)¢'(r,) > 0, we have g(r) >0 for 7, <7 < 7+ 8, pro-
vided 6> 0 is sufficiently small. Therefore

c)

1
glw(2)] = Ae(ro)+ P Log -

—2efw(®)]>0
in @ = {&|r, <w(g) < ry+ 8}, whence V(z) > Ac[w(z)] in G. If ¢ >0
is so small that C, < {¢|w(2) <7+ 6}, then

91 2r

s 1 i 1 i

(i) ’%f Je[w (24 06™)]dt < QZI V (z+ ce®) .
0 0

The function e[w(2)] is subharmonic in C (see [19]), therefore
27
1 .
V(e) = olw ()] < 5 [ Aolw(eo-+e)di,
0

whence (i) follows because of (ii). The proof is completed.

COROLLARY 6.1. Let o(r) = 7, and let w(z) be an absolute value of & po-
lynomial of degree k > 1. Let B be closed and bounded with d(E) > 0. In
virtue of the theorem, Log D (z, B, lw) = lw(2) for z<E and 0 <1 <y,
Xy being sufficiently small. The function w(z) is strictly subharmonic. The-
refore every interior point of H belongs to B*(b), b(z) = Aw(#), because other-
wise (in view of (8.10)), Log @ (2, B, b) = lw(z) would be harmonic at z,.

COROLLARY 6.2, If FeL, b(z) is continuous in E and beR(EH), then
[expb ()]« R(E).

This follows by putting w(2) = Log®(z, ¥, b) and applying Theo-
rem 6.1 with ¢(r) = expr.

(b) Let E be a bounded closed set such that d(F) > 0. Let ¥ be a con-
tinuum such that F < B and F—F is closed. Let p(2) be a real function
defined in a neighborhood of B such that ®(z, B, p) = expp(?), z<F.
Assume there is a neighborhood U of F' such that exp[—p(2)19(2, B, p)
>1 for 2« U—F and p(z) is continuous and subharmonic in U. Then
the following lemma holds:

LeMvA 6.1. If q(2) is an arbitrary real function defined and bounded

on B such that ¢(¢) = ¢ = const for z<F, then there is a real number 1o > 0
such that

(6.6) O(z,B,p+Ag) =exp[pe)+2ig(e)] for =zel, |4} <A
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Proof. At first we shall prove that (6.6) holds for 0 <1 <4, 4,
being sufficiently small. Let g, =meiEnq(z). Then, by (3.3) and (3.4),
2y

Oz, B, p+2rq)exp[—Ag] = O, E,p), #<C.

If 4> 0 is sufficiently small, then the seb {2 | Bz, B, p)e™™® < ¢
contains a component 4 such that ' < 4 = U. The funetion

H(z) = Log D (2, B, p+2g)—p(2)—

is superharmonic in A-—F*, I™ =E*(p-+39) ~ F. On the boundary
of A we have H (2) > p and on F* we have H(z) = A(¢— g,). Choose 7, >0
such that u > Ay(c—go). We claim that H(z) = p()+Aq(2)— A = p(2)+
- A(e—g,) for 0 <1< A, and zeF. Indeed, the function H (=) is super-
barmonic in 4—F* and H(e) > u, if 2 belongs to the boundary of 4,
while H(z) = A(c—¢,), if ze<F*. Therefore H(z) > min[u, A(c—q,)] =
= A(c—g,) on the boundary of 4—F*. By the minimum principle for
superharmonic functions we have H(z) = Me—gqy) in A—F*, whence
&z, B,p+2q) = explhe+p(2)] for zeF and 0 <i<1. Since, by
(3.1), ®(z, B, p+Ag) <exp[p(e)+1g(=)], we infer that (6.6) holds for
0 <1< 2. To prove (6.6) for —2, <1< 0 it is enough to consider
—q(z) instead of g(z).

COROLLARY 6.3 (see [4], [18]). Let B =E, v By w ... v By, where
By 4 =1,2,...,n, are continus such that B; ~ I; = @ (i #j). Let for
any 1+ =1,2,...,n the sum

By =) By
k=1
(Fez2)
be contained in D(E;) (D(E;) denotes the unbounded component of CI)
and let q(2) = ¢; = const for zeBy, i =1,2,...,n. Then there is 1y >0
such that &(z, B, 2q) = exp[ig(r)] for 2¢E and [A] < 4.
Remark 6.1. The assumption that B; (¢ =1,2,...,n) are continua
is not essential, since if H; are arbitrary closed bounded sets, one can
n
replace B; by continua F; containing F;, respectively, such that # = {JI;
=1
gatisfies all assumptions of Corollary 6.3 and the equation &(z, H, D)
= exp[Ab(2)] follows then from (3.1) and (3.5).

Remark 6.2. If B, is an arbitrary closed set such that &(Z;) >0,
then there is a Jordan curve H, containing ), in its interior such that the
funetion b (2) = A[(—1)'4+1],2eH;, ¢ = 1, 2, does not belong to R (B -+Fy)
for any A > 0 (see [21]).

LEMMA 6.2. Let B be a bounded closed set such that d(E) > 0. If p(»)
= LogV1+ |2 and q(2) = Loglz—al, a¢B, then there is a real number

iom®
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Ao >0 such that
(6.7) D(z, B,p+1q) =exp[p(e)-+igle)] for zeE and [A] < 4.

Proof. Let »r >0 and R > 0 be two real numbers such that E is
contained in the annulus 4,z = {z|r < [¢—a| < R}. Put K, = {&||z—a|
=0}, >0, and B = E+K,+Kp. In virtue of Lemma 6.1 there is
Ay >0 such that
Log®(z, B,p+1q) = exp[p(2)+1g(z)] for seK,+Ezand [ <h
The function

H(z) = Log &(z, B, p+Ag)—p(2)— Aq(2)

Vit e

IA

= Log ®(z, ﬁ, p+ Ag)—Log

|e—a
is superharmonic in the open set A,p— B*, E* = F*(p+1g), and equals
zero on the boundary of it. Therefore by the minimum prineiple for
superharmonie functions H(2) = 0 for zed,r. Since H(z) <0 for zeF,

it follows that H(z) = 0 for z¢F and A <A. As B = B, (6.7) follows
now from (3.1) and (3.5).

