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The structure of the factor group of the unrestricted
sum by the restricted sum of Abelian groups II
by

K. Golema and A. Hulanicki (Wroclaw)

This paper is the continuation of a paper of one of the authors [1]
devoted to the description of the structure of the factor group of the
unrestricted direct sum S§* of countably many Abelian groups G, Gs, ...
by the restricted direct sum S of these groups.

In [1] is shown that 8% is algebraically compact and as such it
can be characterized by a sequence of cardinals. Since only eountable
sequences of the groups @, G, ... are considered, no non-trivial evaluations
of the cardinal in question can be expected if the cardinals of the Gy’s
are allowed to be arbitrary. Clearly enough a reasonable restriction on
the cardinals of Gy, k=1,2, .., is Gi < 2% for any k=1, 2, ... Under
this assumption the authors are able to show that there are just two
possible values for any cardinal in question, namely 0 and 9%, The problem
which of the sequences of cardinals, each being 0 or a% are the ones
prescribed to the group S8*/§ finds also its simple answer here.

Algebraically compact groups. The notion of algebraically
compact groups is due to I. Kaplansky [3] and is the following.

‘A group G is algebraically compact if it is of the form
(1) ¢ =D+ "D,
»

where D is a divisible group and >* D, is the unrestricted direct sum of
b4

the groups D, where for a fized prime p the group D, is the completion
in the p-adic topology of the resiricted direct sum of eyclic p-groups and
groups of p-adic iniegers.

According to the definition, each of the groups D) is uniquely defined
by a subgroup B, (called a basic submodule of Dp) which is the direct
sum of, say, 3 cyclic groups of order p", n=1,2,..., and ¥ groups
of p-adic integers and the completion of which in the p-adic topology
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of it is Dyp. As is shown by Kulikoff [4], p. 309, any two such subgroups
B, of a fixed group D, are isomorphic, so there is a one-to-one corre-
spondence between the group D, and the cardinals y3¥ (n = 0,1,2,...).

Thus the whole group E*.Dp is defined by the countable famils
»

of cardinals y? , n=0,1,2, ., p =2,3,5, ...

As to the divisible group D, it is the direct sum of some, say, d ra-
tional groups and of some, say, 8, Priifer’s groups Ope, p =2, 3,5, ...
and, moreover, any two such representations are isomorphie. This means
that the cardinals é and 6,, p =2,3,5, ..., are in a one-to-one corres-
pondence with the group D.

Thus we see that any algebraically compact group is fully charac-
terized by the countably many cardinals

(2) (n)

6, 0p, Vp (n=10,1,2,..,p=2,3,5,..).

To indicate the dependence of the cardinals on the group G we shall
write 6= 8(6), & = 8p(); ¥5” = ¥p (@), (0 = 0,1,2,...,p =2,8,5,..).

The notion of algebraically compact groups was introduced by I. Kaplansky in
order to characterize the class of compact (topological) groups. He proved that compact
groups are algebraically compact and he proposed to find the conditions on cardinals (2)
for which the group & defined by the procedure described above is compact. Although
the problem of the structure of compact groups has found its solution in a different
way the idea of characterizing of some classes of compact groups by means of cardinals
(2) has been exploited by one of the author (see [2]). Here this idea turns out to be
froitful in a quite different circle of problems.

Some lemmas and reductions. We now quote two results of
Kulikoff which link more closely ‘the cardinals ¢’ and yo° (n =1, 2, ...)
with the group D,.

i. (Rulikoff [4], p. 308). The cardinal %) is the number of the direct
summands in any decomposition into the direct sum of eyclic groups of
order p of the group Dyfgp {H, p Dp}, where gp{H, p Dp} denotes the group
generaled by the mavimal periodic subgroup H of D, and the group pDp.

il. (Kulikoff [4], p. 308). The cardinal v with n > 1, is the number
of the direct summands in any decomposition into the direct sum. of eyclic
groups of order p of the group (p™ 'Dp)[pl(p"Dp)[p] (*).

