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On extensions and products of Boolean algebras
by

Roman Sikorski (Warszawa)

Tn my paper [8] (sce also [9] § 36 and § 38) I discussed the theory
of o-extensions and o-products of Boolean algebras. The subject of this
paper is to generalize this theory to the case of m-complete Boolean
algebras, m being any infinite cardinal. Topological methods applied in {8]
are no longer adequate for the theory of m-extensions and m-products
of Boolean algebras. They are replaced here by another argument, based
on the existence of free Boolean m-algebras proved by Rieger [7]. (*) The
existence of maximal m-extensions and maximal m-products proved in
this paper is a particular case of some more general results of Kerstan[3],
but it is obtained here by another method than that used in Kerstan’s
paper. Minimal m-products were earlier investigated by Christensen and
Pierce [1] but were introduced in another way than in this paper. The
possibility of a generalization of the theory of o-extensions and o-prod-
ucts to any cardinal m > o was mentioned at the end of §§ 36, 38 in [9].

The terminology and notation in this paper are the same as in [9].
The zero element of any Boolean algebra is here denoted by 0. The
composite of two mappings f, g is denoted by fg.

L (M, m)-extensions. U will denote a fixed Boolean algebra,
m—a fixed infinite cardinal, and MM a fixed set of infinite subsets of A
such that, for every Se I,

(1) S<m
and
(2) MNaes A exists in U.

A homomorphism (isomorphism) % from % into any Boolean algebra
A’ is said to be an M-homomorphism (PM-isomorphism) provided it
preserves all the infinite meets (2), i.e.

B(Naes A) = [(aesh(4) in A
for every Se .

(1) During the print of this paper I was informed that the results concerning exten-
sions of Boolean algebras were independly obtained by F.M. Yaqub by te same method.
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100 Roman Sikorski

By an (M, m)-extension of A we shall understand any pair {i, B}
such that

(e;) B is a Boolean m-algebra,

(&) ¢ is an M-isomorphism from A into B,

(e3) 4(A) m-generates B.

Sometimes we shall say that B itself is an (M, m)-extension of 9L
Thus, by definition, a Boolean m-algebra B is an (M, m)-extension of A
if A ecan be isomorphically imbedded into B with the preservation of aj]
infinite meets in M, and B is n-generated by the immersion of A

Instead of the preservation of meets (2) we could postulate here
the preservation of any given set of infinite m-meets and m-joins.
However, it is easy to see that the preservation of m-joins can always
be reduced to the preservation of some m-meets, by the de Morgan
formulas. Thus the restriction to m-meets (2) is not essential.

Let {3, B} and {i', B’} be two (M, m)-extensions of Y. Then W, 8
is said to be a homomorphic image of {¢, B} if there exists an m - homo-
morphism % from B into B’ such that

3) i = hi,
i.e. i’ iy the composite of  and i. We then write
(4) {#, 8"} < {1, B} . -

Note that condition (3) is equivalent to the following condition:
(8) R is an extension of the isomorphism 37 from (W) onto i’(A).

Hence it follows that, if the m-homomorphism % with the above prop-
erties exists, then it is unique. Moreover, % maps B onto B’. The two
statements are direct consequences of (e,).

It the homomorphism % with the properties mentioned is an iso-

n?orphism, then it is called an isomorphism from {2, B} onto {i’,B'}, and
{t,8}, {i", B’} are said to be isomorphic. Note that then ' iy an iso-
morphism from {¢', B‘} onto {z, B}.
. For ‘instanee, if {i,B} is an (M, m)-extension of A and % is an
1somorphism from B onto g Boolean algebra, then {hi, H(B)} is an
(M, m) - extension of A, isomorphic to {1, B}. In other words, any isomorph
of an (M, m)-extension of A is also an (M, m)-extension of 9.

Let K be the class of all (M, m)-extensions of A. It is easy to check
that rele.mtmn (4) is 2 quasi-ordering in K. Moreover, two (9, m)-extensions
of A, {i, B} and {7, B}, are isomorphic if and only if simultaneously

{8} < {i,8B} and {6, B} < {#/,B'}.

So_mt?time.s .it is convenient to identify isomorphic elements of K. After
this identification, K is partially ordered by <.
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Let 1t be the cardinal of 9 and let %y, be the free Boolean m-algebra
with a set of n free m-generators. Let Wy, be its smallest subalgebra
containing the free m-generators. Since 2y, is a free Boolean algebra
with n free generators, every Boolean algebra of a cardinality <mn is
a homomorphic image of Wo,. Since the free m-generators of Uy, are
free generators of gy, the algebras Wy, and Wn. have the property:

(e) every homomorphism from %, into any Boolean m-algebra A’
can be extended to an m-homomorphism from Ay, into A’, the extension
being unique.

Let ¢, be a fixed homomorphism from Uy, onto A, and let 4, be
the ideal of all elements 4 ey, such that go(4)= 0.