LemMA 6.3. Let E be a bounded closed set with d(E) > 0. Let

k

p(2) = Log|(z2—a,)...(2—ay)%|, where a4 B, o0; > 0,2 o=0<1.
i=1

(If all o; =0, we put p() = 0). Let q(z) = Logle—a|, where a belongs

to the component of OF which contains at least one of the points @y, Gy, ..., dx

and oo. Then there is Ay > 0 such that

(6.8) @(=,B,p+2) =exp[p@)+g(2)] for 2B and A <4

(see [3] and [14]).

Proof. Let A,z, K,, Kz and F have the same meaning as in the
proof of Lemma 6.2. We may assume that  and R are chosen in such
a way that B < A, and aged,p, i =1,2,..., k. By Lemma 6.1 there
is 4, > 0 such that

Log® (2, B, p+1q) = exp[p(?)+ g (2)]
for 2eK,+Kp and |A| < A, (here the set K,+Kg plays the role of F in
Lemma 6.1). Then the function H(¢) = Log® (2, B, p+g)—p(2)— g(2)
is superharmonic in the open set A,pz—E*—{ay, as,..., @}, 18 equal
to zero on the boundary of A,z—E* and ImH(z) = o0, i =1,..., k.
20y
Therefore by the minimum principle we have H(z) > 0 for ze 4,5, whence
we deduce equality (6.8) in the same way as in the proof of Lemma 6.2.
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Ag a direct consequence of Lemma 6.2. and of (6.3) we obtain the
following

THROREM 6.2. If B and p(2) are the same as in Lemma 6.2 and
g(2) = Log[i(e—b))"... (e—br)"|/[(e— ). (2—co)"1],

where byy ..oy by, Cyy ey Cod By Bi =0, y; =0, then there is a Ay > 0 such
that

B(2, B, p+1g) = exp[p(2)+24(2)],
Lemma 6.3 and (6.3) imply the following
THEOREM 6.3. Let E and p(?) be the same as in Lemma 6.3 and
let all points by, ..., by, €1, ..., Cs lie in the sum of the componenis of CH

such that each of them contains at least one of the points ay, ..., ay, co. Then
there is Ay > 0 such that

Oz, B,p+1q) = exp[p(e)+24(2)],

7. Solution of the Dirichlet problem for a class of domains and for
a class of houndary values. Let ¥ be a bounded and closed set such
that d(E) > 0 and let p(z) and b(2) be real functions defined and bounded
on E. If A > 0, then by (3.9) the function u(2) = w(z, H,b), given by

2ell, 1] <Jo.

2ell, A <o

.1 -
(1.1) u(2) =];11\5n ELOg[qj(sz:ﬁ‘{_zb)/@(z’E:?)]’ zeC,
0

is harmonic in §—F and
infb(2) < b, <u(z) < By, = supb(¢), =z¢C.
tell LB

The following lemma is a generalization of a
(93, (8], {12], [131:
Leyva 7.1. If B < L, if p(2) and b(2) are continuous on I and if

result contained in

" :
(7.2) I;tfglfllog[@(z, B,p+19)[P(2, B, p)] =0b(2), 2cH,

then the fumction wu(z) given by (7.1) is a solution of the Dirichlet problem
for every component of OF with boundary values b(z).

Proof. Since F is contained in L and p(2) and b(2) are continuous
on E, the function

1
(2) =~ Log[P(e, B, p+19)/P(2, B, p)]
is by (8.14) continuous in & and harmonic in OF. Moreover, b, < 3(2)

< By, 2¢C. If 4 | 0, then in virtue of (3.8) and. of (7.2) we have u,(2) # b(s)
for z¢E. Therefore by well known Dini’s theorem w;(2) is convergent

icm

APPLICATIONS OF EXTREMAL POINTS 233

to b(z) uniformly on E and hence — by the theorem of Harnack — uni-
formly in C. Therefore u(z) is continuous in €, harmonic in CE and u(2)
= b(g) for zeH, i.e. u(2) is a solution of the Dirichlet problem for CF
with the boundary values b(z). The proof is completed.

If E < L, p(») and b(2) are continuous on F and there is a number
Jo >0 such that p42,qeR(E), then of course u(2) = u(z) for 0 <2
< 2, and the procedure of finding the solution of the Dirichlet problem
is simplified. 'We shall give now some examples which show that this
favourable situation does not always hold.

Example 1. Let B = {z]l2| <1}, p(2) =0, b(s) = —lz|. The
function Ab(z) is strictly superharmonic for every A > 0, so the equation
Log ® (2, B, 1b) = Ab(e), zeH, cannot hold, because Log®(z, E, ib) is
subharmonic. Moreover, it follows from (3.1) and (3.2) that Log®(z, B,
ib) = —A for |¢| = 1. Therefore Log®(z, B, b) = —A4 for |2| <1.

Example 2. Let B ={|kl=1}, B ={|l1<s=2<2}L
B = B+H, b()=0 for zeH, and b(z) =Vi—(e—° for zeB,. It
is easy to check that YLog®(e, By, 1b) = max(0, Logls|). According
to (3.5) we have &(z, B, ib) > LogD(z, B, ib). Bub

Log ®(e, By, ib) = Log 2] < /5 —(#—3),

if 1< 2< 1+, 6>0 depending on 2. Hence Log® (2, B, ) < 1b(2),
ze(l, 1+ 8). In view of (3.12) this implies also that there are no extremail
points of ¥ with respect to ib in the unterval (1,14 d).

It may, however, happen that though p+ b ¢R(E) for any A >0
equation (7.2) holds. We shall write beR*(B, p), if and only if (7.2) holds.