By these two results the dependence of the cardinals on the group G
becomes much simpler.

In fact,

i'. The cardinal ygl) is the number of the direct summands in any
decomposition into the direct sum of cyclic groups of order p of the group
Glgp {H, h@}, where H denotes the maximal periodic subgroup of the group G.

() For any group &, by G[p] we denote the subgroup of elements of order p.
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ii’. The cardinal yg” with n > 1 is the number of the direct summands
in any decomposilion into the direet sum of cyclic groups of order p of the
group (p»*@)[p]/(p &[] (cf. (1))

The proofs of i’ and ii" are almost immediate. We simply note that
since each of the Dp’s with p # p, is divisible by any power of p, (cf. [3],
p. 50), we have
for any

n=1,2,..

_'ng =D+ Z* D11+_p:)LD11

DFED

(3)

Moreover, if H is the maximal periodic subgroup of &, then, since
D, does not contain any element of order s prime to p,

H=(DnH+ ) (DynH =D~H)+ D H,
» »

where > Hy is the direct sum of the maximal periodic subgroups H, of
»

the groups Dy, respectively.
So, by (3) with n =1,

gp {H, pG} =D+ Z*Dp+ g0 {Hp, DoDo} -

p#P0
Consequently,
Glgp {H, pG} = Dplgp {Hy, pDp}
and

(@) [p](p"6) [p] = (" Dy) [P/ (P"Dy) [P]-
Theorems. From now on we consider an arbitrary but fixed sequence
Gy, Goy -n
of groups with G <2, k=1,2, .., and we define the unrestricted direct
sum 8* of Gy, k=1,2,..., as the set of the sequences
8§* = {(T)g=1,.... T € Gr}

and the (restricted) direct sum S of the groups Gp, k=1, 2 , -y a8 the
subgroup of 8* consisting of the sequences the terms of which are zero
from a point onwards. We denote by @ the group §*/8 and by = the
natural homomorphism

onto

o 8 §HS =6

The group G is, by [1], algebraically compact, 50 it is of the form (1).
Let (2) be the family of cardinals preseribed to it.
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THEOREM 1. Bach of the cardinals (2) is either 0 or 28, Moreover,
the following relations hold

(2) ¥ = limsupys?,
100

(b) 8, > limsupyd”,
N0

(e) If 6 =0, then
(@) 7’;)0) =0,p=2,3,5,..
(B) 617 =0,p=2,3,5,.,
(v) all but . finite number of
are equal to zero.

Proof. Since @, <2, k=1,2,.., we have @ = 2%, Therefore
instead of proving that a cardinal of (2) is equal to 2% it is sufficient
to show that it is not less than 2%,

We start with the yg,”), n=20,1,2,... We have to show that, for
any prime p and any non-negative natural number %, y™ is either 0 or 2%,
By i’ and ii’ this is equivalent to the fact that each of the groups
Glgp {H, p@} and (p*1@)[p]/(p"@)[p] either is trivial or it has 2™ direct
summands in any decomposition into the direct sum of cyclic groups
of oxder p. But, in the latter case, as the group is bound to be the direct
sum of eyeclic groups of order o, all what we have to prove is that the
cardinal or the group iz >2%.

The proof splits into two cases:

L If 9 50, then y0 > o,

Let a be the natural homomorphism

y=1,2,...,p=2,3,5,..

a ¢ Glgp {H, p@}.

Lemnrs 1. Suppose that for any natural number n there emists an element
' = z'(n) in G which is not representable as the sum of an element of order
<n and an element divisible by p. Then 8* contains a subset P such that
an(P) = 2%, whence P > o,

Proof of the lemma. Let U™ denote the subset of the elements
of §* whose orders are <n. Let U = GU("). Since § is pure in 8% =(0)

n=1
=H. Let H™ = z(T™).

Tnder the assumption of the lemma we show that for any natural
numbers n, m there exists natu: al number 7 = i(m,n) > m and an element
@; in @; such that z; is not of the form d+h, where d e pG; and h is of
order <mn.

