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50 that j is the integer » associated with w, 0, and » as in"our definition
of translation continuity. Thus for # in B

(10) Flu+2nrfn) = fiu+2m/n) =1 .

It is known [1] that |B;j, the measure of F;, exceeds 27— Cy; so that
liminf ;| = 2z. Thus for almost every w, the equation (10) occurs in-
finitely often.

References

[1] R. P. Gosselin, On Diophantine approximation and trigonometric polynomials,
Pacific J. Math. 9 (1959), pp. 1071-1081.

[2] — On the interpolation of L? functions by Jackson polynomials, Tllinois J. Math.
5.3 (1961), pp. 467-473.

[8] -— Some integral inequalities, Proc. Amer. Math. Soc. 13 (1962), pp. 378-384.

[4] J.Mareinkiewicz and A. Zygmund, Mean values of trigonometric polynomials,
Pund. Math. 28 (1937), pp. 131-166.

[6] A. C. Offord, Approzimation to functi by trig etric polynomials II,
Pund. Math. 35 (1948), pp. 259-270.

[6] A. Zygmund, Trigonometrical series, vol. II, Cambridge, 1959.

Regu par lo Rédaction le 5. 2. 1962

icm°

On Vietoris mapping theorem and its inverse
by

A. Bialynicki-Birula (Warszawa)

0. We shall use Gech cohomology groups with coefficients in an
arbitrary abelian group 4. Let X, ¥, T be compact Hausdorff spaces
and let f: XY, g2 X—>T, g,: YT be continuous onto maps such
that ¢,f = ¢,. In this paper we prove (Theorem 1) that if f induces iso-
morphisms of 4th cohomology groups for 4= 0,1,..,n and a mono-
morphism of the (n+41)st cohomology groups of fibres g YY), g1 \(x), for
all zeT, then f induces isomorphisms of ith cohomology groups for
¢=0,1,...,n and a monomorphism of the (n-41)st cohomology groups
of spaces Y and X. The result generalizes the well-known Vietoris-Begle
theorem [1].

On the other hand, we show (Theorem 2) that if there exists a totally
disconnected subset 7', C 7' such that the fibres g; (), gz (#) are (n-41)-
acyclic for e T— 1T, and f induces isomorphisms of ¢th cohomology
groups of ¥ and X for i = 0,1, ..., n, then f induces isomorphisms of ith
cohomology groups of fibres g; '(x), gi (z) for all ze T and i =0,1,..., n.
In the last part we give some applications of the theorems connected
with an Eilenberg-Kuratowski theorem [2].

1. All topological spaces considered here are Hausdorff. Let T denote
a topological compact space. 7, @, 9 will denote sheaves of abelian groups.
If F is a sheaf over T and x e T, then %, denotes the stalk of F over =z.
For any abelian group A, A7 denotes the constant sheaf over T with
stalks 4. If UCT, then I'(U, F) denotes the group of all cross-sections
over U into 7. If d « I'(U, F), then d denotes the carrier of d, i.e., the
subset of U composed of all # « U such that d(z) # 0. d is a closed subset
of U. We shall write I'(%F) instead of I'(T, ¥). We say that F has its support
in UCT if F, =0 for any we T'—U. F|U will denote the restriction of F
to U. It is known that, if & is an injective sheaf and U is a closed subset
of T, then F|TU is a soft sheaf. The ith cohomology group of X with coeffi-
cients in F is denoted by H(X,F), i =0,1,2,...

F, I, J will denote positive cochain complexes of sheaves. The mth
sheaf of F' will be denoted by Fpm, m= 0,1, ... If we write Frn—>Fini1,
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we always have in mind the complex map of Fp into Fusyy. For any
complex F of sheaves over 7' and U C 7', F|U denotes the restriction of F
to U. I'(F) denotes the cochain complex of cross-sections corresponding
to F. We denote by U™(F) and H™(F) the mth cohomology group of I
and I'(F), respectively.

