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On the approximation of I” functions by trigonometric
polynomials

by
R. P. Gosselin (Siorrs, Conn.)

1. A theory of trigonometric, interpolating polynomials suitable for
I? functions was introduced by Marcinkiewicz and Zygmund [4]. A main
feature of this was the use of a translation parameter for the interpolation
points, a technique which avoided difficulties arising from the fact that
the mterpolatmg points were only countable and which made the problem
two-dimensional. Thus we write
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where D is the Dirichlet kernel. I,.(z;J) is then a trigonometric poly-
nomial of degree n interpolating the f at the fundamental points of inter-
polation translated by the parameter w. Their paper included certain
fundamental inequalities which were analogues of known results about
Fourier series, and in general the analogy with Fourier series was stressed.
Immediately, however, differences with respect to convergence were
noted in the construction of counterexamples. A positive convergence
theorem was later proved by Offord [5] under the assumption of the
finiteness of a certain integral. However, no indications were given here
concerning the precision of the assumption.

The principal theorem of this paper is a generalization of Offord’s
result. We assume also the finiteness of an integral and prove the almost
everywhere convergence of the sequence I,(w;f). Counterexamples are
provided to show that very little improvement in the result is possible.
The extension to Jackson polynomials is indicated, along with an inter-
pretation of the theorem in terms of fractional integrals. Then a type
of continuity called translation continuity, which seems appropriate in
this context, is introduced, and certain elementary properties are proved.
Under the assumptions of our main theorem, a function is proved to
be translation continuous almost everywhere. Finally, a very preaso
result concerning translation continuity at a point is proved.
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122 R. P. Gosselin

We shall be concerned then with the almost everywhere convergence
of the sequence I,,(x;f) for functions f satisfying a condition

(Cap) ff It m+u1+a/(x P i < oo.

In [5], & hypothesis similar to (C.p) Was used; but the second difference
of f replaced the first, and « was taken to be one. However, for the values
of a which concern us there is no substantial difference in using the first
difference of f rather than the second (cf. [3]). Actually, two different
hypotheses were used in [5], each guaranteeing the convergence of
L.u(z;f). However, as we indicate below, the second result is a con-
sequence of the first.

TerOREM 1. (i) Leét f satisfy (Cop) for some p >1 and some a > a,
=(V5—1)/2. For almost every (z,u), Inu(x;f) converges to f(x).

(ii) For every p > 1 and every a < 1/2, there exists a function f satisfying
(Cap) such that I,n(w;f) diverges for almost every (x,u).

It is a fact of some interest that a, is a number of great importance
in Diophantine approximation, and that our proof of (ii) relies heavily
on this same subject. In broad outline, our proof of (i) follows the pattern
established in [5]. Thus f is approximated by fs, an integral mean of f,
such that I,.(2;f) is close to I,u(z;fs) in a certain sense. Then the
convergence of I,.(z;fs) to f(z) is proved. It is in the latter step that
our proof differs substantially from that of [5]. Perhaps the most novel
aspect of our proof is the use of a new inequality from the theory of
subadditive functions. We begin by presenting this inequality which is
known [3]. Since the proof is not long, and since it is a companion to
the vital second lemma, we include a proof.

2.' ‘We say the positive measurable function ¢ is subadditive on the
open interval (0, 4), 0 < 4 < oo, if p(utv) <p(u)+g(v) where u, v
and « 4o all belong to (0, 4).

LeMMA 1. Let ¢ be positive, measurable, and subadditive on (0, 4).

(i) Let p >1, and let a be any real number. There ewists C., depending
only on 1t subsmzpts such that

E A
" o) o AP " pu
(J yltoe du Q Ga,p j 21(+2 du .
o

o

(u) If either integral above is finite, then there ewists a constani C
depending on @, p, and a but not on w such that @(u) < Cue for w in (0, A).
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If «>0, and ¢ is subadditive, then @(u)/u® is also subadditive.
Hence, in the proof it would be enough to restrict attention to the case
a < 0. However, this does not account for any simplification in the proof.
Let A denote the value of the integral on the right in (i). M may be
assumed finite and strictly positive. Let E denote the set of points
such that g(u) > Mu/(log4/3), and let G be the complement of E. Then

yrte

_:l
1) J = du <l°g,j‘/3 j (%) g0 = Tog (4/3) .