To see this we note that, for any element # = (og)g=ys,.. in (2’ (nl),
there is an infinite sequence ki, §=1,2, ..., such that Zx, s not the sum
of an element of PG, and an element of order <m.
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In fact, in the contrary case, i.e. if for any & greater than some. k,
Ty = A+ hy
where dy e p@; and the order of h; is <m, then for

T = o i k>, T = dp i k> k,
6  otherwise, 6  otherwise,
- by it k> Ly,
hk = .
6  otherwise,

the elements & = (F)r=12,.., &= (d)p=sss B = (Br)k=1s,.. satisfy the
relation _ B
2 = n(x) = n(E) = a(d)+x(h) .

But this is impoésible sinee % and so #(%) has order at most ! and
x(d) is divisible by p.

We put i(m,n) to be the first of the ks greater than m.

We define an infinite sequence i, n =1, 2, ..., as follows: 4, = (1, 1),
nr1 = 4(1,, nl). For any infinite subsequence 5 = {is}, r=1,2,..., of

{in},  =1,2,.., we define an element 2, = (®x)x=1.,., Where
- @, H Ok : nrs
0 otherwise.
It is clear that since i,, n =1, 2, ..., increases, the element x, is

well defined. Let P be the set of the elements x,. We are going to prove
that for any » and an arbitrary choice of the ambigous sign + the element
Jt(i,]), where Ly = (mk)7a=1,2,.‘. with

_ Ly for ke,

T = .

{ 0 otherwise

is not representable as the sum of an element of pG and an element of
finite order. In fact, suppose to the contrary that

(%) =d-+h,
where d e pG and h e H™ for some n. Hence
B = dp+

for all k greater than %,. But this fails to be true already for the first
k = i,, greater than J,.

Tt is dlear that =(P) = 2™, Moreover, if #,, and x, are tw:)’ elfamen.ts
of P such that m(w,) s~ m(2,), then the sequences » and «'* differ in
an infinite sequence %’’’ of indices, so
4o, for kenw”,

Ty — Tyt = (YpJr=1s2,... WiLh Y= {0 otherwise.
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Consequently, in virtue of what was proved above, z,; —&,~ cannot be
the sum of an element of finite order and an element of p@. Therefore
it does not belong to the group gp{H, pG} and $0 an(2;)— am (@) # 0,
which shows that « is one-to-one on P, whence az(P) = 2™. Lemma 1
is thus proved.

Now suppose that ¢ = 0, then, by i’, & contains an element which
cannot be represented as the sum of an element divisible by p and an
element of finite order. Consequently, the conditions of lemma 1 are
satisfied and so Glgp {H, pG} > an(P), whence, by 1, y5' > 2%,

To see that relation (a) holds we note that if 7:‘,,") > 0 for infinitely
many », then @ contains direct summands COp for infinitely many a,
therefore & contains direct sumands being cyclic groups of order =, for
infinitely many =, so for any natural number » it contains an element
z'(n) (the generator of C,») which is not the sum of an element of order
<n and an element divisible by p. Hence, by lemma 1 and i’, 3 > a%.

2. If ¥ +£ 0 then p > 2%, 5 > 1. Denote by « the natural homo-
morphism «: (p™ @) [p]ofgo(p”'lG) [p1/(»"&)[p]. Suppose y5¥ > 1 and let
0 2 ¢ (1A ) (A [p].

Let, further, y ¢ a~*(2). Then %’ is an element of order p belonging
to G, so, since S"is pure in 8% there exist an element ¥ = (Yr)g=1pe,. it
2~} (y’) whose order is p. Moreover, starting from some k, we have yz e p»~1Gy
for k> k,. Since @(y) s 0, there is an infinite sequence of different in-
tegers k;, j =1, 2,..., such that y; is non divisible by p* in G),;. Now
we proceed as in case 1: for any infinite subsequence 4 = {k,}, r =1, 2, ...,
of ks, § =1,2,.., we define an element w, = (z), k=1, 2, ..., where

o= Vs B =T,
0 otherwise.
Tt is also clear that, sinee for a 7 theve are infinitely many z’s in @, = (),
k=1,2, .., not divisible by p». Let P, be the set of the elements z,. Clearly
2(Pr) = 2% and =(P,) « ("7 @) [p]. So the same argument as in the case
ve__proves that o is one-to-one on w(P,), whence (p"—1G)[p]/(p"&) (7]
= ana(Py) = 2“", what was to be proved.