Let F be a sheaf and let F be a complex of sheaves over 7. We shall
say that ¢ is an augmentation of F into F' if &1 F—F, is a homomorphism
and 0 +F—F,—F, is exact. In this case s induces isomorphisms F—(%F),
I'(F)—»HYF) and we shall often identify ¥ and 9F), I'(¥) and HF)
under these isomorphisms.

If &: F—F, is an augmentation, then the triple (7, #, ¢) will be called
an augmented complex. If (', F',¢), (F',F”, &) are two augmented
complexes, then any pair (a, «') composed of & homomorphism a: F' —F**
and a homomeorphism a': F'—F'’ such that

F — Fy
al, ,La'

G

is commutative will be called a homomorphism of (F', F', &' into (F'/, B’ &),
If I is a complex of injective (soft) sheaves, H%I) = 0 for <> 0,
and &: §—I is an angmentation, then (@, I,e¢) is called an injective (soft)
resolution of §. If a: @—F is a homomorphism, I' is a complex of injective
sheaves, (7, I, &) is an augmented complex and (G, I,&) is a soft re-
solution of @G, then there exists a homomorphism «': I—I' such that
(a, @) is a homomorphism of (¢, I, &) into (F, I*, &). o’ is determined
uniquely up to homotopy. Hence o« induces unique homomorphisms

BH(D)~HIY), i=0,1,..

If (F, I, &) is an injective or soft resolution of 7, then H{(I) = H'(T, F)

for i=0,1,..
) In the sequel, we shall often denote a homomorphism and the maps
induced by the homomorphism by the same letter. Moreover, we shall
often identify objects if a canonical isomorphism between them has been
exhibited.

Let X, ¥ be compact spaces and let f: X ¥ be a continuous map
of X onto Y. For every sheaf F on X, {(¥) denotes the direct image
(see, e.g., [3], p. 171) of F under f. Liet ¥, be a closed subset of ¥ and
let X; = f~*(¥,). Then
(1) f(F)|¥, = {(F|X,) as functors on the category of sheaves over X;
(2)  there exists a canonical isomorphism

v F(Yls f(g)) —=I'(X, F).
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Hence, if F is a complex, then
(3) there exists a canonical isomorphism

v H(f (F)|T) in(FIXI) , i=0,1,..

In particular, ‘;aking ¥, = (x), where w ¢ ¥, we find that
(4) there exists a canonical isomorphism

yi WEE),~E(F)f @), for i=0,1,..

Let F be a sheaf over X, let @ be a sheaf over Y and let a: §—f(F)
be a homomorphism. Let (¥, I, &) and (§,J, &) be injective resolutions
of F and @, respectively. It is known (see, e.g. [8], p. 172) that f is left
exact and that (9) is injective whenever I is injective. Therefore
(f(?), (1), f(sl)) is an augmented complex, f(I) is a complex of injective
sheaves and hence there exists a homomorphism e¢': J —f(I) such that
(a, &) is & homomorphism of (§,J, &) into (F(F), (), f(er)). In faet,
o' is determined uniquely up to homotopy.

Let Y, be, as above, a closed subset of ¥ and X, ={"*(¥;). Then (a,a’)
defines a homomorphism of (Q]¥:,J| ¥4, &) into (f(F)]| ¥y, {1 ¥y, (&),
ie., by (1) a homomorphism (Q|¥y,J| ¥y, &) —={(F|Xy), HI|XL), f(a))-

The homomorphism induces maps

) a: 'vff(lel)»qﬁ(f(ﬂxl))
5] i

9{"(3)}171 WEDT) 6=0,1,..
(6} a: Hi(J|¥)—=H(f(I|X,) for i=0,1,..,

which do not depend on the choice of a'.
We know that )
™ HY{J|Y,) = H(Y, §1 Yy,
] < ~ -
HHI ) > B X = H'(X, %] X)
since J|¥,, I|.X, are soft resolutions of G|¥,, F|X;, respectively. Hence
(6) and (7) define a homomorphism
(8) e, f): H(Xy, Q¥)—=H (X, F|X,) for i=10,1,..
determined uniquely by a and f. :
Now let T be another compact space, let g: ¥ —T' be a continuou
map of ¥ onto T and let g be the direct image functor defined on sheaves
over ¥ and corresponding to g. Then g(a’) is a homomorphism g(J)—gf(I)
and induces a homomorphism
(9) g(a): W(g() > (f(D), ¢=0,1,..

