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Incompaciness in languages with infinitely
long expressions

by
W. Hanf (Endicott, N. Y)

1. First order predicate logie has the well-known compactness prop-
erby: If every finite subset of a set I' of sentences has a model, then
the set I' has a model. This property is not, in general, shared by lan-
guages with a greater power of expression. In this paper we consider,
corresponding to any given infinite cardinal e, the logic L, which differs
from first order predicate logic in that disjunctions and conjunctions
of sequences of formulas of type less than « and quantifications over
fewer than o variables are allowed. For many cardinals « we shall show
that L, is incompaet; that is, we shall exhibit a set I" of sentences of I,
which has no model but is such that every subset of I' of power less
than « has a model (%). -

For the most part, the set theoretical part of our discussion can
be carried out on the basis of Zermelo-Fraenkel set theory. Without
some modification, however, some of the set theoretical statements we
make would not have their proper meaning in Z-F. For example, we
will have occasion to speak of the class of all accessible cardinals. This
is not, of course, a set in the sense of Z-F at all. On the other hand,
it would do little good to use the Bernays type of set theory (where
we have sets and arbitrary classes of sets) since we also have oceasion
to consider functions defined on classes, ete. Although it could easily
be avoided, at one point in Section 3, we use “ordinals” to index the
set of all ordinals in the sequence determined by an arbitrary well-order-

(1) Languages with infinitely long expressions were introduced by Tarski in [16].
The author’s results on incompactness of Ly for inaccessible o were first stated in the
abstract [3]. This paper represents an essential portion of the author’s doctoral disser-
tation presented to the Graduate Division of the University of California, Berkeley,
California. Grateful acknowledgement is made to Professor Tarski for his encouragement
and assisstance at many stages of this work. It should be pointed out that the Léwenheim-
Skolem theorems given in [3] are incorrectly formulated. The correct formulations and
references to the earlier work of Carol Karp are given in [5].
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ing relation on the ordinals. For this it does not even suffice to further
extend Bernays set theory by going a finite number of steps further
and considering classes of classes, classes of classes of classes, ete. How-
ever, a satisfactory solution is obtained if we extend the theory Z-F
with some additional axioms giving the existence of large inaccessible
cardinals and then assume that all the cardinals and ordinals (except
the “ordinals” mentioned above) which we consider are less than some
fixed inaccessible cardinal 2. Axioms which insure the existence of very
large inaccessible cardinals have been formulated, for example, by Tarski
and Lévy (see [19] and [10]). Some still stronger axioms can be formu-
lated in terms of some new constructions which are given in Section 3.
Since the most important of our results concern inaccessible cardinals,
it is desirable that we chose 2 to be a very large inaccessible cardinal
in order that our statements concerning inaccessible cardinals are not
TACUOUS.

For the most part, we nse standard set theoretical terminology.
Ag Is customary, we assume that each ordinal number is the set of all
smaller ordinals and that a cardinal number is an initial ordinal. A cardi-
nal o is said to be singular if, for some ordinal § < « there is a f-termed
sequence y such that y, <a for all v < g, and

a = Uﬂ<ﬂ ¥

A cardinal is said to be regular if it is not singular. The symbol a* is
used to denote the successor of the cardinal « and «f denotes cardinal
exponentiation, while + ancd - denote ordinal addition and multiplica-
tion, respectively. A cardinal a is said to be accessible if it is singular
or it o < 2° for some cardinal f < a. A cardinal which is either singular
or the successor of a smaller cardinal is said to be strongly accessible.
A cardinal which is not accessible, or not strongly accessible, is said
to be inaccessible, or weakly inaccessible, respectively.

The logie L, can be described as follows: The signs of I, include
¢ distinct variables. We will use the symbols w, #, y, # and v, for 7 << u
to denote variables; distinet symbols are assumed to denote distinet
variables. g will denote the sequence of variables o, ..., ¢,, ... Where
7 ranges over the ordinals smaller than g. L, has the equality predicate
= and predieate symbols Py,..., P, ...; the number and type of pred-
icate symbols is determined by the similarity type p = (o, -ry Mey orp-
Thus the atomic formulas of I, are of the form # =y or of the form
Pgo o where the sequence v [ o of variables is of type ue. In case py =2,
we will write o <y in place of Pymy. The class of well-formed formulas
of I, is the least class W such that:

() Every atomic formulas is in W.

(i) If @ is in W, then its negation @ is in W.

) ©
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(i) If o <a and @, is in W for each u < g, then the conjunction
Na<o Dy is i w.

(iv) If @ is in W and o << a, then the universal generalization (Vv o)
ig in W.

In writing formulas, we will use existential quantifiers (3v]p),
infinite disjunction V,<, @y, and the usual finite sentential connectives
A, V, — and «; these can be defined in an obvious way in terms of the
basic operations for forming well formed formulas. We assume it to be
known under what conditions a relational system % =<4, Ry, ..., By, ... -
(where A is any non-empty set and each R is a pg-ary relation on the
elements of A) is regarded as a model of a sentence or a set of sen-
tences of L. (see [14]).