TmmmA 7.2. Let B be a bounded closed set with d(B) >0 and lot p(2)
= Log V1+ 2> Suppose for every z,< B there is a circle K={z i le—a] <7}
such that K = CF and K ~ B = {z,}. Then every function b(z) bounded
and lower semicontinwous on B belongs to R*(E, p).

Proof. Let z, be a fixed point of E and let & > 0. There is >0
such that

b(2) > b(zy)—e&; zell.

Since (r/|z—a|) < 1 for |z—a] > 7, there is #, such that (r[lz—al)”
exp [b (7)) — ¢] < expb(z), if |22 > 8, zeE and n >m,. Thus

le—2| < d,

1 . 1
Log(l/]z«a,])—l—Logfr—{—E[b(zo)—s]<;b(z), zel, n = ng.

By Lemma 6.2 there is 4, > 0 such that Log®(z, E,p-+4g) =)+
+ 2g(2) for zeF and |A| < A, where q(2) = —Log|z—a|. In view of (3.4)
this implies that
Log @ (2, B, p-+bi) = p(2)+0:(2),
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where

1
bi(?) = A{Log(r/lz—al)+ o [bl&)—el}
Hence, by (3.3),

1
p(z)+l{—L0glz—w|+L0g7“+ ” [b(zo)—61}< Logq)(zy B, p+%b)7 zell.
So

A A
D) ()] < Log (s, B, 2+ B) <ptot Lo,

whence
.n A
b#)—e <lim 7Log[¢ (zu,E,p+ —y;b)/gb(zo: E,p>]< b(z0),
N—00

since Log® (%, B, p) = p(z,). The result follows by the arbitrariness
of ¢>0.

Remark. If E iy composed of a finite number of digjoint Jordan
arcs or curves each of them a sum of finitely many line segments, then
for every point z, e E there is a circle K = {z [ |z —a| < r} such that K < OF
and K ~ B = {z)}.

An immediate consequence of Lemmas 7.1 and 7.2 is the following

THEOREM 7.1. Suppose B = L and Jor every z,eX there is a circle
E ={z||t—al <7} such that K < OF and K~ E — {2} If »e) =
=Loga;1/1—{~[z[Z and b(z) is an arbitrary real fumction continuous on B,
then the function

1

1 , ~
u(z) = 313?7110%[4’(2,E,p+lb)/¢(z'sE,29)], zeC

is o soluton of the Dirichlet problem for every component of OF with boun-
dary values b(z).

Leyva 7.3. Let B be o bounded closed set with ad(B) > 0 and let p(2)
13
= Log](z—a,l)"l...(z—ak)""[, where a;¢8, ;=0 and o = Doy <1 We

Put p(e) =0,4f 01 =0, = ... = g, = 0. Denote by A the sq;;nl of the com-
ponenis of OF that contain at least one of the points ay, ..., a, oo (if p (2) = 0,
then 4 = D(B)). Suppose for every z,eB there is a circle K = {z | |#— al
<r}suchthat K <« A and K ~ B = {#o}. Then every function b(z) bounded
and lower semicontinuous on H belongs to R*(H, p).

Pr'o of. It is enough to repeat the reasoning of the proof of Lemma
7.2, using now Lemma 6.3 instead of Lemma 6.2.

As a simple consequence of Lemma 7.1 and Lemma 7.3 we obtain
the following
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THEORBM T7.2. Besides the assumptions of Lemma 1.3 assume thai
E < L. Then the function

. .1 -
u(e) = alﬁ.lILOg[fb(zyE,erM)/@(z,E,P)], e,

is a solution of the Dirichlet problem for CE and boundary values b(2).

8. Approximation of continuous functions by harmonic fumctions.

Let I' be an arbitrary continuum with ordinary diameter I= sup|z—Z|.
2,0el"

An important lemma of F. Leja states (see [7]):

If ¢ > 0 and I, > 0, then there are 6 > 0 and 7, > 0 such that for
every continuum I' with the diameter 7>, and for every sequence of
polynomials P,(z) of respective degrees n, » = 1,2, ..., which are uni-
formly bounded on I' by 1,

P2} <1 for zely,n=1,2,...,

the inequality
[Pa(2)l < (1+e)"
holds for n > n, and for arbitrary circle |2—z,| << 6 of the center z;el.
Let 0™ = {g{™, ..., 7"} be an n-th extremal system of I' with
respect to b(z) = 0. Then

IOz, 1™ <1 for eel, i=0,1,...,0,0=1,2,...

This implies by the Lemma of Leja that Lim%l}("’ (2, 1™)| = O(e, I,
0) € 1--¢, if |#—2] < 6 and z,el. So we obtain the following

LmvmA 8.1. Let Iy be o real positive number. If I' is a continuum with
diameter 1 =1y, then for every e > 0 there is 8> 0, § depending only on &
but mot on I, such that

Log®(e, I',0) <14+e, o |o—2z| <8 and el

‘We shall now prove

LeMMA 8.2. Let 1, and R be fized positive numbers and let b(z) = |z|.
Suppose B is a set contained in the circle K = {z ] |2| < R} and, moreover,
BE=EouByv...uB, whre B, i=1,2,...,k are continua. Let
0eB, and let the diameter 1 of the continuum E; be >1,. Then for every
e >0 there ewists a positive § depending only on &, 1, B but not on H,
such that

8.1) w(z) = Iim—i—Log[cD(z,E,lb)/@(z,‘E,O)] <e, <o
240

Moreover, the function w is o solution of the Dirichlet problem for CE
with the boundary values b(z )= |z|.
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Proof. By Corollary 6.1, there is 1, > 0 (that depends on R) such
that @(z, K, 2,b) = exp[Ab(z)] = exp[ie[2]] for z<KH. Since F < K,
this implies by (3.5) that @(z, B, 1,b) = exp[4#|] for z<B. Therefore