Fundamenta Mathematicae, T. LIIX 10
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The induced homomorphism does not depend on the choice of o« and
is determined by a and g.
The following diagram is commutative:

10 W), HT1g7 @) = Hg™ (@), 9o ()

e

g(a)

U E(@lg @)
‘?f'(gf(l))m\ 7

Y, . X ‘l‘
s (IIF7 @) = H(f g (@), FIf 79 (@) -

h(a.f)

Consider the second right spectral hyperhomology functor (see, e.g.,
[3], D 146 and p. 173) of I'g((III'g)y%(¥), (ILg)/(F)), » > 2. To simplify
notation we shall denote (III'g)7* by G%* and (II'g)’ by &. The spectral
sequences (G7%(J), &'(J), (GF4(f(D), &(f(7))) and the homomorphism
(%), &) »(qu(f(I)) , G ff (I))) induced by o’ are determined uniquely
by ¥, 6,1, ¢ and a since I, J, ¢’ are determined uniquely up to homotopy.
We shall denote the homomorphism of spectral sequences by a*.

Notice that, G'(f(I)) and 6'(J) being as abelian groups (filtration
not considered) we have
” (D) = H{gf(D) 3 HY(X, ) and

¢ =H(gW) 3 BYY, 9),

sinee gi(I), g(J) are complexes of injective sheaves (see, e.g., [3], p. 148,
Remark 3).

Moreover, the following diagram is commutative:

()3 HY(Y, Q)

(12) e ”1 R
{7 () f:f HY(X,9).

On the other hand,

GY(FD) = BT, A(af(D))
G4J) = BP(T, (g (7))
(13) and a*: Gé’q(J)—>G§q(f(I)) coincides with the map induced by g(a):
H(g(J)) —(af(I)) defined in (9).

Consider the case where F = 4%, @ = A¥ and « is the canbnica,l map
(s?, e.g., E?], p. 151, Corollary) a: A¥ —»f(4%). Then A¥|Y, = 4™,
A% X, = 4%, where X, = 7Y, and « restricted to AF| ¥, gives the
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canonical map AY‘—>T(AX‘). Let f* be the homomorphism H{(Y,, 4)
—~HY(X,,A) i =0,1,..., induced by f. It is known that

(14) HY(Y,4) = H(T,, A7), H(X,, 4) = H(X;, 47, for i = 0,1, ..,
and f* coincides with k(a,f).

2. Lgnma 1. Let (BP% &), (F¥, HY, v 2, be two cohomological
speciral sequences, let § be a homomorphism of (EF% @) into (F7% .H{) and
let n be an integer. Suppose that p: EE*—>F5® is am isomorphism for
p<2(n+1—q), ¢ #=n+1l and a monomorphism for p =0, g= 'n—_l—l.
Then B: G —~H' is an isomorphism for i = 0,1, ..., n and a monomorphism
for i =n-+1.

Proof. We shall prove by induction on r that, for r = 2,

R o n+l—q
(13) p: BEX - F2? is an isomorphism for Ip <n-+l-—g-+ ——T
q #n-+1 and a monomorphism for p =0, ¢ =n-+1.