We assert that for every « in (0, .4) there exists v in (u/3, 2uf3) such
that v belongs to ¢ and w = u—o belongs to G. If this were not so, say
for u,, then (ig/3, 2uy/3) = Ey w By where Ey = F ~ (13, 2u,/3) and B, is
the set of points of the form © = wu,—w where w belongs to F,. Since
B, and F, are reflections of each other through the point u,/2, they have
the same measure, |Ey|. Thus |E,| > u,/6, and

2158
log(4/3) = | %fmg [Taus f,!l—‘du<1og(4/3)
ugp By B

by (1). This contradiction proves our assertion. Thus

M
p(u) = p(v+w) < p(v) +ow) < oz (4/3) (v° 4 we) .

If o> 0, v*+u" < 2% If a< 0, v°+w" << 203", Hence

(2) o(u) < C.Muflog(4/3)
and so
_1 @(u)
i;g-zm)z C“’pMp ' zl(-i»a -

Integration over (0, A) completes the proof of (i). (2) shows that ¢(u)
< Cue if the right side of (i) is finite. If only the lett side is finite, then
the same proof holds except that M must be replaced by the value of
the corresponding integral.
We shall be interested in the case when ¢(u) = @.(u;f) where
gols 1) = 1' e+ —f@ld)”, r=1,

0
f is assumed to be periodie, and Minkowski’s inequality verifies the sub-
additivity property. The statement of Lemma 1 in this case is

2r 2% -1

(J.Jij,w)_lﬂ dudm) < C,WJ ozqia(jn{f(w_*_u)—f(‘”)lpdw)
o 0
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The same inequality holds if in each of the above integrals the second
symmetric difference of f replaces the first (cf. [3]). It is a consequence
of this last fact that the second convergence vesulb of [5] follows from
the first, as was mentioned previously.

Tor direct applications to the proof of our theorem, we need a kind
of local version of our first lemma. Let B be an interval (0, #z) in (0, 2x).
Let E-+z be the translation of B by #, and let 2F = (0, 2zg). We in-
troduce the functions
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A0 = [ forn—fwpas; o= | [EEUZTO g,

E+z 0

If f satisties (C,p), then g is integrable. We cannot expect that for fixed
@, gg(t, ©) will be subadditive in u. However, we can prove for it an
inequality similar to that of Lemma 1.

LeuMA 2. Let f satisfy (Cop) with p =1 and a > 0. For each  in
(0, 27) and each u in (0, 2g)

R4

<p’;";(u,w)<10;2u“ J g(s)ds.

Fix a, and let 0 < %, » < 2z. By Minkowski’s inequality,

ontutv, @) <( [ |fls+u)—1©)Pds) " +pulv, 2).

E+z+v

Since 0 < v < @g, then B +vC 2E. Thus
(3) e(u+v,2) < @er(t, ) -+ @2m(V, 2) .

This inequality is the analogue of the subadditivity property. Now

o w,x) du g
BHLAN _ [ gsyas.

2E+x

Let M denote the value of this integral, and let 8 be the set of « such
that  gem(u, ) > M*Puj(log2)"?. A slight variation of the argument
used in the proof of Lemma 1 shows that for each « in (0, 27), there exists
v in (0, u) and w = %—v both in the complement of S. Let 0 < v < xg
< 2=. By (3), we may write

!
st 9) < (0, )+ pus(w, ) < (25| oo+ o) <3

M \ue o
log?2 ) we.

log2

This completes the proof of the lemma.
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As mentioned earlier, the first step in the proof of the theorem is
the approximation of f by an integral mean. Thus let
z+dn
o) = [ 108, Aa=mTans wee) =)~ (@)
o T 24nJ (hat, 5= Eniipd YT In :
—dn
LEva 3. Let | satisfy (Cop) with p =1 and a> 0. Let & in the def-
inition of A, satisfy 1ja <68, and let f = ad—1. Then

2= 2= 2m
TN ; A (1P
J _:_J WPlyn(e)Pde < O 5! J ljﬁ{"‘_ﬁ%ﬁ@ﬂ_ dude .