Let I be the set of all m-ideals 4 in Wp, such that

(e 4~ U = 4y,

(e") 4 contains all elements B—("\jes 4 and [.ies A —B where S
is any subset of U such that S < m, ¢o(8) e M, and go(B) = Maes go(4)
in Wz

For every Adel, let Wy = Wnn/d and let W,o be the subalgebra
(of A,) composed of all elements [A], with 4 e Woy -

Condition (e') means that the mapping

gul[Als) = go(4) for AWy
defines an isomorphism g, from W,, onto UA. Let
Gy = fa .

Condition (e') means that i, is an im—isomorphism_from A into Ay,.
Since Wyp = 14(A) m-generates Ay, we get the following theorem:

(i) For every A in I, {i4, Wy} 48 an (W, m)-extension of A.

Now we shall prove that, conversely,

(ii) For every (M, m)-extension {1, B} of W there exists an ideal A el
such that {i,B} is isomorphic to {i4, Wa}.

By (e), the homomorphism ig, from g, into B can be extended

to an m-bhomomorphism ¢ from UW,, onto B. The m-ideal A‘ of all
A € Wnyn such that g(4) = 0 has properties (e') and (e’’) and the formula

h([A]/J) = !](A) for Ae Q[m,n
defines the required isomorphism % from {i,, W} onto {i, B}.
It is easy to check that
(iii) For any A', A" €1,
{4y g} < {ogrey Wary i and omly if 47 C 4",

Thus {is, s} is isomorphic to {is, Wy} if am-i only if A’ =‘A”.
Hence it follows that the set K of all (M, m)-extensions of U, partially
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ordered by < is ordering-isomorphic to the set I partially ordered by
the converse of the set-theoretical inclusion.

So far we do not know whether the set K (i.e. the set I) is non-empty
To prove the existence of at least one (M, m)-extension of U we shall
use the existence of minimal extensions of A (MacNeille [4]). We recall
(see Sikorski [8], or [9] § 35) that a complete Boolean algebra B, is said
to be a minimal extension of A provided there exists an isomorphism
iy from A into B, such that V

(e*) 4%(2U) is a regular subalgebra of B, and generates completely B,.
- In other words, the isomorphism 4, from ¥ into B, preserves all in-
finite meets and joins in U, and the smallest complete subalgebra of B,
which contains 4,(%) coincides with B,.

It is known (see e.g. [9] § 35) that condition (e*) can be replaced
by the following one:

(e*¥) i(A) is a dense subalgebra of B,.

In other words, for every non-zero element B ¢ B, there exists a non-
zero element 4 « W such that 4(4) is a subelement of B.

Now let %, be the smallest m-subalgebra of B, which contains i,(%).
By definition,
(6) (g, W)
1:s an (9, m)-extension of A. The (M, m)-extension (6) of A and all its
lsomqrphs are called minimal m-extensions of 9 (it is not necessary to
menthn here M because (6) is an (M, m)-extension of A for every set
M satisfying conditions (1) and (2)).
‘ (iv) The following conditions are equivalent for every (M, m)-extension
(%, B) of W:

(ar) (4, B) 48 a minimal m-emtension of UA;

() i(QI)’ is a dense subalgebra of B;

(a3) () is a regular subalgebra of B.

(a,) implies (ay). Indeed, () is dense in U, by (e**). Consequently
every isomorph {i,B} of (6) also has this property.

(a,) implies (ay). This follows from [9], theorem 23.1.

('as) il?aplies (8). Let B, be a minimal extension of B. We may suppose,
for simplicity, that B C®B,, i.e. that B is a regular subalgebra of the
complete Boolean algebra %B,, and the smallest complete subalgebra
(of By) containing B is B, itself (see (e*)). By (ay), 4(A) is a regular sub-
algebra of B, and the smallest complete subalgebra (of B,) is the whole
algebraB,. Thus B, is a minimal extension of A, i.e. (i,B) is of the
form (86). ’

Since there are (M, m)-extensions of A, the set I of m-ideals is not
empty (ii). The intersection 4° of all ideals 4 in I also belongs to I. By (i),
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(T) {’l:AD,AAn}
is an (9, m)-extension of A The (M, m)-extension (7) and all its
isomorphs arve called mazimal (M, m)-extensions of A.

(v) In order that an (M, m)-extension (i,B) of A be maximal it s
necessary and sufficient that, for every Wi-homomorphism hy from A into
any Boolean mt-algebra G, there ewist an m-homomorphism h from B
into © such that

By = hi .

To explain better the last conditions, let us identify o with ()
Dby means of the isomorphism . The last condition means that every
-homomorphism k, from A =i(A)CB into any Boolean m-algebra
G can be extended to an m-homomorphism % from B into €.