If r=2, then this follows from our assumptions. Assume that

: n+1—
p: ERf—-F% is an isomorphism for p <”H‘1“Q+“7G‘j1”gv qg#n+1
and a monomorphism for p = 0, ¢ = n-+1, where k > 2. We shall prove
n4+1l-—q

that p: E¥%, —»F%%, is an isomorphism for p <¢L+1—g+-—k——,

¢ #n-1 and a monomorphism for p =0, g =n-+1. It is easy to §ee

that g: By —Frsi® is a monomorphism. In order to prove the remaining

n—+1—q
I

part it suffices fo show that p <n+l1—q-+ implies that

n+1—(g—k-+1)

p+k<n+l—(¢g—k+1)+ g—k+1#n+1,

"1 ;
p-k<niitig—h-+ 2 HIT@EEZD g
But if p<n+1—¢g-+(n+1—gq)/k then
e R s
—_—-n—%—l—(q*k+1)+0————«————7'—:_1_]‘;(31_;6_‘—1).
The inequality ¢—k-+1 = n+1 is obvious.
p—k<n+l——(q+k»1)+’—Ii%:—q-l<n+l——(q+k——1)+n;:izq—1
=¢z.+1—(q+k-1)+”+1"k(--—f1+7‘——:l).

10%
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On the other hand, ¢+%~1 = n+1 implies p—k = 0. But it ig
easy to check that p =%, g=2+2—% do not satisfy.the inequality
P <n+1—g+(n+1—g)/k. Thus the proof of (15) is complete. Therefore
for all r > 2, f: B}—~F? is an isomorphism for p < n+l—gq, ¢+ n—i—l’
and a monomorphism for p =0, ¢ = n--1. Hence B ¢ —H is an iso-,
morphism for ¢ =0,1,...,% and a monomorphism for i — n 1.

TEEOREM 1. Let X, Y, T be compact spaces and let f: XY, g:
YT be continuous onto maps. Let A be an abelian group. Suppose that,
)‘For every we T, f* H'(g \(2), 4)—H (g (), A} ds an isomorphism for
1=0,1,..,n, and a monomorphism for i=mn-1.. Then f*: B"( Y, A)
—H (X, 4) is an isomorphism for i =0,1,...,n and o monoa-nwpliism
for i =n41.

Pz.‘oof. Take 7= A% @= A" and let « be the canonical mono-
morphism a: 4¥ ~f(4%). We shall use the notation of part 1. Consider
spectral sequences (G7(J), GY(J)), (Gf“(’f(] ) G"'(T(I))) and the homo-
morphism o* induced by «. Then

(16) a*: G—é’q(J)»Gé’q(f(I)} s am  dsomorphism  for p = 0,1, ..,
¢=0,1,...,% and a monomorphism for p =0, ¢ = n+1.

) Indeed, G3(J) = BP9 (7)), 8%(f(I)) = H“’(C%q(gf(I))) and (by (13))
a*: GEHT)—~GE(f(I)) is induced by gla): Ag(J)] =>N(gf(I)) defined
in (9). But, by (10), for z ¢ T, we have the commutative diagram

W(g (), 2% 9e(af(1),
v a| vt

g™ (@), A) jiy HY g (), 4)
fauld h(a, f) = f*is an isomorphism for ¢ = 0, 1, , 7 and a monomorphism
or— (g)-—i n+1. Hence g(a): A g () A f(I)) is an isomorphism for
N- ydy ..y m and a monomorphism for g =n+1. This implies (16).
ow the theorem follows from Lemma 1, (11) and (12).
Remark. Using a

simil ; 3 POve i
theoro ar method one can prove the following

TEEOREM 1'. Let X, ¥, T b fr 2
: y 6 compact spaces, let f: XY, g: ¥ T
Zj e:ontmu;,us gfn,to -ng and let A be an abelian group. ;S’uppo’se that, for
Y wel, f* H{ (), 4) ~H(f7g @), 4) s an isomorphism, for

t=0,1, ..., n. T} * HY ; ; ;
i=0,’1,,..‘,’n. hen f*: B(Y, A)>HY(X, 4) is an isomorphism  for