¢ on the right side of this inequality denotes a constant depending
in this case on the parameters a, 8, 8, and p. Throughout the remainder
of the paper, we shall let ¢ denote a constant which may be different
in different contexts and usually without specifying its dependence on
particular parameters. Lemma 3 is only a slightly more general result
than Lemma 2 of [5], and its proof is very close to the proof of the latter.
We therefore omit it. The next lemma is a consequence of our Lemma 3
and the following inequality from [4]:
2 2 27
[ [ aades DPande < 6, [ |f(@)fde, p>1.
0 0 0
TEvmA 4. Let | satisfy (Cop)y P> 1, a> 0, and let 6 and be as above.
Then for almost every (x,u)

0 Ll 1)~ Inad; HIP < 00
nz=1
3. In view of this last result, I, (z, fa) — Inu(; f) = 0(1) for almost
every (z,u). Thus our theorem will be proved if we can show that
Lu(#; fu)—f(z) = o(1) for almost every (z, %) with an appropriate choice
of 8. We choose 6 so that 1Ja < 6 < 1-+a. This choiee is possible if a> ag.
It may Dbe assumed that « <1 since decreasing o does not invalidate
the (Cop) condition, and we do this now for technical reasons. The (Ce,p)
condition implies that the functions
?.‘n ‘.tr:
9@ = | Vleru—f@P ™, 1@ = [ |fle—u)—1(@)fdup™
[ Q
are integrable. Let z be a point such that g(z) and h(x) exist and such
that their integrals have finite derivatives at z. For notational simplicity
only we let 2 = 0 be such a point and assume further that 7(0) = 0. The
expresgion for T,,(0; fx) is periodic in « of period 2r/(2n+1) so that we
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may let |u| < 7/(2n+1). Let w, be a step function having positive jumps
of 2x/(2n+1) at the points 2rmm/(2n+1), m = 0, £1, ... Then we may
write I, as a Stieltjes integral over any interval of le.ngth 2n. Thus

(cf. [6]) B
Im(O; fa) = % f a1t + ) Dyt + ) dewn(t)

ffn (w64 5 ) D[t Tzfﬂ)dwn()

Taking the mean of these two expressions for I,,(0; fa) gives

o0 fa) = . j (fn ’U/‘Lt)_fn‘u'f‘t'f“)w_{_l))—pn( +1)dwn(t) +

+— j fa u+t+%+1)( (4 )+Dn(u+fT doon(t) .

20 +1))
We denote the first integral on the right by I}.(0;7.), the second by
I7u(05fs) and show that each is o(1). The interval of integration for
I2:(0;fs) is divided into three parts: the first with |t < 5n/(2n+1),
the second with ¢ in (5%/(2n +1), =), and the third with ¢ in
(—r:,—57c/(2n+1)). Denote the corresponding integrals by D, B,
and B,, respectively. D consists of five terms of the form

1, {  on( +1)) 2mj \ | 2m(f +1) 5
2n—i—li"(u+ 2n +1 "( 291—1‘1)_’-1)"’(%* 2%—}——1—))’ i<2.
Since |Dn(?)] < n-+1 for all ¢, and since |u| < =/(2n+1), it is enough to

show that fx(v) is small if o] < Tx/(2n +1). By Holder’s inequality
1 v+dy
ol <5z, | liwopar
The variable of1 integration satisfies |¢| < 8x/(2n+1) so that 1/24
(p2n+1) < Ofjt** since §< 14 a. Recalling that £(0) = 0, we see that
{D[? is majorized by g(0)+ h(0) times a term which is 0(1) as 7 increases.

To estimate H,, we use the easily verifiable fact that f | Da(8)| deon(2 -+ 1)
0
< Clogn, for any w. An application of Hélder’s inequality shows that

| B’ < ¢ (logn)?™

5nf(3n+1)

Dop(u+ t)+

fn(u Lt

=

+-D1l(u‘|"t"l‘ ’dwn

2n +1)

[
-1
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For ¢ in the given interval and for |u| < =/(2n +1),

2% i< C < 40
i)l S G D(e+tE - @ntl)E

i Dy(u+1t) + Dy (u 4t

We substitute this into the above integral, introduce the function

Wn(t) =

wi(2n+1)

f,,(u+v+9 +1)' dwn(v)
and integrate by parts to obtain

(logn)"™! Wa(m) | log'n

¥4
< J - A
1] ¢ on +1 w 2n +1

L[ mg

5w/(Ene+1)
Let J(v) denote the interval (v-4g, v +4,). By Holder’s inequality,

t

f don(v) f

5w/(2n+1) F(utr2z/2n+1))

[F(s)"ds

< 0(n+1)” ‘f If(s)["ds .