1
u(2) = ILog[é(z, B,2)(0(z, #,0)] for 0<A<
and since HeL, the function u(2) is by Lemma 7.1 a solution of the Di-

richlet problem for CF and b(z) = [¢| as boundary values. The function
&(z, B, 0) is continuous in ¢ and &(z,F,0)>1 for z¢0. Therefore

1
u(z) < TL0g¢(z, B, 23b), =#eC.
0
Let £ > 0. We ghall now find 6 > 0 such that (8.1) holds. We may
assume that }e = » <1,. Denote by F the part of E, that is contained
in the circle |2} < r; of course the diameter of F' is equal to 7. Since F' <

and 1,0 (2) < $4,¢ for |2| <7, we have

1 1 A
% (r) < TLog¢(z, F, b)) < TLog [(exp —;‘?) Dz, I, O)]
0 0

e 1

for z¢C. By the Lemma of Leja there is 6 > 0 such that

1 :
TLog(z,F, 0) <-§ for 2] < 6,
0 2
0 depending only on 4, and & Thus
u(z) <e for |z| <4,

where ¢ depends only on ¢, I, and R. The proof is completed.

Suppose ¥ is a union of the boundaries of p-+1 disjoint domains
Dy, D1y ..., Dy, Dy =D(BE) being an unbounded component of CX.
Of course our assumption does not exlude the possibility that CF is
a union of infinitely many components. Let K = {z| |2] < B} be so large
that B = K. Let '

4l = min I

where
1<i<p '

b = suplz—{]

2,8eDy
is the ordinary diameter of D;. By a simple reasoning (see [6], p.179)
one can show that for every » =1, 2, ... there exists a set '™ = I'{"
+ I 4T such that I is a Jordan arc of diameter %; > 2,
I't™ ig contained in D; and eomposed of a finite number of line segments.
Moreover, for every zeH (and arbitrarily fixed n) there is #, '™ such
that |ep—2. < 1/n.

(t=1,2,..,p)
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Let b(2) be an arbitrary real function defined and continuous on E.
By the Tietze-Urysohn extension theorem we may assume that b(z)
is defined and continuous in K. It follows from Theorem 7.2 that the
function

?

.1 ~
(8.2) U(z,]""),b)=1}1in€.17Log[¢(z,I‘("),Ab)/@(z,]"("),o)], zeC

is a solution of the Dirichlet problem for CI'™ with b(2) as boundary
values. The convergence in (8.2) is uniform and the funetion U(z, '™, b)
is harmonic in a neighborhood of E.

TumorREM 8.1. The sequence U,(z) = U(z,I'™,d), n =1,2,...,
converges to b(z) uniformly on B (see [6]).

Proof. The function b(z) being uniformly continuous on X, for
every ¢ > 0 there is M > 0 such that

b(eo)— 6— M fo— | <b(#) < bleo)+ e+ Mle—zy|  for
This implies that for n =1, 2, ...
bze)— e— MV (2,2, I'™) < Tle, I'™, b) < b(zg)+ e+ MV (2, 2, I'™)

for z¢(, 2,eI'™, where for a fixed 2,eI'™ the function V(z, 2, I'™) is
a solution of the Dirichlet problem for OI'™ with boundary values |z— 2|
By Lemma 8.2 there is 6 > 0 that does not depend on # such that for
every z,el™

2,2 K.

MV(z,2, ") <e, it |e—z|<é,

whence

(i) b(2) —2e < Uz, '™, b) < b(2)+ 2e, for [2—20] < 8,

tel™, n=1,2,... If n is so large that 1/2n < 8, then for every z,<E
there is 2, eI™ such that |e,—z,| < L/n. Since b(2) is uniformly conti-
nuous in K and I'™ < K, we have b(z,)—e& < b(g) <b(2)+e for sui-
ficiently large m, whence in view of (i) we have

b(2,)— 38 < Uy, ™, b) < b(2,)+3¢ for

and for sufficiently large n. As & > 0 i arbitrary, this concludes the proof,

TurorEM 8.2. Let B be the union of the boundaries of p+1 (p = 0)
domaing Dy, Dy, ..., Dp 1o two of which have common points. Let Dy = D (E)
denote the unbounded component of CE. If b(2) is an w'rbz'r/rary real function
defined and continuous on B, then for every &> 0 there is a function

4(2) = alle—b)1... (e— 061 [lz— o). (G— o],

where by, ..., by, €y..eycsed =Dot+Dit...+Dpy B =0, ;=0 and
a = const, such that

|b(2)—Loglg(e)l| <& for

2ol

zel.
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Proof. Let I'™ have the same meaning as in Theoren{l 8.1..:By Tie-
tze-Urysohn extension theorem we may aSsume that b(z) is defme'ad M%d
continuous in @ circle K such that B = K. Given ¢ > 0, we can find, in
virtue of Theorem 7.2 and Theorem 8.1, 2>>0 and 7 >0 such that

&z, '™, 2b)
Dz, '™, 0)

| 1 3 .
(8.3) \b(z)—zLog ”<§, vel

Let 70 = {flo, My -, ;) and € = {&, &1, ...y &} denote the »-th
extremal system of Z with respect to 4b(2) and 0, respectively. By Theo-
rem 2.1, the sequences

V109, 1, )]} V16, &9, 0}

converge to Oz, '™, ab) and O(z, '™ 0), respectively, the convergence
being uniform on K. Hence there is » such that

and

) () ®), b)) e
@(zyr();lb) ___l 1% (2, 1™, <2 sell.
(8.4) Log h—_@(z, F(n—)’_d)_ =5 0g qu_ Oz, &, 0—)| o
Combining (8.4) and (8.3) we get
1 I(D(o) (2, 77(”)) Ab)|
S Togie T B <, 2el
b=, Lo gm0y | < T

whence the result follows, if we put
(@) = [89(z, 1, 1)/ (2, £, )T
Remark 8.1. If B iz a boundary of the domain Dy = D(H), then
Theorem 8.2 may be proved by means of Runge’s theorem and of Thep-
rem 8.1. Moreover, the function g(z) may be replaced by a polynomial

whose zeros lie in Dy. Indeed, by Theorem 8.1 there is a sequence of fune-
tions H,(¢) harmonie in a neighborhood of 0D, such that

H,(2)—>b(z), =2zeH,

the convergence being uniform on E. Therefore, given ¢ > 0, there is m,
such that

(8.5) iepr(z)—expﬂno(z)|<% for ael.