8. Levma 2. Let T be a compact space, let T be a totally disconnected

subset of T and let F be a sheaf over T ;
that b o+
H(T,F) =0 for i>o0. as its support in T,. Then
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Proof. Let {U;} be a finite covering of 7' and let ¢ be an #-cochain
of this covering with coefficients in #. Let {V;} be a covering of T' such
that 7;C U;. Then Vjym.n V5, C Uiy~ oo Uiy €lGoy vy 30y € D(Ugy v
A e n Uy, F), its carrier E(jy, ..., ji) is closed in Tj, n ... n Uy, and hence
E(Joy ory 1) M Vig oo V5, C Ty is closed in 7T'. Let ¢* denote the ¢-cochain
of the covering {’;} which corresponds to ¢. Then the closure (in 7)) of the
carrier of ¢*(j,, ..., j;) is contained in 7T,. Let T, be the union of carriers
of all cross sections ¢*(jy, ..., j:). Then T, is 0-dimensional and we may
choose a covering { Wiy} of T refining {V;} and such that Wi n Wi~ Ty = @
for every % # I. It is easy to see that, if 4> 0, then the cochain of the
covering {W,,} corresponding to ¢ is the zero cochain. Thus H(T,F) =0
for all 1> 0.

LEaya 3. Let T, T, be as in Lemma 2. Let F, G be two sheaves over T' -
and let B: F—Q be a homomorphism which induces an isomorphism for
stalks over m ¢ T—T,. Then the induced map §: H(T, F)—>HY(T, §) is an
isomorphism for i >1 and an epimorphism for ¢ = 1.

Proof. First consider two cases

(2) fis a monomorphism. Then 0 »F—G—F[B(§)—~0 is exact and we
have an exact sequence HT,F)—~HYT,Q)-H'(T, F/f(Q))—~H (T, F)~
= H{( T, F)—H(T, Q) H' (T, F18(Q)) ~ H™( T, F)->... But F/(Q) has
its support in T,. Hence it follows from Lemma 2 that H'(T, #/8(g)) =0,
for i> 0. Thus 8: HY{T,F)—HYT, Q) is an isomorphism for ¢ > 1 and
an epimorphism for ¢ = 1.

(b) B is an epimorphism. Then 0-—kerp—>F—-G—0 is exact, kerf
has its support in T, and, considering the corresponding exact sequence
of cohomology groups, we infer (as in (a)) that B: HY{(T, F)—~H (T, Q)
is an isomorphism for i>1.

The general case fcllows from (a), (b) and the remark that if §:
F @ is a homomorphism satisfying assumptions of the lemma, then B
can be represented as a composition of an epimorphism and a mono-
morphism, both satisfying the assumptions.

Leanaa 4. Let T and T, be as in Lemma 2. Let F, G be two sheaves
over T with support in T, and let B2 F—~@Q be a homomorphism. If the
induced homomorphism f: I'(T, F)—I'(T, Q) is an isomorphism (mono-
morphism), then f: F—C is also an isomorphism (monomorphism).

Proof. It suffices to prove that if F' is a sheaf over T' with support:
in T,, then for every 2eT and a €%, a % 0, there exists a cross-section
over T through a. For every « ¢ T, a ¢ %, there exists a neighbourhood V
of z such that there exists a cross-section d, through a over V. Let ¥,
be a neighbourhood of z such that ¥, CV. Then the intersection of the
carrier d, of d, and ¥V, is closed in T and contained in T, whence 0-di-
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mensional. Moreover, if a s 0 then z ¢ d)~ V,. Hence thére exists a neigh-
bourhood ¥ of @ contained in ¥, and such that ¥, n (T—V,) A d, — O
Now define

_fdoly) for yeV,,
d(y)*{ 0 for yeT—V,;

then d is a section over .X through a.

Levya 5. Let T', Ty be as in Lemma 2. Let F, G be two sheaves over T'
and let §: F—Q be a monomorphism which induces an isomorphism of
stalks over x € T— 1. If the induced homomorphism f: HYT,F) —HY(T, Q)
is an epimorphism and f: HYT,F)—>HYT,Q) is a Mmonomorphism, then
B: F—>@G is an isomorphism.

Proof. We have the following exact sequence: 0—HYT,F)—
~H(T, §)—H(T', §|p(F)) ~ BNT, F) — HYT, §) ~ (T, GI8(F)). Thus
HY(T,@/B(F) = 0. But G/f(F) has its support in T,, whence, from
GIf(F) =0, i.e;, = B(F) and f is an isomorphism.