The justification for the second inequality is that the intervals :7(u +v4+
+27/(2n +1)) corresponding to the jumps of w, are disjoint and contained
n (0, 2¢). Thus

2

f |7 (s){"ds +

0

B < 0logn) (20 +1)°7

T 2f
dt
*
snf/(2n+1) . O

+C(ogn)? (20 +1)°" [f(s)["ds .

The first term on the right is o(1) sinee a < 1 and so § < 2. For the second
we write t %=ttt Ot T if s Delongs to the interval
(0, 27). Thus the second term above does not exceed

C(logn)"*(2n+1)"" f f

w/l ("n+l) 0

91—1-41

Recalling that f(0) = 0, we see that the inner integral does not exceed
g(0). An integration then shows that By = o(1) sinee 6 <1--a. A gimilar
argument holds for F, so that jInu(0;fs)] = o(1).

To show that I%,(0;fs) = o(1l), we again divide the interval of
integration into three parts: the first with |¢| < 3n/(2n+1), the second
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with ¢ in (3w/(2n+1), =), and the third with ¢ in (—m, —3m/(2n +1)).
Designate the three integrals by 4, B, and B,, respectively. For the same
reasons that D above is small, 4 = o(1). B, may be treated as E, above.
Thus sinee | Dy(u +1)| < Cf(v 1),

@ 1Bl < 0logn™ 24 giogny f(ﬁ%ﬂu
8r/(2n+1)
where .
ut) = hW+ﬂ~h@+W+2*JNdmw%

3nf(2n-+1)

To estimate @y, we write

oo \P . 2z \[?
ptato vt gl <o T Ji—ifos g [
T(u+v)
and so
i
(5) Bu(t) < O " don(v) f(s)~—f(.g—}— _2“2‘71:___) Ipdé‘
8%/(2n-+1) Tu+v) w1
ttit-dy »
r 27
< J—1 —_—
<On I ’f(s) f(8+ 2n —I—1) &

o
Since t+4u+4, <14 2n/(2n+1), we consider

9 t+ar](@n+1)
b 4
l7"E(znﬂ’o)= oj lﬂs)*f( o +1)|ds"

where F is the set (0, {-+2n/(2n+1)). An application of Lemma 2 gives

2t+4nl(2n+1)

g(s)ds.

(p_%( 27 ( 2

2n+1"7 ) Slog2 \2n+1

We note that 2+ 4r/(2n+1) < 4 for the range of ¢ values we congider,
and tha,t the integral of ¢ has, by assumption, a finite derivative at 0.

Thus f g(s)ds = O(t). Substitution of these inequalities into (5) shows that
Da(t) = (20 4-1)° 700 (1).
It follows from (4) that |B," does not exceed a constant multiple of
(log2n +1)" (2 +1)* 2 [1 y b
N S S e L

$x/(én+1)

icm°®
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The integral on the right is O(logn). Since §—1—a < 0, B; = 0(1). By
an analogous argument involving the differentiability of % at 0, we may
show that B, =0(1), and the proof of (i) is complete.

4. The function to be constructed for the proof of (ii) is of the form
2 fmn(®), where fm() is a step function equal to the positive real A,
i>1

if |3—2mj/m| < 4mAR)m® for some integer j and equal to 0 otherwise.
The numbers A5 increase slowly to co with m and can be chosen in many
ways. To be definite, we shall say Am = (Iogm)™. It is known [1] that
for (z, u) in a set By, sup |Lnul@s fm)] > CA}Y. The set B is a subset

of the square in the ru- plane of side 2=, and E, has measure 4wn’—epy
where &m = o(1). Thus, if the sequence m (i) increases rapidly enough,
the sequence I,.(x;f) diverges for almost every (z,u).