In order to establish the theorem for § and 8, we prove

Leava 2. Suppose that

L. For any natural n there is an element v’ = z'(n) in G such that =’
is divisible by n, then for any two natural numbers m, n, there ewist a natural
number i = i(m, n) > m and an element x; in @; which is divisible by n.

If, in addiiion,

II. The order of «' is >, or,

II'. the order of o' is equal fo p,
t.hen i=1(m,n) and x; can be chosen in such a way that the order of xt
is =n, or it 48 equal to p, respectively.
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Proof. If & = (@x)k-12,.. e wY(2'), then starting from some %, all
2 with % > &, ave divisible by n. So we take as 4(m, n) the first natural
number greater than m and not less than %, we put @ = z with
k= i{m, n).

If, in addition, the order of &' is >n, or alternatively, equal to p,
then, in either case, there exists an infinite sequence %;, §=1,2, ..,
for which the order of @, § = 1,2, ..., is == or equal to p, respectively.
Thus for i(m, n) we may take the first of the %;’s which is greater than
m and not less than Fk,.

3. If 8 #0, then 63> 2%. It for any natural number » the group
G contains an element &'/(n) of order >, then conditions (I) and (II)
of lemma 2 are satistied. In fact, it is sufficient to put «'(n) = nz'’(n2).
Hence it follows that if § > 1 or if any of conditions (c¢) is not valid, then
the hypothesis of lemma 2 is satisfied. Thus the numbers ¢ = é(m, n)
and the elements x;, the orders of which are greater than n, respectively,
exist. We define a sequence iy, » =1, 2, ..., by induetion:

iy =4(1,1), dpp1 =1(tn, n!).
Let 5 = {in,}, ¥ = 1,2, ..., be an infinite subsequence of i,. We put

T it k=1
&y = (®k)k=10,.. Where g == | T o
0 otherwise.

Clearly, the order of z(x,) is infinite and =(x,) is divisible by any natural
number in G. We form the set P consisting of the «,’'s and we note that
a(P) = 2%,

Moreover, if a is the natural homomorphism of

onto

a: @ - G/H,

where H is the maximal periodic subgroup of &, then ¢ is one-to-one
on z(P). (The argument; for this purpose is almost the same as the one
used in the proof of lemma 1.) From this we infer that an(P) = 2% which
means that G contains 2% elements, each divisible by any natural number,
and not congruent to each other mod H. This, in view of the fact that
the cardinal of the group of rationals is &y, means that 9% groups of
rationals must appear in any decomposition of the maximal divisible
subgroup of @ into the direct sum of groups of rationals and Priifer’s
groups. Hence we see that

ifi. If for any natural number n the group G contains an element @''(n)
of order =n, then &= a¥e,

This proves the assertion about ¢ and, at.the same time, the validity
of (e).
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4. If 8, 0, then 8, > 2% The proof for 8, is almost the same as
the one produced above for d. At first we note that either of the conditions
ép=1 and

(5) ¥ =1 for infinitely many n

implies the validity of (I), (II) of lemma 2. Only the latter of the im-
plications needs a proof. Suppose that (5) holds; then G contains at
least one pure cyclic subgroup of order ., m; < my, < .. Let z™ be
the generator of the cyclic subgroup of order m,. Then the element
@'(n) = pm—Ix(n) satisfies I and IT' of lemma 2. Now we show that

iv. Conditions I, II' of lemma 2 imply 6, = 2%°.