Levva 6. Let (B, @), (F2% HY), r > 2, be two cohomological speciral
sequences such that E* =TF' =0 for p,¢~1,2,.., n+1, where n is
a fized integer. Let § be a homomorphism of (E2%, G%) into (FZ%, HY).

Suppose that p: G'—~H' is an isomorphism for i =0,1,...,n and
a monomorphism for ¢ = n+1 and f: B —FP is an isomorphism for

=2,3,..,n+2 and an epimorphism for p = 1. Then p: F¥-»F%
8 an isomorphism for g=0,1,..,n and a monomorphism for q = n--1.
Moreover p: EY"—Fy° is, in jact, an isomorphism.

P.roof. Since BZ=Fi"=0, for p,g=1,..,n +1, we have the

following commutative diagram with exact rows:

0 —>E’;’0 — Gl _}Eg,l —>E2'0—~>G2 _}Eg,z —~>E§'0 -
8, 8 4 NRCINR N N
013 ~H 1y > B’ H* > F2* > FY .
—+E§+l’°—->G"+1 »Eo,n-!—l —>E§L+2’o
BlR ¢ ]
U e N - e Ny — 0

Hence §: E*—F%%is an isomorphism for ¢ =1

morphism for ¢ = n+1. Moreover, f: Fy°—FL is an isomorphi
; , B 5 phism and

B =6, FY° = B°, whenee f: E2°—~F%° is also an isomorphism.

TH.:EOREM 2. Let X, Y, T be compact spuces and let I XY, 9: YT
bef continuous onto maps. Let A be an abelian group. Let T be a totally
disconmected subset of T. Suppose that, for every @ e T—1Ty, H{g (), 4)

ifg~1 —1 -
= H‘(f_lg (@), 4) =0 jor i=1,2,.. 041 and H'(g (), 4)
=H° (}‘ g (), A) = A. Moreover, assume that:

+2, ..., % and a mono-
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7 BHY(Y,A)—~H(X, 4) is an epimorphism,
i H(Y, A)—>HYX, 4) is an isomorphism for ¢ =1,...,n,
f*: BT, A)>H"(X, A) is a monomorphism.

Then, for every we T, *: H'g ' (x), A)~H(f g (), 4) is an iso-
morphism for ¢ = 0,1, ..., n and a monomorphism for ¢ = n-+1. Moreover,
f: HYY, A)—>H(X, A) is, in fact, an isomorphism.

Proof. We shall use the notation of part 1 and Theorem 1. It follows
from our assumptions and (11), (12), (15) that

a*: @) —-G°[{(D) is an epimorphism,
a*: @) G (f(I) is an isomorphism for i =1, ..., n,
a*t @I =@ f(I)) is & monomorphism.

Moreover, for every zeT—1Ty, A (g(J)), = H(g (=), 4) =0 and
W(ef(D), = B (f g @), 4) = 0, for i =1, ..., n+1. Hence the supports
of f(g(d)), H(gf(I)) are in T, for i =1,..,n+1. From Lemma 2 and
(13) we obtain GEYJ) = G(f(I)) =0 for ¢ =1,..,n+1; p=1,2,..

On the other hand, for every @eI'—Ty, %A'(g(J)), = H'(g (=), 4)
= 4, A(siD), = B°(f "¢ "(%), 4) = A and by (10) and (14).

a*: SE°(g(J),~~"(9f (I)), is the identity isomorphism in every stalk
ever x e I'—1T,. Therefore it follows from Lemma 3 and (13) that o*:
@ (J)-—=GP({(I)) is an epimorphism for » =1 and an isomorphism for
p =2,3,.. Now, from Lemma 6 and (13) we infer that a*: H{'(C}Cq(g(J)))-+
»H“(C)fq( gf(I))) is an isomorphism for ¢ = 0,1, ..., 7 and a monomorphism
for ¢ =n-+1.