It now remains only to describe the sequence m () so that f satisfies
the condition (C,p). Let Jm be the set for which fm(z) = 0. Since |Jml,
the measure of Jy, equals 8mASm, we may demand that .>1|Jm(¢)] < 0.

>3

This implies that f(x) is at least defined for almost all x. Let K; be the
subset of Jpy such that fng = 0 if § > 4. The K,'s are mutually disjoint,

and their union is, except for a set of measure 0, the set where f(z) 5 0.
Since A, increases and A%|J,| decreases, we may further specify that

. AN »
(8) | D Ay [’ < 2480: D ARl Tmew] < 245 -
k<j k=g

IE foey(+ %) — friy(2) 7 0, then z-+u belongs to Juy and z does not,
or the opposite is true. Thus, if 0 < u < nfm(j), then fuu{® 1) —fmin(®)
=0 except for a set of z measure not exceeding 2um (j). Hence

2
(7 f [Fmiy (@ + ) — iy () [Pl < 2um (§) Ay -

Let b; = w/m (i)’ where 1/(1—a)< f]<1/a This choice is possible if
a<1/2. We write Fi(z) = me(,)(fr Gi(x) = f(x) —Fi(w). By Holder’s
inequality,
|Fi(w+u) — Fyla)! <@ Zlfmm(a?+ i) — fmeir() [
=1

and thus from (7) if 0 <u < #fm (%),

2p i
(8) f [ Byl + u) — Fy() Pds < 26857 2 Apgym (i) < 288m () wdin -
o

j=1


GUEST


130 R. P. Gosselin Im

Also from (6)

(@) Pz < 27 [ |6i(@)Pde < 2° ) Au| K
0

k>1

(9) f |Gile+
0

+1
< 2" AR vl iy | -
Now
by

f u1+°f If(z —f(2)Pdw <2”+1f

biya bisa

%1+af |Fo(x + u) — Fo(w) [Pda +

o

W

+2m [ Gt u) — Gl
b1 0

Denote the integral on the left by a;. In view of (8) and (9),

Pdx

. by by
. . " du du
vJ 2
a; < (24 m (4) A J = T2 Annlme| | g
bisa bigr
- -
< (26)°m () A% bi w+s_ Antin b

1I-a mi+1) a

Now m (4)B; < Cm“(3) and bii%/m (4 +1) < Cm'(4+1) where g =1 + f(a—
and v = af—1. Since both exponents are negative because of restrictions

on f, the sequence m(7) may now easily be chosen so that ) a; converges.
i1

This establishes the fact that f satisfies (C.,) and so completes the proof
of (ii).

Theorem 1 holds also for Jackson polynomials. In fact, we may be
slightly more precise in part (i) by allowing a = a,. Since the proofs of
both.( ) and (i) are much simpler in this case, details are not necessary.
The involved argument centering around the function @y,() may be omitted

entirely. Paper [1] contains a proof that our construction holds for Jackson
polynomials.

'5. The next theorem iy an interpretation of Theorem 1 in terms of
fractional integrals and generalizes Theorem 5 of [5].

. THEOREM 2. (i) Let p>1, and let a> ao=(Y5—1)/2. Let | be the
Tractional integral of order ofp of a function g of class L”. For almost every
(@, %), Inu(x;f) converges to f(x).

(ii) For every p > 1 and a, 0 < a < 1/2, there exisis a function f which
i8 the fractional integral of order a/p of a fumction g of class L® such that
Luu(z; f) diverges for almost every (@, u).

T?le theorem is a rather easy consequence of Theorem 1 and the
following lemma, the first part of which, at least, is elementary.
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LEvuma 5. (i) Let p>1 and 0 < a < p. If f is the fractional integral
of order afp of a function g of class L”, then f (@ +u)—f(2)Pde = O (u").

(i) Let 0 < p<p. If | satisfies (Cpp), the'n for every a, 0 <a< B,
f is the fractional integral of order afp of a function g of class L”.