In this paper, we consider a fundamental problem concerning the
language L,, that of compactness. The compactness property is an im-
portant respect in which the languages with infinitely long expressions
differ from the langnage of ordinary logic. Any of the following three
conditions express the compactness property of the language L,:

(I) If I' is @ set of sentences of L, and every subset of I' of power
less than o has a model, then I' has a model.

(IT) If o sentence @ of L. is a consequence of a set I' of seniences
of Ly, then @ is a consequence of some subset of I' of power less than u.

(III) If o sentence @ of L, is equivalent to a set I' of sentences of L.
(i.e. every model of @ is a model of I' and conversely ), then D is equivalent
to some subset of I' of power less than a.

It is easy to see that these three conditions are equivalent. All three
are known to hold for the language L,. For example, (IT) is an immediate
consequence of Godel’s famous completeness theorem. For if a sentence
@ of L, is a consequence of a set I" of sentences of L, then by the com-
pleteness theorem there is a proof of @ using premises from the set I
but since any proof is of finite length, only a finite number of sentences
of I' could have been used in the proof and so @ is a consequence of this
finite set of sentences. In the case of those langnages L, for which we
have an incompactness vesult, there can be no notion of proof which
is adequate for deductions from arbitrary sets of premises unless we
allow proofs to be of length « or greater. Carol Karp has set up formal
systems of proof for I, (see [7]) which for the case of « inaccessible give
all logically valid sentences of I, as theorems. It follows from the results
of Section 3 that these formal systems are not adequate for deductions
from premises except possibly for very exceptional inaccessible a.

Condition (I) accounts for the name “compactness property”’. For
if we replace each sentence @ of I' by the class of all models of &, then
(I) says that if the intersection of each family of fewer than a classes

L]
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of I' is non-empty, then the intersection of all the classes of I' is non-
empty. In the case of I, this is just the finite intersection property for
elementary classes and shows that the usual topology on the space of all
models (i.e. the topology in which the closed sets are arbitrary inter-
sections of elementary classes) is compact.

Condition (IIT) is related to the method by which the language
L. was constructed. In the case of I, it says that there is no sentence
which is equivalent to an infinite conjunction of sentences except in the
trivial case where the sentence is already equivalent to some finite con-
junction of the same sentences. In the case of I, we have intentionally
introduced conjunctions of power less than «. The fact that L, is incom-
pact shows that we have in the process introduced at least some non-
trivial conjunetions of power « or greater.

In order to be move specific in the formulation of theorems, we will
say that the cardinal a is f-incompact if there exists o set I" of sentences
of L, such that (i) the power of I'is g, (ii) I" has no model, and (iii) every
subset of I' of power less than « has a model. Following Tarski [18],
a will be said to be incompact if it is f-incompact for some f=a and
strongly incompact if it is «-inecompact.

Certain incompactness results have been known for some time to
Tarski. He first obtained a number of theorems concerning «-complete
ideals in a-complete fields of sets, their extendability to «-complete
prime ideals; relationships between a-distributivity of a Boolean algebra
and its isomorphism to a field of sets, etc. These theorems applied ex-
clusively to accessible cardinals. Later he realized that the properties
studied by him were very closely related and some of them actually
equivalent to the incompactness of the cardinals involved. In this way
the incompactness of all accessible cardinals was established; the result
is stated implicitly in Scott-Tarski [12], p. 170. For inaccessible cardinals
(greater than w) the compactness problem as well as these related set-
theoretic and Boolean-algebraic problems remained entirely open. In
Erdos-Tarski [1] it was even speculated that these problems might in-
volve some fundamental difficulties and that their solution might require
some essentially new set-theoretical axioms.

In Section 2 and 3, the compactness problem is studied using differ-
ent, purely metamathematical methods. These methods are closely related
to the method used by Tarski in [17] to construct a formal system which
was ‘consistent but not o-consistent. Using these methods, the incom-
pactness theorem is reestablished for all accessible cardinals.  Actually
we obtain some improvement in thag we show that all accessible cardi-
nals of a very comprehensive class are not only incompact, but strongly
incompact. Thig class comprehends, in particular, all strongly accessible
cardinals and therefore, under the assumption of the generalized con-
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tinpum hypothesis, coincides with the class of all accessible cardinals.
(Without this assumption, the problem whether all accessible eardinals
are strongly incompact is still open.)