Let now @ be a neighborhood of CD, such that every component
of @ is simply connected and H,(#) is harmonic in @. Let H,(¢) be & hax-
monie function in @ conjugate with H,. By the Runge theorem every
function f,(2) = exp[H,(?)+iH,(2)], » =1,2,..., may be approxi-
mated by polynomials uniformly in every compact subset of G. In par-
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ticular, theré is a polynomial q(2) such that

(8.6) LOESMOIESE SIS
The function f, (2) does not vanish in @. Therefore the polynomial
¢(2) can be chosen in such a way that all its zeros lie in Dy. From (8.5)

and (8.6) we obtain |epr(z)—|q(z)l| <& zeB, whence the result im-
mediately follows.

Let E be a bounded closed set with d(E) >0, p(2) a real function
defined and bounded on F such that &z, E,p) = expp(2) for zeEH.
If 8 is a subfamily of R*(®, p), then the function b* (®) = supb(2) belongs

bR
to B*(E, p). This is a simple consequence of (3.1). Hence and from Theo-
rem 8.2 we obtain

COROLLARY 8.1. Let B be the union of the boundaries of k+1 (k= 0)
domains Dy, Dy, ..., Dy, no two of which have common points. Let A(E) >0
and let b(z) be an arbitrary real function defined bounded and lower semi-
continuous on B. If p(e) = V1t |2f}, then

aifrg%Log[cﬁ(z, E,p+1b)|0(z, B,p)] =b(z) for zeE.
The same equation holds if
p(2) = Log|(z—a))™...(z—a),
where o3 > 0, Z_Zkl"’i <1, a;eD; (i =1,2,..., k).

TEEOREM 8.3. Let E satisfy all assumptions of Corollary 8.1 and;
moreover, let B <= L. Let p(z) denote any of the functions considered in the
Corollary. Then for every real function b(z) defined and continuous on E,
the function

(@) @) =l LogldE, B,p+ )0 E,p)], #0,
1o

s a solution of the Dirichlet problem for OB and boundary values b(z).

Remark 8.2. We may allow 4 tend to 0 in (ii) through arbitrary
real numbers different from zero.

9. Dirichlet problem generalized by Kellog and Wiener. Let D be
an arbitrary domain in C, b(2) — a real function defined and continuous
on the boundary of D. Denote by b() a continuous extension of b to C.
Let {D;} be a sequence of domains regular with respect to the classical
Dirichlet problem and let

(9.1) Dy © Dipyay  Di st D.
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Denote by Hy(z) = Hy(2, %) the solution of the Dirichlet problem
for Dy, and boundary values b(2). A funection H(2) defined and harmonic
in D is said to be a Kellog-Wiener solution of the Dirichlet problem for D
and boundary values b(2), if for every choice of the extension b(z) and
of the sequence {Dy}, the corresponding sequence of harmonic functions
{H,(2)} is convergent to H(z) uniformly in every compact subset of D.
The purpose of this section is to prove the following

TreorEM 9.1. If D is o domain containing poimt oo in s interior
and if the boundary B of D has positive tramsfinite diameter @(I), then,
given an arbitrary real function b(2) defined and continuous in B, the fume-
tion

%(2) =1im-1—Log[(D(z,E, )Pz, B, 0], =zeC,
W0 A
(3:20)
is a Kellog-Wiener solution of the Dirichlet problem for D with boundary

values b(z).
Before we start the proof of the Theorem we shall prove two lemmag

which are interesting also for themselves.

Tmama 9.1. Let b(2) be a real function defined and continuous in 0.
The functional p(E,b) defined by (4.5) is comtinuous with respect to Il in
the following semse: for every ¢ >0, there is & > 0 such that

(9.2) p(B,b) < p(Bs, ) < p(B,b)+e,
B, denoting the set of all points the distance of which from E does not emceed 6.

Proof. If ¢™ = {¢;, ..., 6,} is an arbitrary system of » points of ¢
and

pn(B) = n=1,2,...,

min {max|(z—6,)...{2—c,)|exp [—nb ()]}
cmcE 2E -

then in accordance with (4.5)
N .
Vin(B) — p(B) = p(B, b).
Therefore for every & > 0, there is s such that
s (B) < u(E)+ef2.
Let K = {z| |2] < R} be so large that B = K. The function

(9.3)

P(C1) -ne 05, 2) = |(2—02)... (¢—0o)|"Mexp [—b (2)]

i continuous for (o, ..., s 2)eKXE X...xK = E**'. The set K"
being closed the funetion ¢ is uniformly eontinuous in it. Hence, there
is 8 > 0 such that

MAX P01y +v-y Cgy 2) K MAXP(Cry+.ny Cgy 2)+8[2
sely 2eH!
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for every (¢, ...,¢,)eK®. Therefore

min {maxe(ec, ..

.Gy 2)} < min {maxe(
rbsy @) X (4
((R)C]gé 2By Pl

S\cp  2%E

Loy Gy 2)}He[2,
because B < E;. Hence

(9.4) wa" (By) < " (B)+ef2.

Since, a8 we KnoW, tmin(Bs) < tn(Bs) n(Bs) for mymn=1,2, ...,
we have fms(Bs) < [us(Hs)™ for m =1,2, ..., whence u(B) < il (B,).
In view of (9.4) this implies that

p(Hs) < u(B)+e.