To prove (v), let us observe that the homomorphism h,g, from
W into € can be extended to an m-homomorphism A’ from Wny into €
by (e). The m-ideal 4’ of all A €Wy such that 1'(A)= 0 has property (e")
since h, is an M-homomorphism. Since A,C 4', we have

(A"~ 4 A U = 4" (40~ W) = A"~ Ay = 4y,

ie. the ideal A4’ ~ /° satisfies (¢). Since the ideal A’ ~ A9 also satisties (e”),
it belongs to I. Hence it follows that 4%~ A4’ D A% 1. e. 4’ D A° Consequently,
the formula

W([Alw) =h(4) for

defines an mi-homomorphism from Wse into €, and %y = hige.

Thus we have proved that (7) has the extension property mentioned
in (v). Consequently, every isomorph of (7), i.e. every maximal (9, m)-
extension of A4, has this property.

On the other hand, it is easy to check that all (M, m) -extensions
of U with the extension property are isomorphic. Since (7) has the ex-
tension property, all (M, m)-extensions with the extension property are
isomorphic to (7), i.e. are maximal.

Identifying isomorphic elements in K, we get the following theorem,
which justifies the names ‘‘maximal” and “minimal”.

(vi) The maximal (M, m)-ewtension (7) of W is the greatest element
in K. The minimal m-extension (6) of A is a minimal element in K.

The first part of (vi) easily follows from the extension property
mentioned in (v). To prove the second part, is suffices to show that if b
is an m-homomorphism (having property (3)) from (6) onto another
(M, m)-extension (¢,B) of A, then k is an isomorphism. Indeed, b co-
incides with the isomorphism 4i * on iy(); thus h(4)# 0 for every
element 4 70, A eiy(2). Since io(A) is dense in Uy, we infer that
h{(4) # 0 for every 4 == 0, A ¢%,. This proves that % is an isomorphism.

Ae %[m,n
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It is not known whether the minimal m-extension (6) is the smallest
element of K. The answer is positive if % has some additional properties.
To explain this, let us introduce the following definition.

A Boolean m-algebra B is said to have the weak - extension pro-
perty i, for every Boolean m-algebra B’ and for every its subalgebra B’
m-generating B’, every homomorphism % from B’’ into B such that

Naes 4 =0 in B, SCB", § <m imply (Nyesh(4) =0 in B

can be extended to an m-homomorphism from B’ into B.

Every m-distributive Boolean m-algebra has the weak - extension
property (this follows easily from theorems 34.2 and 24.6 in Sikorski [9])-
Dubins [2] proved that every measure algebra has the weak ¢-extension
property. Recently Matthes [5] has proved that every weakly m - distrib-
utive m-algebra has the weak mi-extension property.

(vil) If (4,B) K and B has the weak m-extension property, then
(,B) is the minimal m-extension of A and the smallest element of K.

In fact, let (¢,%B’) be any element of K. Since B has the weak
m-extension property, the isomorphism #'~" from i’ (4) into B can he
extended to an m-homomorphism from B’ into B. This proves that
(4,8) < (¢',B'). Thus (4,B) is the smallest element in K and, conse-
quently, it is the minimal m-extension of 9I.

(viii) If A 4s m-distributive, then the minimal m-extension of A is
the smallest element in K.

Pierce [6] proved that if U is m-distributive, so is the minimal
extension of % and, consequently, the algebra B, in (6). Thus theorem
(viii) is an immediate consequence of (vii).

Traczyk [11] proved that, if 9 is weakly m-distributive and satisfies
the m-chain condition, then its minimal extension is also weakly m-dis-
tributive. Hence it follows that the m-distributivity can be replaced
in (viii) by the hypothesis that A is weakly m-distributive and satisfies
the mt-chain condition.

Now let M be the class of all sets S satisfying conditions (1) and (2).
.In that case (M, m)-extensions will be called m-extenstons. Thus {7, B}
Is an m-extension of A if B iy an m-algebra, 1 is an isomorphism from A
into B such that () is an m-regular subalgebra of B, and (%) m-
generates B.

Let K; denote the clags of all m-extensions (%, B) such that B is
m-representable. If 9 is not m-representable, then K, is empty. For if
(2,8) €Kz, then i(B) is m-representable, and by isomorphism 9 is also
representable. On the other hand, if 9 is representable, then K, is not
empty. For let X be the Stone space of U, let ¢ be the Stone isomorphism
of A onto the field § of all both open and closed subsets of X, let ., be
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the smallest mi-field containing §, and let A, be the m-ideal of all sets
A e which are of the m-category. Then the formula

*(4) = [s(d)]a,

defines an m-isomorphism from U into Fu/dn, i.e.
(8) {7 (4), Fn/4m}
is an m-extension of . (8) and all of its isomorphs will be called maximal
representadle m-extensions of A

Let I be the class of all ideals 4 in . such that

(ex) 4w is a subset of 4;

(exx) DO open non-empty set belongs to .

Thus if 4 is in Ir, then the formula

i(4) = [s(4)]s

defines an m-isomorphism from U into Fn/4 and *(A) m-generates
Fm/A4. In other words,

(ix) For every 4 eIy, {i*,Fn/d} is an m-extension of U.