Both parts of the lemma can be made more precise in special cases,
but it eontains all the informations we need. Let ), ¢ne™ be the Fourier
series of f. It has been implicitly assumed that ¢, = 0. For notational
convenience, assume further that e¢x = 0 if # < 0. The Fourier series of
fle+u)—f(z—u) is then 2¢ 5‘ ey(sinnu)e®, « is temporarily fixed,

and we consider separately the sums corresponding to # < 1fu and to
# > 1ju. The first sum can be thought of as the transform of the sum

> (nu)Pe,e™ after application of the multipliers ( na)~ P (sin nuw)-
1<n<tiv
Since these multipliers are bounded by one and essentially momnotone,
we have

s Lju 1w

[
f 12, en(sin ) e"““ dr < Cue f [ y norggein " d .
0 n=1 U 11—1

For the second sum

an

] cn smnu)e“" o < Cf 1 vc,,e"’-”[ dzx .

n>l‘u 0 u>1Ju

The series ., ¢z¢" is the transform of 2 (nu)*Pene™ after application
n>1ju n>1fu

of the multipliers (nu.)—"/” which are bounded by one and decrease to zero.
Thus

f{ 2 Cn €7F P i < Cus j 1 Z 71/“;1’(712,61""7"?”&1; .

6 n>1lu [} n>1ju

Since the sequence n%?c, is, except for a complex constant, the sequence
of Fourier coefficients of g, part (i) of the lemma follows by combining
two of the above inequalities and noting that

am

f ?]‘(mLu)—f(w—M)]”alm=f [f(@+2u) —F(z)|Pde .

0

The hypothesis of Lemma 5 (ii) insures by Lemma 1 that

[ lite+w)—f@)Pds = 00).
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Thus if a < g,

This jmplies that f is the desired fractional integral [3].

To apply the lemma to the proof of part (i) of the theorem, we choose
# such that a, < § < « and note that the conclusion of the lemma insures
that 7 satisfies (Cjp). Hence Theorem 1 is applicable. For part (i) of the
theorem, we choose § such that a << f < 1/2, and construct f as before
to satisty (Cpp) and so that I.(z;f) diverges for almost every (@, u).

6. The underlying idea in our construetion of examples f for which
Inu(z; f) diverges almost everywhere is that for some n, depending on
and u, the functional value at the interpolating point - 2nj/(2n+1)
which is closest to @ is large (cf. [1]). This suggests the concept of trans-
lation continuity which we now introduce. Given two real numbers,
x and v, which do not differ by a rational multiple of =, let r = »(z, w, n)
be the integer uniquely defined by the relation |z —u—2wr/n| < n/n. We
shall say that a measurable, periodic function f is translation continuous
at x if for almost every u

nfaf(w%) —f(a).

The exceptional set is specifically meant t6 include those % which differ
from z by a rational multiple of = so that there is no ambiguity in the
definition of r. There are Several reasons for using this type of continuity
in connection with interpolating polynomials. Here we consider only
certain aspects of it related to our previous work.

The conclusions of Theorem 1 are applicable to the notion of trans-
lation continuity, even in a slightly more precise form: i.e. if f satisfies
(Copp); then | is translation continuous almost everywhere, and there are
Junctions f satisfying (Cop) for « < 1/2 such that f is translation continuous
lemost nowhere. The proof follows the lines of that for Theorem 1, but it
is mt}(:h simpler. Thus, in the proof of the positive part, we show by the
previous technique that f(u +2nr/n) —fu(u-+27r/n) = o(1) and then that
fal%+2xr[n) —f(2) = 0(1). An examination of the proof of the latter
step at the pertinent spot reveals that what is involved is a kind of un-
symmetric differentiation of the integral of f.

There is, as before, a slight gap in the bounds of « used for the positive
and 'the negative parts of the theorem. However, as regards translation
continuity at a point, we can be very precise. Let us say that f satisfies
the condition (D,p) at the point z if

at+n

(Da,p) f M du < oo.

I‘u._mll-)-a

Ly
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TaEOREM 3. (i) Let p > 1, and let f satisfy (Dip) at the point x. Then
f is translation continuous af .

(ii) For every p =1 and a <1, there is a function f satisfying the
condition (Dep) at the poini 0 and such that f is not translation con-
tinuous at 0.

Let g(u) = {f(u)ff(m)i/im—'u‘]g’”. The hypothesis implies that g is
in class I? over (r—m=,x+n). 1t is to be extended periodically outside
this interval. As is known [2], for almost every 4,
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(u L 2wrn) —f ) = | —u—2nr/n Fig(u 4+ 2nr[n)|
=l i

_ P lylut-2erm)p.
n

By virtue of the previous formula, the term on the right is o(1).

