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1. In [1] and [2] we were concerned with invariant sets of poly-
nomial transformations in one variable in various fields. For a class of
fields (including all finitely generated extensions of the rationals) it was
proved that if the polynomial is non-linear, then the invariant sets must
be finite. Analogous question for rational transformations (which are
not homographies) was answered in the same way for the field of ratio-
nal numbers (see [3]). One can consider invariant sets of transformations
defined by n polynomials in n wvariables acting in K" — the set of all
n-tuples of elements of a field K — and ask under what assumptions
they must be finite. If we do not impose some additional conditions
upon the polynomials, then already in the rational plane one can give
examples of polynomial transformations which are non-linear and have
infinite invariant sets. As an example one can take the transformation
(¢, y) > (*—y*+x, 2*—y*+y), which transforms the set with equal
first and second coordinates onto itself. Even transformations defined
by homogeneous polynomials can have infinite invariant sets as has the
transformation (z,y) — (¢*—ay, 2y—y*), namely the set {(a,a—1)|
| a-rational}. In this paper, we consider the case of n = 2 and prove the
following

THEOREM. Let K be a finite algebraic extension of the field R of ratio-
nal numbers. Let F,(x,y) and F,(x,y) be homogeneous polynomials with
coefficients from K, of degrees my, m, respectively. Suppose F,(x,y) and
F,(x,y) are without a common non-trivial factor and m,, m, are greater
than 2. Then the transformation T defined in K2 by (z,y) — (Fy(x,y),
Fy(x,y)) has no infinite invariant sets.

Remark. The same holds if one supposes m, = m, = 2.

The question can be posed whether the same holds for »n >3
(P 458). This seems very plausible, but our method of proof does not
work in the general case. One can also ask whether the assumption
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My, My =3 OF My = m, = 2 is essential (P 459). It is not difficult to
show that if our theorem holds for n = 3 with some restriction on the
degrees of the corresponding forms, say m,, m,, m; > A, then it holds
also for n = 2 with the single restriction m,, m, > 2.

Now we prove that the Remark above follows from the Theorem.
Consider the iterated transformation 72 = T(7). If T(X) = X, then
also T%(X) = X. As m,, m, = 2, thus 72 is defined by a pair of polyno-
mials, say &, (z,y), G,(x,y), which are obviously homogeneous, and it
remains to prove that their degrees are both greater than two, and that
they have not any common, non-trivial factor. (It is evident that this
procedure fails if m, # m,, as then the polynomials need not be homo-
geneous).

LeMMA 1. Suppose that A(x,y) and B(x,y) are homogeneous poly-
nomials with coefficients from a field K, without any common non-trivial
factor. Then there exist homogeneous forms fi(x,y), i =1,...,4, with
coefficients from K and natural numbers a,, ..., ag such that

'ralfl (x, y)A(x,y) +ira2f2 (x,y)B(r,y) = ",

Y s, y)A (2, ¥)+ y“fi(x, y)B(x, y) = y".

For the proof, consider the polynomials A (x,1) and B(z,1), and
remark that they have no non-trivial common factor. Hence we can find
polynomials f(z), g¢g(x) with degrees n,,n, respectively such that
A(z,1)f(x)+B(x,1)g(®) =1. Define now f(z,y) = y"f(x/y) and
fol@,y) = y"2¢g(x/y). The second equality follows immediately. The first
follows similarly by considering the polynomials A(1,y) and B(1, ).

By substituting 4 (z,y) = F,(r,y), B(x,y) = F,(r,y) in Lemma 1
and then z = F,(u,»), y = F,(u,v) we infer that the forms G, (x,y)
and G,(x,y) cannot have a non-trivial common factor. Remark finally
that all terms in @;(x, y) are of degree 4 and evidently ;(x, y) cannot
vanish identically. We proved thus that the Remark follows from the
Theorem.

2. We shall need two lemmas proved in [1].

LEMMA 2 (see [1], lemma 1). Suppose T is a transformation of a set
X onto itself. Suppose there exist two functions f and g defined in X with
values in the set of natural numbers, subject to the following conditions:

(a) For every constant ¢ the equation f(x)+ g(x) = ¢ has only a finite
number of solutions.

(b) There exists a constant €' such that from f(x) = C it follows f(Tx) >
> f(a).
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(¢c) For every M there exists a constant B(M) such that from f(x) < M
and g(x) = B(M) it follows g(Tz) > g(x).

Then the set X is finite.

LEMMA 3 (see [1], lemma 2). Let K be a finite, algebraic extension
of the rationals, let a be a fized integer in K and let m be a fized natural
number. Then there exists only a finite number of rational integers w such
that with a suitable integral b in K, a divides b"a, but no iniegral rational
divisor (# +1) of u divides b.