The proof of the following theorem is similar to that of theorem 36.4
in [9].

(x) In order that an m-extension (i, B) e K: be maximal representable
it is mecessary and sufficient that, for every m-homomorphism hy from A
into any m-representable m-algebra &, there exist an r-homomorphism h
from B into € such that hy = hi.

In other words, {, B} K, is m-representable if every m-homo-
morphism from () into any m-representable m-algebra € can be ex-
tended to an m-homomorphism from B into €.

(xi) For every {i,B} e Ky there exists an ideal A eI; such that {i, B}
is isomorphic to {¢*, Fm/A}.

The proof of (xi) is similar to that of theorem 36.5 in [9].

It is easy to check that

(xii) For any A', 4”7 in I,

G, T Ay < G, Fuf A" if and only if A7 C A",

Thus {7, Fu/d'} is isomorphic to {7, Fu/4"} if and only if 4’ = A",
Hence it follows that the set K; partially ordered by < is ordering-iso-
morphie to the set Ir partially ordered by the converse of the set-theo-
retical inclusion. The maximal representable m-extension ist the greatest
element of K.

Observe also that

(xiii) If {#,B}eKy, {',B'}eK and {i',B'}< {7,B}, then {i’,B'} K.
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It is not known whether the minimal m-extension is in K.
surely in K, by (xiii) if it is the smallest element of K.

In the case where nt==o¢ we have K =K; since every Boolean
algebra is o-representable.

It is

II. Pseudo-m-preducts and m-products of Boolean alge-
bras. In this section we shall consider a fixed set
{9) {Weter
of non-degenerate Boolean algebras.

Following [9] § 13, by a Boolean product of {W}er we shall mean
any pair
{10)
such that

(pt) A is a Boolean algebra;

(p1) for every te T, 4; is an isomorphism from % into the Boolean
algebra, A%

(ps) the subalgebras if () are independent;

(p%) the union of all subalgebras 4{() (t ¢ T) generates AL,

We quote without proofs a few fundamental properties of products
of {Us}ier (the proofs can be found in [9] § 13).

"All products of {Wsker ave isomorphic in the following sense: if
{{it}er, 9} and {{ii}er, W} are Boolean products of (9), then there
is an isomorphism A from A° onto YA’ sueh that 4 = hi; for every te T
(in other words, the isomorphism % is a common extension of all the
isomorphisms 44(45)""). On the other hand, if (10) is a product of (9) and
} is an isomorphism from A° onto & Boolean algebra, then {{hz, Yer, B ?Io)}
is also a product of (9). Thus the Boolean product of (9) is determined
by (9) uniquely, up to isomorphism.

The Boolean product of (9) always exists. For let X; be the Stone
space of Us, let s; be the Stone isomorphism of Az onto the field of all
both open and closed subsets of X;, and let X = P X; be the prod-
uct of all the spaces X; with the usual topology. For every set 4 C X,
let A* be the set of all points in X whose #t coordinate is in 4. The
mapping

{{7;?}!51’ H 910}

BH(4) = ss(A)* for AW

is an isomorphism from 9A; into the Boolean algebra A of all both open
and closed subsets of X, and {{if}er, %’} is a Boolean product of (9).

It follows directly from the above set-theoretical representation of
the Boolean product that

(xiv) In any Boolean product (10) of (9), all the isomorphisms 45 from
Wz into W are complete.
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In other words, every isomorphism 4y transforms infinite joins and
meets in 9 onto corresponding infinite joins and meets in 90°.

In what follows we shall consider a fixed Boolean product (10) of (9),
which will be an auxiliary tool to examine other notions, called Boolean
m-products, and pseudo-m-products, m bemg a fixed mflnlte cardinal.
By M we shall denote the class of all sets 'zt (S) where ¢ is any element
of T, and S is any subset of A; such that S <m and the meet MNaes 4
exists in Az. By-(xiv), the meet (_ies it (4) exists in 0. Hence it follows
that the class I of subsets of A satisfies conditions (1) and (2). Con-
sequently the notion of (9, m)-extensions of A° is well defined.

By a Boolean m-product of an indexed set {W}eqr Of non-degenerate
Boolean algebras we shall understand any pair

(11) {{iher, B}
such that
(Do) B is a Boolean mi-algebra;
(p,) for every ¢eT, 4; is an ni-isomorphism from ; into B;
(po) the subalgebras 4;(2;) are m-independent;
(ps) the union of all the subalgebras 4;(W) (t e I) m-generates B.
Condition (p,) means that
(12) mtefl" B #0

for any non-zero elements B;ei,(As), I'C T, T" <m

If (11) satisfies conditions (p,), (p1), (ps) and the following condition
(which is evidently weaker than (p,))

(pz) the subalgebras 4:(2;) are independent,
then (11).is said to be a Boolean pseudo-m-product of (9).

Sometimes we call B a Boolean m-product or pseudo-m-product
of (9), respectively.