Tor the construction of f in the proof of (ii), we first let y; be a se-
quence of reals decreasing to 0 and such that g_,' yi < oo. Let m(i) be

izl
a sequence of integers increasing rapidly to oo. Several conditions will
be imposed on the sequence m(i), the first being that 1/y; < logm (7).
Let the periodic function fi(x) be defined as 1 if 0 << |z —1/2m(8)] < 1[y:mA(3)
and as 0 otherwise. The intervals (1/2'm(f£)——1/yi'mﬂ('i), 1/2m (1) +1[yim?(5)),
i=1,2,.. may be taken as disjoint and lying in (0, =). We note that
for u in the ith interval 4 > 1/4m(f). Now let f(z) :—é: fi{x), an every-
.

where convergent series such that f(0) =0, and such that
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The sum on the right is convergent for proper choice of the m(¢) since
1—a > 0 so that 7 satisties the condition (Dep) for any p > 0 at the point 0.
Let B; be the subset of (0,2r) such that for « in B,

(o 4+ 2fn—1/2m (1)} < 1[yem?(E)

for some integers j and # with ysm (1) < n < m(4). For v in B, f(u +2wj/n)
= fi(u +2=j/n) = 1. Bub

b - Omjfn] < |- 2 —1{2m (8)] -+ 1{2m(d) < wfm (%)
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50 that j is the integer » associated with w, 0, and » as in"our definition
of translation continuity. Thus for # in B

(10) Flu+2nrfn) = fiu+2m/n) =1 .

It is known [1] that |B;j, the measure of F;, exceeds 27— Cy; so that
liminf ;| = 2z. Thus for almost every w, the equation (10) occurs in-
finitely often.
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On Vietoris mapping theorem and its inverse
by

A. Bialynicki-Birula (Warszawa)

0. We shall use Gech cohomology groups with coefficients in an
arbitrary abelian group 4. Let X, ¥, T be compact Hausdorff spaces
and let f: XY, g2 X—>T, g,: YT be continuous onto maps such
that ¢,f = ¢,. In this paper we prove (Theorem 1) that if f induces iso-
morphisms of 4th cohomology groups for 4= 0,1,..,n and a mono-
morphism of the (n+41)st cohomology groups of fibres g YY), g1 \(x), for
all zeT, then f induces isomorphisms of ith cohomology groups for
¢=0,1,...,n and a monomorphism of the (n-41)st cohomology groups
of spaces Y and X. The result generalizes the well-known Vietoris-Begle
theorem [1].

On the other hand, we show (Theorem 2) that if there exists a totally
disconnected subset 7', C 7' such that the fibres g; (), gz (#) are (n-41)-
acyclic for e T— 1T, and f induces isomorphisms of ¢th cohomology
groups of ¥ and X for i = 0,1, ..., n, then f induces isomorphisms of ith
cohomology groups of fibres g; '(x), gi (z) for all ze T and i =0,1,..., n.
In the last part we give some applications of the theorems connected
with an Eilenberg-Kuratowski theorem [2].

1. All topological spaces considered here are Hausdorff. Let T denote
a topological compact space. 7, @, 9 will denote sheaves of abelian groups.
If F is a sheaf over T and x e T, then %, denotes the stalk of F over =z.
For any abelian group A, A7 denotes the constant sheaf over T with
stalks 4. If UCT, then I'(U, F) denotes the group of all cross-sections
over U into 7. If d « I'(U, F), then d denotes the carrier of d, i.e., the
subset of U composed of all # « U such that d(z) # 0. d is a closed subset
of U. We shall write I'(%F) instead of I'(T, ¥). We say that F has its support
in UCT if F, =0 for any we T'—U. F|U will denote the restriction of F
to U. It is known that, if & is an injective sheaf and U is a closed subset
of T, then F|TU is a soft sheaf. The ith cohomology group of X with coeffi-
cients in F is denoted by H(X,F), i =0,1,2,...

F, I, J will denote positive cochain complexes of sheaves. The mth
sheaf of F' will be denoted by Fpm, m= 0,1, ... If we write Frn—>Fini1,
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