It follows from (3.5) that &(z, B;, b) < O(z, E, b) for zeC, because
E < Es, whence by (4.8) we obtain

p (By) =Um (2, By, b)/le] <lLm (2, B, b)/|z| = p~ (),
=00 00

i.e. u(B) < p(Fs). The proof is thus completed.
CoroLLARY 9.1. If B, <E,, n=1,2,..., and E,— E, then
p (B, b) > u(B, b).
Let D be an arbitrary domain containing point oo in its interior such
that the boundary B of D has the positive transfinite diameter. Let {D,}

be a sequence of domaing regular with respect to the Dirichlet problem
and such that

D, c Dy,,, ooeD,, n=1,2,...,D,—D.

Put B, = D—D,. The sets B, (n=1,2,...) are bounded and
closed and, moreover, E,,, < B, and B, E. We shall now prove the
following

LeMMA 9.2. If b(z) 48 a continuous real function defined in O, then

®(2, B,b) = lim &(z, By, b),

N—>00

zeC,

the convergence being uniform in every compact subset of D.
Proof. The functions R, (z) = Log®(z, E,, b)—Log®P(z, B, D) are
by (3.10) harmonic in D,. Moreover, since B < H,,; < E,, we haive,

by (3.5),
Ru(?) < Rapa(e) <O for

Observe that, by Lemma 9.1, R,(cc) = Log[u(E, b)/u(Ey, b)] — 0.
The result follows by the Harnack principle.

zeC and n =1,2,...

Colloguium Mathematicum XI. 2. 16
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T b(z) =0, then by (3.14) Log®(z, E,,0) is the classical Green
function of D,, with its logarithmic pole at infinity. This implies by Lemma
9.2 the following

COROLLARY 9.1. (see [2]). If D is a domain containing oo in its interior
and the boundary B of D has the positive transfinite diameter, then Log P (z,
E,0) is a generalized Green function for D with a pole at oo.

Proof of Theorem 9.1. By the Urysohn extension theorem we
may assume b(z) to be defined and continuous in C. In the sequel we
shall use the notation of Lemma 9.2. Let F, denote the boundary of D,.
By Theorem 8.3 the function

1
w(2, Fp,b) = lim—iLog[Qi(z, F,,0)|P(z, Fy, 0)], 2zeC,
Ao

is a solution of the Dirichlet problem for D, with boundary values b(z).
Therefore the Theorem will be proved, if we show that
u(2, Fr, b) = u(z, H,b)

uniformly in every compact subset of D.
Let £ > 0. By Theorem 8.2, there is a function

q(2) = [a(z—by)fh...(s— b [(a— 1) (2—05)]
With by, .ey bpy 61y ey 6s€Dyy Bz 20, v > 0 and a = const such that
(9.5) |b(z)—Loglq(2)l| <&, 2eB.

The functions b(z) and Log|¢(z)| being continuous in a neighborhood
of ¥, there is 4 > 0 such that

(9.6) [p(z)—Logig(2)| < 2e for zeH,

where E;= J {z| |2—2,| < 8}, There is n, such that B, c B, if #>=n,.
709

Let b,(z) denote an arbitrary real function defined and continuous in ¢
such that b, (2) = Log|¢(2)| for zeE,+CD. By Theorem 6.2 there is
Ao > 0 such that

Wz, By b)) = wp(, Fp, b)), if  0< A< Ay

Observe that by the maximum principle all extremal points of CD,
(n = n,) with respect to b, (2) (= Log |q(2)|) lie in F,,. Hence, since F, < B,
= 0D, we have @ (z, I, Ab;) = D (2, Ey,, Ab,) == D(z, (D, Ab,) for A = 0,
whence
Dz, Fyy dob) 1

(2, By, 4by)
Ble, Fo, 0) 1o

1
u(z, Fpy b)) =—Lo
(=y By by) 7o g oz, By, 0)

= (e, By, by).
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‘ By Lemma 9.2, u(z, Fy, b)) = u(z, B,, b) - u(z, E,b,) uniformly
in every compact subset of D. Therefore, given an arbitrary compact
subset 4 of D, we have

(a) |u(z, B, by)—ulz, Fyy by)| <,
If n > n,y, then by (9.6)

zed, n > n, = const.

(b) ]u(z,F,,,b)—u(z,Fn, b)) < 2¢ for zeD,.
In virtue of (9.5) and of (3.3) we have
(e lu(z, B, b)~u(z, B, b)) <e, zeC.

If » is sufficiently large the inequalities (a), (b) and (¢) imply the
inequality
|u(z, B, b)—u(z, Fy, b)| < 4¢, zed.
Because ¢ and 4 are arbitrary, the proof is concluded.

10. Dirichlet problem generalized by Perron. Given an arbitrary
real function % (z) defined and bounded in a set F, we define h(z) and
h(2) by -

h(z) =lUm{ inf h(z)},
(10.1) _ s (e ).
R(z) =Um{ sup hz)},

00 jg—7|<b,zpeF

It is easy to check that h(z) is lower and %(2) is uppersemicontinuous
in F. Moreover,

(10.2) h(z) <h(z) <h(2), 2eP.

Suppose b (2) is a real function defined and bounded on the boundary
F of a domain D. Function U (z) defined and harmonie in D is said to be
a Perron solution of the Dirichlet problem for D with boundary values
b (=), if

(10.3) be) <T(e) <T() <BR), 2B

‘We shall prove the following

TaeoreM 10.1. If D is a domain containing oo in its interior and the
boundary B of D belongs to L (i. e. D is regular with respect to the Dirichlet
problem), then the function wu,(2) = u(z, B, b) is the least and the function
u () = —u(e, B, —b) is the greatest Perron solution of the Dirichlel prob-
lem for D and boundary values b(z).

Proof. First of all observe that

(10.4) u(e, B,b) =u(z, B,b) < —u(z, B, —b) = —u(z, B, —b).
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Indeed, the equalities follow immediately from corollary 2.1. To show
the inequality observe that by (3.7) we have @(z, B, 0)®(z, B, —ib)
< @%(z, B, 0), whence the result follows by (7.1).