We take the @;’s such that the order of each of them is p. Then we
form the set P in analogy with previous case and we note that the elements
of z(P) are of order p and, in addition, they are divisible by any natural
number. From this we infer that & contains a set of cardinal 2% consisting
of elements of order p divisible by any natural number. Since each of
the COp’s in any decomposition of the maximal divisible subgroup of @&
into groups of rationals and Priifer’s groups Cp. contains p —1 elements
of order p. We see that d, > 2% and that condition (b) is satisfied.

THEOBEM 2. Suppose that 8, d, y5), m=0,1,2,..,p =2,3,5, ...,
i a family of cardinals, each equal to © or to 2%, which satisfy conditions
(a), (b), () of theorem 1. Then there exists a countable sequence of groups
Gy Gy o with G < 2%, k=1, 2, ..., such that if 8*8 = @, then & = §(@)
8y = &p(&), yg‘) = Vgl)(G) for any m =10,1,2,.., p=2,8,5, ..

Proof. We define a group H as the direct sum of a family of groups
which comprises one copy of each of the kinds of groups: groups of
rationals R, Priifer’s groups Cpe groups of p-adic integers I, and cyclic
groups Cpn of order n for which the corresponding cardinals 8, 6,, y, ™,
n=1,2,.., p=2,3,.., are greater than zero. We put G = H for all
k=1,2,.. and we form S% § and S*/§ = G. We assert that

H

3=06(6), &H=25@), y=y(®, n=0,1,2,.,p=2,3,5,..

Suppose that 6 = 0, then, by (c) the group H is the direct sum of
finitely many of finite cyclic groups. Consequently 8* is a group of finite
exponent and so 8*8 = @ cannot contain any element of infinite order,
whence 6(G) = 0.

If 8 = 2% the element (Tr)k=12,... € 8* with @z ¢ RC G has infinite
order mod 8 and is divisible by any natural number n, 80, by iii, 6(@) = 2%,

Suppose that 8, = 0, then, by (b), only finitely many of ™, n =1,
2, .., is different from zero, so the order of any element of H which is
a power of p must be <p , where m is the maximal natural number
for which »5™ = 0, or zero if ¥5 = 0 for all n. Since § is pure in 8*, any
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element of @ whose order is a power of p must also be <p™, so, clearly,
@ cannot contain any Cpe, whence d,(G) = 0.

It 6, = 2% The element (#)r=rz,.c8* With o e COpeC Gy and
pay = 0 18 mapped by 7z onto an element x of order p divisible by any =,
so by iv we have on(@) = o, (

Suppose thatb y® — 0. Then by (a) only finitely many of »5” with
n=1,2,.. are #0. 80 H = Gp= Ay+ By, k=1,2,..., where 4; con-
gists of elements of order <p™, m being the greatest natural number
for which 57 # 0 and zero if yi — 0 for all n, and any element of By is
divisible by p. Hence a similar decomposition is valid for 8%, whence
8% = gp{U, p8*}, where U is the maximal periodic subgroup of S. Since
§is pure in S*, this gives @ = 8*8 = gp{M, p@}, Wh(gre M is the maximal
periodic subgroup of G. Hence, by i’, we obtain y, (&) = 0. _

If 90 = 2% then the element (#)i-1z,..< S*, Where @ e Gy i3 an
element not divisible by p in I, C H = Gy, is mapped by x onto an element
which is not the sum of an element of finite order and an element divisible
by p, 50, by lemma 1, »5’ (@) = 2% .

Let y, n>1. Suppose that y5” = 0. Then H does not contain
any pure cyelic subgroup of order p®, whence we infer that'S* has the
same property and so, since § is pure in 8* @ do(ﬁ)s not contain any pure
eyclic subgroup of order p“. This means that yp (@) =0. .

It 4 = 2%, then the element (#i)p-iz..cS* where @ e Gy is the
generator of the direct summand Cp» of @y is mapped by 7= onto an
element # for which p*we(p@)[p] a-nd(n)p"—lsgoef (p~@)[p], s0
(9" @) [p]/(p"@)[p] # 0, Whence, by theorem 1, yp~ = 2™
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