FASC. 2

ON A PROPERTY

OF CONTINUOUS HOMOGENEOUS RANDOM FIELDS

BY

Z. POP-STOJANOVIĆ (BELGRADE)

The subject of this paper are continuous homogeneous random fields in \mathbb{R}^2 introduced in the papers of Yaglom [2], Itô [3] and Chiang-Tse-Pei [4]. They are analogous to the complex time dependent wide sense stationary stochastic processes.

Definition 1. The family of complex random variables x(s,t), s and t real numbers, is a continuous homogeneous random field if the following conditions hold:

$$(i) E|x(s,t)|^2 < +\infty,$$

(ii)
$$\lim_{h_1,h_2\to 0} E|x(s+h_1,t+h_2)-x(s,t)|^2=0,$$

and the function

(iii)
$$E\{x(s+m,t+n)\overline{x(m,n)}\}\$$

does not depend on m and n.

The function given under (iii) shall be denoted by $B_x(s,t)$.

The function $B_x(s,t)$, called the *correlation function* of the continuous homogeneous random field $\{x(s,t)\}$, is continuous, positive definite, and can be represented by

$$B_x(s\,,t)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{i(s\lambda+t\mu)}dF_x(\lambda,\,\mu),$$

where $F_x(\lambda, \mu)$ is a non-normed two-dimensional distribution function, which, in analogy with time-dependent stochastic processes, shall be called the *spectral function* of the field $\{x(s, t)\}$.

It is well known [2] that every homogeneous random field $\{x(s,t)\}$ has the spectral representation

$$(+) x(s,t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{i(s\lambda+t\mu)} dZ_x(\lambda,\mu),$$

where $Z_x(\lambda, \mu)$ is a random function of two variables with orthogonal increments such that

$$E\{Z_x(S_1)\overline{Z_x(S_2)}\} = \int\limits_{S_1 imes S_2} dF_x(\lambda,\,\mu)\,.$$

In our paper we need to express some statements about random variables in the spaces with scalar product. For all such spaces the scalar product is defined by

$$(x, y) = E\{x\overline{y}\},\,$$

and by convergence we always mean the convergence in mean-square. With such a scalar product the values x(s,t) of random field $\{x(s,t)\}$ form a Hilbert space which we shall denote by \hat{H} .

For introducing the notion of filter transformation of random fields which is analogous to such a notion relating to stationary processes [5], it is necessary to introduce some restrictions for random fields. Namely, in paper [4] there have been introduced the notions of singular and regular random fields, which correspond to the notions of deterministic and completely non-deterministic stochastic processes, respectively.

The named notions are basic for us, because we want to formulate in terms of a filter transformation of a homogeneous random field $\{x(s,t)\}$ a property which characterizes such a field.

Let $\{x(s,t)\}$ be a continuous homogeneous random field; by H_x we shall denote (according to [4]) the smallest closed linear space which contains all values x(m,n); by $H_x(t)$ we shall denote the smallest closed linear subspace of H_x which contains all x(m,n), such that $-\infty < m < +\infty$ and $n \leqslant t$.

Let us put $S_x = \bigcap_t H_x(t)$.

Definition 2. A continuous homogeneous random field $\{x(s,t)\}$ is singular if $S_x = H_x$.

Using the well known theorem of Rellich [6], which gives the representation for the elements of Hilbert space, we get the unique representation

$$x(s,t) = \eta(s,t) + \xi(s,t)$$

of the element x(s, t) of the random field $\{x(s, t)\}$ such that $\xi(S, t) \in H_x(0)$ and $\eta(s, t)$ is orthogonal to $H_x(0)$.

Let us put

$$r_x^2(s, t) = \|\eta(s, t)\|^2$$
.

It is clear that

$$r_x^2(s,t) = r_x^2(s',t) \equiv r_x^2(t)$$

and

$$r_x^2(t_1) \leqslant r_x^2(t_2)$$
 for $t_1 \leqslant t_2$,

whence it follows that the limit

$$\lim_{t\to +\infty} r_x^2(t)$$

exists. Let us denote this limit by σ_{∞}^2 .

Definition 3. Continuous homogeneous random field $\{x(s,t)\}$ is regular if

 $\sigma_{\infty}^2 = E|x(s,t)|^2 = ||x||^2.$

Let h > 0. By $\operatorname{proj}_{H_x(t-h)} x(s,t)$ we shall denote the projection of x(s,t) on the space $H_x(t-h)$.

Let us put

$$\hat{x}_h(s,t) = x(s,t) - \operatorname{proj}_{H_x(t-h)} x(s,t).$$

Now, given a continuous homogeneous random field $\{x(s,t)\}$ with spectral representation (+), there exists a function

$$C_h(\lambda, \mu) \in L^2(dF_x(\lambda, \mu))$$

such that

$$\hat{x}_h(s,t) = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty} e^{i(s\lambda+t\mu)} C_h(\lambda,\mu) dZ_x(\lambda,\mu).$$

Moreover, $\{\hat{x}_h(s,t)\}$ is a continuous homogeneous random field with spectral function

$$F_{\hat{x}_h}(\lambda,\mu) = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}|C_h(\lambda,\mu)|^2dF_x(\lambda,\mu).$$

Definition 4. We shall call the so defined continuous homogeneous random field $\{\hat{x}_h(s,t)\}$ the filter transformation of the continuous homogeneous random field $\{x(s,t)\}$.