‘We shall now prove that u, and »° are Perron solution of the Dirichlet
problem for D with boundary values b(z). Indeed, by the theorem of Baire
there are two sequences of continuous functions {b,(#)} and {B,(2)} such
that b,(2) 7 b(2) and B,(2) X b(2). In view of Theorem 7.2. this implies

" that w(z, B, b) = b(2) and w(z, B, —b) = —b(z) for z<H. In virtue of
the mequa.htles b,(2) <b(z) and b(z) < B,(») and of (10.4) we have

uw(z, B,b,) <ulz, B,b) < —u(z, B, —b) <u(zE,B,), »=1,2,..,

whenece the result follows, because {u(z, H,b,)} is increasing and {u (2, B,
B,)} is decreasing. To prove that u, is the least Perron solution, let v(2)
be an arbitrary real function harmonic in D such that

(10.5) b(z) <u(?) <9(2) < b(2) for zeH.

‘We must prove that u,(2) < v(#) for zeD. It follows from (10.5)
that _
w(?) = u(z, B,b) <ule, B,v), =eC.

Put ¢;(2) = Log[P(z, E, 0)exp v (2)]. The function ¢;(2) is harmonic
in D—{oo} and it has a logarithmic pole of order one at oo. Therefore
by the maximum principle for analytic functions all extremal points
of D with respect to g,(2) lie on B, whence &(z, D, ¢,) = D(z, B, ;).
Therefore, by (3.1), $(z, B, 1) < D(2, B, 0)expiv(z) for zeD, whence
u(z, B, v) <v(2) for zeD. Therefore uy(2) < o(2), zeD, since b(2) < v(2)
for zeE. In the same way we may prove that »(2) < u°(2) for zeD. The-
refore u, is the least and «° is the greatest Perron solution of the Dirichlet
problem for D with boundary values b(z).

‘We shall conclude this section by the following

Remark. A necessary and sufficient condition that u,(2) = 4'(z)
for z¢D is that

hm L g——%—“ (B, 0)
Ao A w(E, Au(B, w—ﬂ}_b)

Indeed, by (4.8),

1 1

lim > Log[ (z, 1, 28)/®(z, B, 0)] = — 5 Log [u(B, i) u(B, 0)],
Z-»00

whence
u(E, 2b)

ﬂ(E").

1
% (oo, B, b) = —lim—TLog
- alo A

1I’PLICA1'IONS or EAX.Z'RE MAL P()INTb 2415

Analogously
= .1 _
U(oo, B, —b) = l;fn‘i'LOg[ﬂ(E: 0)[u(B, —b)].
0
Therefore

'”/0(’00)“'“0("0) = (o0, B, b)+u(co, B, —E)
= lim - Log [4#(B, 0) [u(E, 10)u(B, —75)].

The result follows now by the inequality w,(s)—u’(2) <0 and by
the maximum principle for harmonic functions.

11. Remarks on the effectiveness of the method of extremal points.
We would like to show in this section that the method of extremal points
is, at leagt theoretically, effective (computable). We shall describe a pro-
cedure which will enable us to compute u(F,b) or @(z, E, b) as limits
of some sequences {un(Z,Dd)} or {P,(z, E,b)}, respectively, such that,
for a given n, u; and @) may be found by a finite number (although very
large in general) of simple and realizable operations.

Let E be a boundary of a domain D = D(E) containing point oo
in its interior. Let d(®) > 0. Suppose b(2) is defined and lower semicon-
tinuous in B. If

2™ = {o, .}, n=1,2,...,
is a triangular sequence of points of ¢, we define
o(z,s™) = (z—af?)...z—al), n=1,2,..

Levya 111, Let o™ = @, ...,s0} be a triangular sequence
of points of B. If for every point zeD

(11.1) Vio (2, 8] - u(B, b)d(z, B, b),

then for every real function B(2) defined and continuous in T we have

By =lm~ Y B@ =lim= > B(n"),
‘ nso0 W Z ( ) oo T 2 (77

where 7™ = {5, 4™, ..., 70} s an emtremal system of B with respect
to b(z).

Proof. By Remark 8.1, for ¢>0 there is a polynomial ¢(2) =
= a(2—a,)...(#—ay) such that a;eD and

(11.2) —e+Loglg()| < B(2) <loglg(e)l+s, 2eB.
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Observe that in view of (11.1)
l n
hm~— Log|a;— "] = hm—Zlog]a —
N->00 n -

= Log[u(B, b)P (e, B, b)],

whence the sequences

1 N 7 1 N )
(2 2 mostaa+elf a3 ogiati e

i=1

converge to the same limit equal to

k
e-+ Loglal + kLogu(H, b)+ Log [ [ (ay, B, b).
ge=1
The result follows now from (11.2) due td the arbitrariness of > 0.
Levma 11.2 If

max|w(z, s™)exp[—nb(2)]"* — u(H, b),
2el
then

(11.3) Vio(e, @) — u(H, b) Bz, T, b)

uniformly in every compact subset of CE.
Proof. The funections

1
= ()
- Logla(z, #™)|

being harmonic and loco uniformly bounded outside of H, it suffices
to prove the pointwise convergence of (11.3). If zeD, the convergence
may be proved by the repetition of the reasoning used in the proof of
Theorem 4.1. Let now 2z, be a fixed finite point of CH. The function B(z)
= Log|?y—2| is continuous on F. By Lemma 11.1,

hm - Log| e (2, )| = 11m —2 Log|zp—2{"| = lim WZ\.J Log |2 — i
N--»00 il

But

lim — Z Log |2y —

hence the result.