The class of all Boolean m-products (11) of (9) will be denoted by L.
The class of all Boolean pseudo-m-products (11) of (9) will be denoted
by Lp. By definition, L C Ly.

Let (11) and
(13) {{Bher, B
be pseudo-m-products of (9). Then {{ifezr}, B’} is sald to be a homo-
morphic image of (11) if there exists an m-homomorphism & of B into B’
such that

(14) i = hiy for every teT.
We then write
(15) {#i}er, B} < {{ieher, B} -
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Note that condition (14) is equivalent to the following one:

(16) % is a common extension of all the isomorphisms 44" from 4,(3[,)
onto (W), teT.

Hence it follows that, if the m-homomorphism % with the above prop-
erties exists, then it is unique. Moreover, » maps B onto B'. The last
two statements are direct consequences of (ps).

If the homomorphism % with the properties mentioned is an iso-
morphism, then it is called an isomorphism from (11) onto (13), and (11)
and (18) are said to be isomorphic. Note that then 27" is an isomorphism
from (13) onto (11). If one of the isomorphic pseudo-m-products is an
m-product, 30 is the other.

For instance, if (11) is a Boolean pseudo-m-product (m-product)
of {9), and & is an isomorphism from B onto another m-algebra, then
{{hit},fm, h(%)} is a Boolean pseudo-m-product (m-product) of (9)
isomorphic to (11).

It is easy to check that relation (15) is a quasi-ordering in Ly and L.
Moreover, two pseudo-m-products (m-produets) (11) and (13) are iso-
morphic if and only if simultaneously

?

{{ither, B’} < {Gisher, B} and {{Bsher, B} < {{ildiew, B}.

Sometimes it is convenient to identify isomorphic elements in Ly (in L).
After this identification, L and L, are partially ordered by <.

Observe that

(xv) If relation (15) holds between pseudo - -products (11) and (13)
and (13) is an m-product, then (11) is also an m-product.

We shall first study pseudo-m-products. The following theorem
assures the existence of pseudo-m-products of any indexed set (9) of
non-degenerate Boolean algebras.

(xvi) Let (10) be the Boolean product of (9), and let {i,B} be an
(M, m)-extension of . Then

1mn {{M?}zef, 23}

is a pseudo-m-product of (9). .
If {¢,B'} is another (M, m)- extension of N, then

-

?

(18) {{i"ihter, B') < {{Hilhser, B}  if and omly i @, By <, B}

To prove the first part of (xvi), let us observe that (p,) follows
from (e,). (p;) follows from (pl) and (€2). (ps) follows from (ps) and (ey).
{ps) follows from (pg) and (e,).

If h is an m-homomorphism from B into B’ such that i’ = hi, then _

i3 = héi for every te T.
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Conversely, if 7 is an m-homomorphism from B into B’ such that
i = iy for every te T, then i'(4)= hi(4) for every A belonging
to the union of all the subalgebras 4; (). Since the union generates A°
(see (p3)), this equality holds for all A €90, i.e. i’ = hi.

This proves equivalence (18).

(xvii) If (11) s a pseudo-m-product of (9), then there is an (M, m)-
extension (i, B) of W such that (11) is identical with (17).

Let 9, be the smallest subalgebra (of B) which contains all the
subalgebras 4(%;). It is easy to see that {{is}er, W} is also a Boolean
product of (9). Thus there is an isomorphism ¢ from A° onto ¥, such
that i = 4, for every te 7. The (I, m)-extension (¢,B) of A° has the
required properties.

By (xvi) and (xvii) the examination of pseudo-m-products can be
reduced to the examination of (M, m)-extension of Boolean produects.
To obtain an analogous statement for mi-products we must first prove
the following lemma on Boolean algebras.

(xviii) For ¢ =1,2, let S; be a dense subset of non-zero elements of
a Boolean algebra Wi such that S; generates Wy, Buvery mapping f from S,
onto S, such that

(19) A, CA, if and only if f(4;)Cf(4d,) (4, 45¢8;)
can be extended uniquely to an isomorphism from Ay onto UAs.
(19) implies that
A ~ndy,=0 if and only if f(4) ~nf(dy) =0 (4, 4,¢8).

To prove (xviii) we shall first show that f satisfies condition (4) from
theorem 12.2 in [9], i.e. that for any elements A4;,..., Am, By, ..., Bue S,

{20) A, ~n... " ApCB,uv..u B, implies
A A e A FAm) Cf(By) v .o f(Ba) -

Suppose that the inclusion on the right-hand side does not hold.
Then there exists an element C € S, such that f(C) Cf(4) forj=1,..,m
and f{O)~f(B;)=0 for j=1,...,0. Consequently, CCA; for j=1,..,m
and 0~ Bj=0 for j =1, ..., m, i.e. the inclusion on the left side of (20)
does not hold.

By [9], theorem 12.2, f can be extended to a homomorphism 5
from ¥, into %,. Since S, generates W,, h maps A, onto A,. Since A trans-
forms a dense set of non-zero elements in ?U; onto a dense set of non-zero
elements in A,, A is an isomorphism.