Now to the proof of the Theorem. We denote by K, the ring of inte-
gers in K, and by o,,..., o, a fixed integral basis in K, so that every
aeK can be represented in the form

r

i
e Py

q =1

where p,, ..., p, are rational integers, (p,,...,p,) =1, and ¢ is a natu-
ral number.
Let

m;

1 —1 T g — 1
Fe(@,y) = —- 2 aPddy™! = irGi(l':?l)
T ?‘20 =

(where a!) ¢K,, 4; are rational integers). Let

1) = (o Z o, _me )

and denote by p the greatest common divisor of the ¢;-s. Finally, let

r

Q=gle and y = Dplor (i=1,2).

k=1

Suppose now that the transformation T' has an invariant set X.
To apply lemma 2, we define the functions f(z) and g(x) as follows:
f(&) = maxgl, g(&) = max Ip{| for & of the form (1). The condition

(a) of lemma 2 is obﬂously satisfied.

LeEMMA 4. Condition (b) of lemma 2 s satisfied by the set X, the trans-
formation T and the functions f(x), g(®) defined above.

Proof of the lemma. Let 7 = T(£). Then evidently

= (Gl(y1Qs: Y2Q1)  Ga(4:1Qs) ¥201) )
A,@MQUQ T A;0™QT07"
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and f(y) = max{4,(0Q:Q:)" /uy, A2(0Q,Q2)"?/us}, Where u; is the greatest
rational integral divisor of A;0"iQ1Q which divides @;(y,Q.,¥,Q,).
Write @* = max(@,,Q.), @, = min(Q,,Q,), N = min (my, m,), and
suppose f(n) < f(é). Then
(2) i = Ai(0Q*)"QY.
Let » = (u,, uy). We have

Baphg | v Ay A2(9Q1Q2)max(ml,m2) )
Thus by (2)

(3) »> oV QYYTOV > 0@ =f(5) as N >3.

By applying lemma 1 to the forms & (xz,y), G, (x,y) we infer, after
multiplying by suitable constants C,, C;, that for some forms f,,f,,
91, o With coefficients from K,, and some exponents a,, a,, a,, by, b, b,
we have

filz, ¥)G,(x, y)m“1_|_f2($’ Y)Ga(x, y)a™ = C,a,
91 (@, ¥)G1 (2, ) Y"1+ ga (@, ¥)Gs (2, y) Y = Cyy’o.

By puttlng here » = y,Q,, ¥y = ¥, we see that » divides C,(y,Q,)%

and C,(y,Q,)".

Obviously, one can write » = A,4,4,4;, where A,|4,, A,|QM,
4, @y, Ay ™. Now, (4,,Q,) =1 and so no rational integral divisor
(# 41)of A, divides y,Q,. Hence A4, can assume values only from a finite
set (by lemma 3). Similar argument applies to 4, and 4,. It follows that
v is bounded by a constant C depending on the transformation T only
and we see by (3) that from f(7'(£)) < f(£) follows f(&) < C, which pro-
ves the lemma.

LEMMA 5. Condition (c) of lemma 2 is satisfied by the set X, the
transformation T and the functions f(x) and g(x).

Proof. Suppose that
(4) lm g (T (&) /g (&)™) = o
J—o0

for an infinite sequence {&;} with f(&;) < M. Let

r r
1 1 ) )
| . W i 2) e )
& (q{lj) ;Pk,f Wy y o ;P}c.a a’k) ( ) yl ) qm Y2 )
Then evidently
1 . ; L
(5) 9(T(&) > 5, mex {0, @60, e, G2 (vPe, yPgf)}

with some constant B,(M).
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Without any restriction we can suppose, by considering a subse-
quence if necessary, that g(¢;) = [pfo’,ﬂ with fixed ¢ and %, and, more-
over, that there exist

3).
aggi=um1’_%f_ (8=1,2; k=1,...,7)

oo Piy,i

and that ¢{), ¢’ do not depend on j. Then, for k =1, 2,

r
(6) GV, 99 q) = Y 6P w;,
=1
where G{", G (i =1,2,...,7) are homogeneous forms with rational

integral coefficients in 2r variables p{", ..., p{?, of degrees m, and m,
respectively. From (4) and (5) it follows that

P @), ) _ 0 (k=1,2).

lim
t
foxne ks ™*

Thus we obtain

GOSN ..., 80,60, ..., ) = 0.

As (6) is an identity in p®, we have

r T

Gilg: ) o o), ¢ Y oof)) =0 for i=1,2,
k=1 k=1

where o}’ (v =1,2,...,7) are conjugates of w, in K. From the last

equality and from the fact that @, and @, have no common factor it fol-

lows that

r

i
2 0 ) = 2 o® ) = 0
k=1 k=1
for »=1,2,...,7. But &) =1, hence det|wf)|| = 0, which is clearly
impossible. Thus (4) is impossible and so

9(T (& )) = B,g(&)maxtmmd) > B, g(£;)?

for some positive constant B,. Consequently, g(T(E)) < g(&) implies
g(&) < By ', which proves the lemma.

Now the Theorem follows directly by lemma 2.

One can remark that theorem I in [1] is a consequence of the the-
orem proved above. Indeed, suppose that P(t) is a polynomial with coef-
ficients from K, of degree at least two, and X < K is such that P(X ) = X.
Consider the transformation 7' of K, defined by (z,y) — (y"P(x[y), y*),
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if the degree m of P(t) is at least 3, and by (z,y) — (v*P(#/y), ¥?), if
m = 2. Then the set ¥ = {(a,1) |aeX} < K, is invariant under T and,
consequently, it must be finite. This implies the finiteness of X too.
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