By Lemma 4, g(a): AYg(J))>¥*%gf(I)) is an isomorphism for
¢g=1,..,n and a monomorphism for ¢= n-+1. By the last part of
Lemma 6, o*: H'(%(g())—~E*(%°(af(1))) is an isomorphism. Therefore,
by Lemma 5, g(a): ¥"(g(J))>%"(gf(I)) is also an isomorphism. Thus we
have proved that g(a): U(g(J)) > (gf (1)) is an isomorphism for
2=0,1,..,n and a monomorphism for ¢ = n-1. Therefore, for every
zeT, gla): ':‘z‘f%g(J))zé-Qf‘(gf(I))z is an isomorphism for {=0,1,...,n
and a monomorphism for ¢ = n-41. This, by (10) and (14), gives the
theorem.

CoROLLARY 1. Let U be a locally compact topological space, let X, X,
be two compact extensions of U and let A be an abelian group. Let f: X;—~X,
be a continuous map which is the identity on U. Then f*: HY(X,, A)—
—~HY(X,, A) is an isomorphism for ¢ =0,1,...,n and a monomorphism
for i=n-+1 if and only if, for any connected component ¥, of X,— U,
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4 BH{Y,, 4)-H{7(Xy), 4) is an isomorphism for i =0,1, .., n and
a monomorphism for 4 = n-1. :

Proof. Let X} denote the topological space obtained from X, by
regarding each connected component of X,— U as a single point.

Take X =X, Y=X,, T= X}, f = f; let g denote the canonical
map X,—X3, let Ty = g(X,— U) and apply Theorem 1 and Theorem 2.

Let U, X;, X, be as above, let U be the Cech-Stone compactifi-
cation of U and let f,, f, be the canonical maps f: fU X, f,: pU—X,.
Eilenberg, Kuratowski [2] and Skliarenko [4] proved that if

f: HY(X,, A)>H"(BU, 4),
f&: B(X,, A)—H"(BU, A) are epimorphisms and
fi: H'(Xy, A)~HYBU, 4),
15 Hl(Xz,A)—>H1(ﬁU, A) are monomorphisms,

then f, induces a homeomorphism of (8U)* onto XTI and f, induces a homeo-
morphism of (BU)Y* onto X3 (where (BU)*, Xf, X} denote the topological
Spaces obtained from pU, X, X,, respectively, by regarding each con-
nected component of SU— T, X,—U, X,—U as a single point). In fact,
this result can easily be derived from Corollary 1. Let us denote by b
the canonical homeomorphism of X¥ onto X7 obtained in this way.
For U, as above, let Hi(U, A) be the ith Cech ‘cohomology group of U
with coefficients in 4. defined by using finite open coverings.

Moreover, let U be normal. Then Hy(U,A) = H(B U, 4). The follow-
ing proposition is easily obtained from the above considerations and
Corollary 1.

ProrosrTION. For U, X, Xg, ky, as above, if the canonical homomor-
Dhisms HYX,, 4)~HYU, 4), H(X,, A)~H{(U, A) are isomorphisms for
t=1,..,n, monomorphisms for ¢ — n+1 and’ epimorphisms for § = 0,
then the connected components of X,—U, X,—U corresponding under h
have isomorphic i-th cohomology groups for § = 0,1,..,n )

Remark. Using a similar method to that used in the proof of
Theorem 2 one can prove the following theorem.

THEOREM 2'. Let X, Y, 1,/ 4,T1, bq as i Theorem 2. Suppose
that, for every @ e T— 1T, H'(g (a), 4) = H{7g (), 4) = 0, for i — 1,
t2;: " n+1 and H'\g7z), 4) = H'({7g (@), 4) = A. Moreover, . assume

a
i E(Y,A)+E(X 14) ds an epimorphism,
f*: H{Y, A)-»HYX, A) is an isomorphism for i =1, g
Then, for every e T, f*: H(g™(x), 4) —>H{(f“lg"l(m),A) is an iso-

morphism for ¢=0,1,..,n Moreover, f*: HY(Y, A)-H X, 4) is, in
fact, an isomorphism.’

Vietoris mapping theorem and its inverse
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