By a («)-product of an indexed set (9) of non-degenerate Boolean
algebras we shall understand any pair

{21) {8 Yer, U}
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such that

(pf) for every te T, 4 is an isomorphism from U into the Boolean
algebra UA*;

(pf) the subalgebras (%) (fe T) arve m-independent, ie. for any

set 7' C T, T'< m, and any non-zero elements A; e ¢f(Ws), the meet
(22) Mier At

exists and is not equal to 0;
(p#) the set of all elements (22) is dense in * and generates UA*.

It easily follows from (pf) that if A4, 4; are non-zero elements of
¥, teT', T'C T, T' < m, then

Nterr A: C[ter 47 if and only if 4:CA4; for every teT”.

Hence it follows, on account of (xviii), that all (+)-products of (9) are
isomorphie in the following sense: if (21) and {{ij}ier, A’} are (x)-prod-
uets of (9), then there is an isomorphism A from UA* onto A’ such that
4y = hif for every t ¢ T (in other words, the isomorphism % is a common
extension of all the isomorphisms 4(¢})™*). On the other hand, if (21)
is a (*)-product of (9) and % is an isomorphism from U* onto another
Boolean algebra, then {{M;}tezv, B(A*)} is also a (+)-product of (9). Thus
the (x)-produet of (9) is determined by (9) uniquely up to isomorphism.

The (x)-product of (9) always exists. For let X; be the Stone space
of Uy, let s: be the Stone isomorphism of Uy onto the field of all both
open and closed subsets of X;, and let X = P;p X; be the product
of all the spaces X;. For every set A C X;, let A* be the set of all points
in X whose " coordinate is in A. Let U* be the smallest field of sets
containing all the intersections

(Meere st (A4)*
where I"C T, I' <m, 4;¥%;. The mapping

(23) i(4) = si(A)*  for A e,

is an isomorphism from U; into A*. It is easy to check thab {{i;"}k T, ‘)I*}
is a ()-product of (9).

It follows directly from the above set-theoretical representation
of the (%)-product that

(xix) In any (x)-product (21) of (9), all the isomorphisms if from Us
into WA are complete.

In other words, every isomorphism 4f transforms infinite Ajoins and
meets in A; onto corresponding infinite joins and meets in A*.

In what follows we shall consider a fixed (x)-product (21) of (9)-
By 9* we shall denote the class composed of:
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all the sets 4f(S) where ¢ any element of 7, and S is any subset.
of U, such that S <m and the meet [Nacs A exists in Wy

all the sets of elements A, with teT’, where 0 = 4;¢ () for
teT’, T'CT and T < m.

By (xix) and (p¥) the class P* of all such sets satisfies conditions.
(1) and (2). Consequently the notion of (9M*, m)-extensions of A* is well
defined.

Now we come back to study m-products of (9). The following theo-
rem ensures the existence of mi-products of any indexed set (9) of non-
degenerate Boolean algebras. )

(xx) Let (21) be the (%)-product of (9), and let {1, B} be an (IM*, m)-
extension of W*. Then

(24) {{@it hier, B)

is an m-product of (9).
If {i',B'} is another (M*, m)-extension of A*, then

28) {{0'ifher, B} < {{iiThier, B) 4 and only if {1, B} < {1, B}

The proof is similar to that of (zvi).

To prove the first part, let us observe that (p,) follows from (e,)-
(py) follows from (p}) and (e,). (p.) follows from (p¥) and (e,). (ps) follows
from (p§) and (e,).

If h is an m-homomorphism from B into B’ such that ¢’ = ki, then
i'4F = hiif for every teT.

Conversely, if h is an m-homomorphismf rom B into B’ such that
i'4f = hiif for every teT, then i'(4) =h(i(4)) for every 4 belonging
to the union of all the subalgebras f(%;). Consequently also i'(4) = h(i(A)‘
for all elements A of the form (22). Since those elements generate 2A*,
this equality holds for all 4 eA¥, ie. i’ = hi.

This proves equivalence (25).

(xxi) If (11) is an m-product of (9), then there is an (IM*, m)- extension-
(1, B) of W* such that (11) s identical with (24).

Let U, be the smallest subalgebra (of B) which contains all the
elements (Ver.4: where A;ed;(We), 1" C T, T < m. It is easy t(? see_
that {{icher, 2} is a (+)-product of (9). Thus there is an isomorphxszp 7
from U* onto A, such that ¢} = i; for every t e I'. The (Mt*, m) - extension
(7,8) of A* has the required properties.

By (xx) and (xxi) the examination of m-products can be reduced
to the examination of (IM*, m)-extensions of (x)-products.

By (vi), (xvi) and (xvii) the set L has the greatest element. Namely,
if (4,%) is a maximal (9, m)-extension of the Boolean product (10)
of (9), then (17) is the greatest element of Ly. Assuming in (xv) a8 (13Y
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any m-product and as (11) the greatest element of L,, we infer that
the greatest element of L; is also the greatest element of L. The greatest
element (17) defined above and all its isomorphs will be called maximal
- products.