This notion is quite analogous to the notion of the filter transformation of the stationary (in wide sense) time-dependent stochastic processes [5].

Using the above notions and definitions we are able to give the following property of regular continuous homogeneous random fileds:

THEOREM. For every regular continuous homogeneous random field $\{x(s,t)\}$ there exists a regular continuous homogeneous random field $\{\tilde{x}(s,t)\}$ such that the random field $\{x(s,t)\}$ is a filter transformation of $\{\tilde{x}(s,t)\}$, and we have the representation

$$x(s,t) = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty} e^{i(s\lambda+t\mu)}C(\lambda,\mu)d\xi(\lambda,\mu),$$

where $d\xi(\lambda, \mu)$ is a random Lebesgue's measure, and

$$C(\lambda, \mu) \in L^2(dF(\lambda, \mu)),$$

F being the spectral function of the field $\{\tilde{x}(s,t)\}$.

Proof. In virtue of a result of [4], we can represent the regular continuous homogeneous random field $\{x(s,t)\}$ in the canonical form

(*)
$$x(s,t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{i\lambda s} g(\lambda, t-\mu) d\eta(\lambda, \mu),$$

where

$$g(\lambda, \mu) = \frac{1}{\sqrt{2\pi}} \text{l. i. m.} \int_{-A}^{A} e^{i\mu u} C(\lambda, \mu) du$$

with

$$(**) C(\lambda, \mu) = \lim_{v \to 0^-} C(\lambda, u + iv),$$

and

$$egin{align} (*_**) & C(\lambda,\omega) \ &= k(\lambda) \exp\Big\{-rac{1}{2\pi i}\int\limits_{-\infty}^{+\infty}rac{1+\mu\omega}{\mu-\omega}rac{\logig(dF_x(\lambda,\mu)/dF_x(\lambda,+\infty)d\muig)}{1+\mu^2}d\mu\Big\}, \ &= \lim\{\omega\} < 0\,, \end{aligned}$$

 $k(\lambda)$ being a measurable complex function satisfying the condition $|k(\lambda)| = 1$.

Starting from (*) which holds for the considered random field $\{x(s, t)\}$, and using (**) and (***), we are let do the following:

If we put

$$\xi(A) = \int_A \int \frac{dZ_x(\lambda, \mu)}{C(\lambda, \mu)},$$

where Z is the random function of two variables in the spectral representation (+) of the continuous homogeneous random field $\{x(s,t)\}$, then the function $\xi(A)$ has the following properties:

- (i) $\xi(A)$ is a random variable as a consequence of the fact that $Z_x(\lambda, \mu)$ is random function;
 - (ii) if the sets A_1 and A_2 are disjoint, then

$$\xi(A_1+A_2) = \int_{A_1+A_2} \frac{dZ_x(\lambda,\mu)}{C(\lambda,\mu)} = \int_{A_1} + \int_{A_2} = \xi(A_1) + \xi(A_2),$$

as a consequence of the fact that $Z_x(\lambda, \mu)$ is a function with orthogonal increments;

(iii) for arbitrary measurable sets A_1 and A_2 we have

From (i)-(iii) it follows that $\xi(A)$ is a random Lebesgue measure characterizing the random field which we shall denote by $\{\tilde{x}(s,t)\}$.

All these conclusions imply that the regular continuous homogeneous random field $\{x(s,t)\}$ has the representation

$$x(s,t) = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} e^{i(s\lambda+t\mu)} C(\lambda,\mu) d\xi(\lambda,\mu),$$

where $C(\lambda, \mu)$ satisfies the conditions (**) and (***) and

$$C(\lambda, \mu) \in L^2(d\xi(\lambda, \mu)) \subset L^2(dF(\lambda, \mu)),$$

F being the spectral function of the field $\{\tilde{x}(s,t)\}$ characterized by the random Lebesgue measure $\xi(A)$.

It is easy to see that for the field $\{\tilde{x}(s,t)\}$ we have

$$\sigma_{\infty}^2 = E \left| \tilde{x}(s,t) \right|^2 = \left\| \tilde{x} \right\|^2,$$

i. e. $\{\tilde{x}(s,t)\}$ is a regular random field.

REFERENCES

- [1] А. М. Яглом, Введение в теорию стационарных случайных функций, Успехи математических наук 7 (1952), вып. 5 (50), р. 3-158.
- [2] Некоторые классы случайных полей в п-мерном пространстве, родственные стационарным случайным процессам, Теория вероятностей и ее применения 2 (1957), No 3, p. 292-338.
- [3] K. Itô, Stationary random distributions, Memoirs of the College of Science, University of Kyoto, Series A, 28 (1954), p. 209-223.
- [4] Цзян Цзэ-пей, О линейной экстраполяции непрерывного однородного случайного поля, Теория вероятностей и ее применения 2 (1957), No. 1, p. 60-91.
 - [5] J. L. Doob, Stochastic processes, New York 1953.
- [6] F. Rellich, Spektraltheorie in nichtseparabeln Räumen, Mathematische Annalen 110 (1934), p. 342-356.
- [7] R. Paley and N. Wiener, Fourier transforms in the complex domain, New York 1939.
- [8] K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Annales Academiae Scientiarum Fennicae 1 (1947), No. 37, p. 3-79.
- [9] Über die Struktur stationärer zufälligen Funktionen, Arkiv för Matematik 1 (1949-1952), No. 2, p. 141-160.