7% = Log[u(B, b) Sz, B, b)];
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Let {e,} be a sequence of real numbers and {E,} a sequence of subsets
of I such that:
1° Ve, — 0 and 0<e <l,n=1,2,..
2° Hvery set H, contains only a finite number of points
= {6, ..., W}
such that for any zeB there exists a point e, (2) of B, such that
g en(z = é’rb:

where &, denotes a complex number satisfying the inequality [&,| < e,.
3° ]JnC-Ew{l, n=1,2,
Example 1. Let B be contained in the square @ =

{z| |Re 2| < R
|Im 2| < R}. Put sn—l/,‘ZR/Z", n=1,2,

. Devide @ into small closed

squares Q) i =1, ..., 4"+ by means of the lines
R R
Rez—kéﬁ, Imz_l—2—?, k,l=j:1, :}:2,...,i2n2.

Denote by ¢i?, ¢f”, ..., ¢ all the small squares so obtained snch
that ¢f? ~ B %@, k=1,2,...,n,. Take an arb1trary point ¢ of
af” ~ I and form 7, = {{?, ..., e}, Define B, — U F,. The sequences

k=1
{e,} and {B,} satisfy 1°, 2° and 3°.
Example 2. Let B:z=2(1), 0 <t <

of length L. Let 0 <" < " <...
such a way that
U

1, be a 1ect1f1able plane curve
<t =1 (n, =2"") be chosen in

141 .
[ Fwla=L2", i=1,2,..,n.
el
The sets I, = {z(#{™), ..., 2(M} and numbers &, = L/2" have

the properties 1°, 2° and 3°. Observe that the selection of the sets B,
is especially easy if ¥ is composed of a finite number of line segments,
which is practically the most important case.

TuworEM 11.1. Let B be a bounded closed set and let b(z) be a real
Junetion continuous in B. Suppose {e,} and {B,} satisfy 1°, 2° and 8°. Define
wn(B,b) by

Wh(B,b) = min {max|o(z, )| exp[—nb(2)]},
s(NcE, 2By
where o (2, 8™) = (z2—a{™)... (z— ™). Then

LimV (T, b) = u(E, b).

N0
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Proof. At first we shall prove that for every system of points
o™ = {@,,...,2,} we have

(i) max|w(z, 2™)exp[—nb(2)]] < mgKlw(z, o™)exp[—nb (2)]|
2Ly, 2el]

< {ma‘x [0) (z’ m‘“’)exp l: —mnb (z)]l + 817,(1 -|-M)"}exp(n§n) ’
seliy,
where
M =supf{le—Clexp[—b(2)]} and &, = max|b(z)—b(e.(2))!.
z,tell el
Indeed, the first inequality is obvious because K, < K. To prove the
second one, observe that by 2° for every ze¢F there is ¢, = ¢,(2) ¢ B, such
that z = e,+&,, whence

oo (2, 2™)exp [ —nb(2)]] = | (én+ &, 5™) XD [ —nb (ex)] exp [7b(€,) — nb (2)]
< {|w(n, @™)| exp [ —nb (€,)1+ (M + &,)" — M"}exp nd,,
and this implies the second inequality of (i). It follows from (i) that
U B, B) < pia (B, ) < [wh(E, b)+ ea( M+1)"Jexp (néy),

By the continuity of b(2), 4, — 0. Hence and from 1° we obtain the
result.

Observe that E, contains only a finite number of points and therefore
4n(B,b) may be found by a finite number of trials.

Take now the points &™ = {&9, &M, ..., &™) defined by

n=1,2,..

#n(B,b) = min {max|w(z, 2™)exp[—nb(2)]}
z(MCE, =En

= | (&%, &) exp [ —nb (£)].

In virtue of Theorem 11.1 and (i) we have

lim {max | w(z, &M)|exp [ —nb(z)]}'™

n-»c0  2eEy

= lim [max |w (2, £&™)e~™E| 1" = 4(B, b).

N-ro0 3B

Therefore by Lemma 11.2 we have

(2, E€M)e ™ O > w(B, b) B (2, B, b)
uniformly in every compact subset of (K.

Remarks. 1° Let y™ = {4{?, ..., 5"} be an n-th extremal system
of B, with respect to b(z). By means of (i) one can easily prove that

e
{V199 (2, 4™, )|} converges to (¢, B, b) uniformly in every eompact
subset of CH.
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2° Let a, be a fixed point of E. Assuming that a,, a,, ..., a, are given,
we define a,., by

Rn+1 = |(an+1_“o)---(“n+1_an)| = ma‘xl(z“*an)---(z_‘an)l
zel

Leja has proved in [16] that }/R_,,, — d(H).

Let @, be a fixed point of F. Assuming that @y, #y,...,2,, n =0,
are given, we define w,,, by

R = {@np1— @) A@ny1—@n)| = max |(z—@)... (s —2y)|
zeBp 11

Using inequalities (i) and the result of Leja we can easily prove

P
that VR: — d(B).
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ON SOME EXTREMAL FUNCTIONS OF LEJA IN THE SPACE
BY
W. BACH (CRACOW)

Tet B"™ be m-dimensional Buclidean space, m =2, B a closed and
pounded set in E™ and

a (|p—ql for m =2,
ol 9) = P for w3,
Let ¢™ = {g, g1, ---, s} De an nm-th extremal system of F with
respect to w(p,q) (see [2,4]) and p™ = {py, P1, ..., Pa} an arbitrary
system of m+-1 different points of E. We put

n kil

at (7, Gr) a { w(r, p;) }

N — AL B,(r) = inf {max ———

4u(1) m(%X s © (@5, ¢’ ) pmce U (0 g o (P> 1)
o kel

Tt is known [2, 4, 5] thab if m = 2 and r¢E, then

1

) lim —log 4, (r) = G ("),
oo T
1

@) lim —log B,(r) = @(r),
nsoo M

where G(r) = I—u(r) (see below). o

Let D,, be the component of the complement of ¥ containing the
point # = co and F, the boundary of Dy. If m = 2 and reD, then G(r)
is the Green function for D, with a pole at infinity and for r¢D,, we have
G(r) = 0 excepting a set of capacity zero. .

The object of this paper is to prove (1) and (2) in general case (for
m = 2).

Denote by M the class of all positive Radon measures » such that
v(B) =1 and v(e ~ B) =0 if enB =0.
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