(xxii) In order that a pseudo-m-product (11) be a maximal m-product
it is necessary and sufficient that :

(p) for any m-homomorphism R from W into any Boolean m-alge-
bra © there exist an wi-homomorphism h from B into € such that hy = hi,
for every teT .

Property (p) is equivalent to the following one:

(p’) for any mi-homomorphisms hy from 4:(U) into @ Boolean m-alge-
bra © there exists a homomorphism b from B into € which is a common
extension of all hy, teT.

To obtain the equivalence it is sufficient to assume hj= Jii; = or
he = hyis.

To prove the necessity of (p), it suffices to show that the m-prod-
uct (17) where (41, B) is a maximal (I, m)-extension of (10) has prop-
erty (p). Indeed, by [9], theorem 13.3, there exist a homomorphism 5,
from A into € such that h; = ks for every te T, i.e. hy is & common
extension of all the homomorphisms h4; *. Consequently %, is also an
Mit-homomorphism. By (v) there exists an m-homomorphism h from B
into € such that ho(B) = h(i(B)) for every B e’ Assuming B = i;(4),
where 4 is any element of %, we obtain hy(i:(4)) = h(i(i,(A))). This
proves that hs; = hyty = hii; for every te .

On the other hand, it is easy to see that all pseudo-m-products
with property (p) are isomorphic. Since the maximal m-product has
property (p), every pseudo-m-product with property (p) is isomorphie
to a maximal m-product, i.e. it is also a maximal m-product.

Consider now the pseudo-mni-product (17) where {i, B} is a minimal
m-extension of (10). By (xi) and (xvii) the pseudo-m-product just
defined is a minimal element in L,. This pseudo-m-product and all
its isomorphs will be called minimal pseudo-m-products of (9).

Consider the m-product (24) where {¢,B} is a minimal (IM*, m)-
extension of (21). By (xx) and (xxi), the m-product just defined is
4 minimal element in L. This m-product and all its isomorphs are called
minimal m-products of (9).

(xxiii) A pseudo-m-product (11) (an m product (11)) of (9) 48 & min-
imal pseudo-m-product (is a minimal m-product) if and only if the class
of all the elements (Nieg A: where A;ei(Ws) for te T and where T’ is
any finite subset of T (where T’ is any subset of T of a power <m) is
dense in B.

° ©
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The easy proof is left to the reader.

It is not known whether the minimal psendo-m-produet is the
least element in L. Neither it is known whether the minimal nt- product
is the smallest element of L. The answer to the second problem is af-
firmative if all A are m-distributive. To prove this, let us assume the
following definition.

A Boolean algebra B is said to have the strong m-extension property
if, for every Boolean m-algebra B’ and any set § m-gencrating B,
every mapping f from S into B such that

Naes, & (4)-4 =0 1in B, §,CS, § <m

imply  (MNaes, € (A)-h(4) =0 in B

can be extended to an mi-homomorphism from B’ into B.

Here ¢(4) is any function with values +1 or —1, and +1.-4 de-
notes the element A, and —1-4 denotes the complement of A.

It follows from [9], theorem 24.6 and theorem 34.1, that every
m-distributive Boolean m-algebra has the strong m-extension property.
Of course, the strong extension property implies the weak m-extension
property examined on p. 104. It is easy to show that the properties are
not equivalent.

(xxiv) If (11) is an m-product of (9) and B has the strong m-extension
property, then (11) is the minimal m- emtension of (9) and 4t is the smallest
element of L.

In fact, let {{ii}cr, B'} be any element in L. Since B has the wealk
m-extension property, all the isomorphisms 4,4 can be extended to an
m-homomorphism % from B’ into B (take as S the union of all the algebras
i(d;)!). This proves that (11) is smaller than any element in L. Con-
sequently it is the smallest element in L and therefore it is a minimal
extension of (9).

(xxv) If all the algebras W, are distributive, then the minimal m - product
of (9) is the smallest element of L.

' Christensen and Pierce [1] proved that if all the algebras UA; are
distributive, then the minimal m-product of (9) is also m-distributive
(for another proof of this theorem, see Sikorski and Traczyk [10]). Thus
(xxv) follows directly from (xxiv).

Let Ly and Ly denote respectively the classes of all m-products and
all pseudo-m-products (11) of (9), such that the algebra B is m-repre-
senf;able. By definition, L. is a subclass of Ly. If one of the algebras
U in (9) is not m-representable, then Ly (and consequently Ly too) is
empty. For if the algebra B is m-representable, so is (W) for every
tel since it is an m-regular subalgebra of B. By isomorphism, % is
also m-representable.

Fundamenta Mathematicae, T, LIII 8
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Suppose now that all the algebras U in (9) are m-representable.

Then the class Ly is not empty. To construct an element in L., let
us denote by X; the Stone space of Us. Let s¢ be the Stone isomorphism
from 9; onto the field of all both open and closed subsets of X;, let
X = Pi.r X; be the product of all the spaces X; with the usual topology,
and let §n denote the smallest m-field (of subsets of X) containing all
both open and closed subsets of X. For every set A C X;, let 4* be the
set of all points in X whose #*t coordinate is in A. Let 4, be the ideal
(in the field Fm) generated by all the sets A* where A is an m-nowhere
dense subset of X, teT. It is easy to check that no set of the form

(26)  Nerse(de)*, where A; is a non-zero element of Uy
and 7' C T, T' < m, belongs to 4. Hence it follows that the formula
%(A) = [S;(A)*]Am for AWy

defines an isomorphism from U; into Fn/dw, and that the subalgebras
i(UAs) are m-independent. It iy easy to verify that 4; is an m-isomorphism
from UA; into Fm/dw and that the union of the subalgebras 4:(2;) m-gener-
ates {Fm/Am. Thus

(27) {{ib}teTg %m/Am}

is an m-product of (9). This m-product and all its isomorphs are said
to be maximal m-representable m-products of (9).

Now let Ir (Ip:) be the class of all m-ideals 4 in & satisfying the
following conditions:

(p,) 4w is a subset of 4;

(p,,) no set of the form (26) where 7' < m (where 7' is finite)
belongs to 4. '

For any ideal 4 in Iy, let

iW(A) =[s(4)*]y for A e%Us.

As in the case of (27), we verify that
(xxvi) For every A eX; (for every 4 ely),

(28) e, T/} 5
is an element of Lr (of Lpe).

The proof of the following theorem is similar to that of theorem 38.2
in [9].

(xxvii) In order that an element (11) of Ly be a mazimal m-representable
m-product of (9) it is sufficient and necessary that, for any m- homomorphisms
he from e into any m-vepresentable m-algebra ©, there exist an i -homo-
morphism h from B into & such that he = hi; for every teT.

° ©
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In other words, an element (11) of Ly is & maximal fn-represéntable
m-product if and only if any homomorphisms &} from (%) nto an’
m-representable Boolean mi-algebra € can be extended to.an m-homo-
morphism 7 from B into €. :

(xxviil) For every element (11) in Ly (in Ly) there ewists and ideal A
in I (in Xpr) such that (11) is isomorphic to (28). '

The proof is similar to that of theorem 38.4 in [9].
It is easy to verify that

(xxix) For any m-ideals A’y 4" in Xy, ‘
{{’l:f,}tel'y ,gm/A’] < {{i;‘"}tcTy L&u/A”} 'L.f and onlg/ ’Lf A” C A’,

Thus {{if’}ter, Fn/4'} is isomorphic to {{fii‘"}tm, Fn/4"} it and only
if A'=A4". Hence it follows that the set L. (the set Ly) partially
ordered by < is ordering-isomorphic to the set Ir (the set ) partially
ordered by the converse of the set-theoretical inclusion. The maximal
m-representable m-extension of (9) is the greatest element of Ly,
and of L.

Observe, moreover, that

(xxx) If (11) 4s in Lpr (in Lr), (18) is 4w Lp (in L) and (15) holds,
then (13) is also in Lpr (in Ly).

It is not known whether the minimal pseudo-m-produet (the minimal
m-product) of (9) belongs to Ly (to L). It is surely in Ly (in L) by
(xxx) if it is the smallest element of Lp (of L:).

In the case where m = ¢ we have L = Ly and Ly = Ly since every
Boolean algebra is o-representable.
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Correction to the paper <Reduced direct products” *

by
T. Frayne, A, C. Morel, and D. S. Scott (San Francisco)

At the suggestion of Professor Tarski, the authors wish to revise
their account of Tarski’s role in the development of the notion of re-
duced products. The following more accurate statement should replace
lines 7-16 of the first paragraph of the introduction on p. 195:

In [29] Lo§ defined the notion of logical measures in algebraic sys-
tems and established some basic properties of this notion referring pri-
marily to the case of the two-valued measure. A seemingly quite differ-
ent construction was carried through and applied by Chang and Mo-
rel in [1]. Tarski realized that both the construction of fiof in the two-
valued case and that of Chang and Morel could be subsumed as two
special cases under one general notion, that of reduced products. He for-
mulated the definition of this concept for arbitrary algebraic systems
and suggested that the notion could be used to give a proof of the
compactness theorem in the theory of models by means of a mathemat-
ical construction; in particular, using the construction of Chang and
Morel, he gave such a proof for the class of the so-called Horn senten-
ces (cf. p. 211) At his suggestion Frayne then extended the definition
of reduced products to arbitrary relational systems, and several results
(in particular, a proof of the general compactness theorem along the
lines of Tarski’s suggestions) were subsequently obtained by Frayne
and Morel.

* Tundamenta Mathematicae 51 (1962), pp. 195-228.
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