TWhat is more important, these metamathematical methods allow
the incompactness results to be extended to a very comprehensive class
of inaccessible cardinals as well. Unfortunately, these resnlts do not lead
fo the conclusion that all non-denumerable inaccessible cardinals (and
hence all non-denumerable cardinals) are incompact. For this reason it
seems important to characterize ‘“‘constructively” large classes of cardi-
nals to which these methods apply. The ideas of Mahlo (see [11]) can be
used to obtain very comprehensive classes of cardinals defined con-
structively in terms of the class of accessible cardinals. Actually, we
shall outline here a construction analogous to that of Mahlo bhut which
yields a class of cardinals which is even larger (unless all non-denumer-
able cardinals are alveady obtained by Mahlo’s constructions). We will
show that each eardinal in this class in incompact. We will also indicate
how to obtain even larger classes of inaccessible cardinals. However,
it turns out that for each class defined in such a constructive way,
it appears almost certain on the basis of “naive” set theory (or what
is sometimes called ‘“Cantor’s absclute”) that not all cardinals belong
to the class. And, although we can show incompactness for each member
of the class, we can also show incompactness for the first non-denumer-
able cardinal not in the elass. It appears therefore that the results ob-
tained by these methods almost by their very nature cannot be pre-
sented in an exhaustive way.

It should be added that Tarski, combining these incompactness
results with his earlier observations concerning the relation between the
incompaetness problems and some problems in set theory and the theory
of Boolean algebras, was able to extend to the class of all incompact
cardinals various results which were originally established only for ac-
cessible eardinals; e.g. the theorem to the effect that every a—cqmplet;e
prime ideal in the field of all subsets of a set of power a.is pr.mmpal.
The methods by which these results are obtained are outlined in [}8].
In [9] Keisler and Tarski give a purely mathematical method f’f establish-
ing these results and also give a thorough discussion of various mathe-
matical consequences. In [4] the author shows that the results extgnd
to a problem concerning simply ordered sets and a problem concerning
graphs. )

Section 2 contains incompactness results for accessible cardmajl.s.
Although the proof of Theorem 1 is a direct translation of an.a.lgt?braac
proof due to Tarski (see[15]), the result obtained in this way is shgh.tly
stronger than that obtained indirectly using the Boolean algebra Wh'lch
Tarski constructs. Theorems 2 and 3 show that every strongly accessible
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cardinal is strongly incompact. In Theorem 6 of Section 3, the methods
developed for inaccessible cardinals are used to extend strong incompaet-nesis
results to a class of weakly inaccessible cardinals. Thus, in the absence
of the generalized continuum hypothesis, there may be certain accessible'
cardinals which are not strongly accessible and which are not shown
to be strongly incompact by Theorem 1; in this case, a comprehensive
class of such cardinals are shown to be strongly incompact in Theorem 6
.The remainder of Section 3 is devoted to constructing a large class of.
inaccessible cardinals, establishing some of its properties (Theorem 4)
and proving the main result (Theorem 5) that every cardinal in thig
class is strongly incompact. )

2. Inecompactness of accessible cardinals.
THEOREM 1. Suppose that f, y < o and « < . Then a is B7-incompact.

Proof. We form a set of sentences of I, using sentential symbols

(zero-placed predicates) P, where & < y and 9 < f (3. Let I" be the
set consisting of the sentence

1) A<y Va<p Pey
and all sentences of the form
(2) T Ae<y Peyesr

where f is a function mapping y into B. If (1) holds in a model A, then
for .each ¢ <y there is an ordinal 5 < # such that P, holds in Y¥. Thus
taking for each £< y f(£) to be leagt such 1, We deﬁn;, a funetion f such
that Pggy holds in U for each £ < y. This contradicts sentence (2) and
shm\."s that I" has no model. This can also be seen by noting that I" con-
tradicts the (y, #)- distributive law (see [13]). On the other hand any
subset [ f)f I" of power less than « (in fact, any proper subset of J‘,) has
a model since we can find a function f such that (2) is not in I and
c?nsf;rueh & model in which Pgze holds but Py, fails for all 5 = f().
Since the set I" has power £’y we conclude that « is B"-incompact.
.The proofs of the following theorems (2, 3, and 5) were originally
caa'.rled out using set theoretical models involving the membership re-
Iation e (see the proof given in [18]). Tarski has pointed out that the

(*) It is possible to replace this infinite list of predicates by a single binary predicate.

The same holds in later proofs where we use several predicates. As a matter of fact,

the results of [2] concerning isomorphism of ; i 1 i
of prediontan wate oY g Tphism of ineerpreted langnages with various lists

tained for the infinite languages. In L., the requi
c 1 . 0 ; . a quirements
::iwﬁc;t Iists of' predicates to insure isomorphism of the correspondin’g languages is that
e al;zn‘::m: Efawer than’ o predicates each having fewer than places and that there
o R A
o saap € nary (or v-ary where » > 2) predicate or else two unary operations
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proofs can equally well make use of well-ordered systems resulting in
a somewhat simpler formulation of some of the proofs. In the following,
we will write & < y in place of Pyay and will make use of the sentences

3) (Vay)ze<yvy<ave=y]
and
4) TE P o) Asco vs41 < 2e]

to characterize a well-ordering relation. Sentence (3) says that the relation
is connected and (4) says that there is no infinite decreasing sequence
of elements. Thus in any model A = {4, R, ...» which satisfies (3) and (4),
the relation By must well order the set 4 (it is easy to check, for example,
that a relation satisfying (3) and (4) is transitive). Hence the system U
must be isomorphic to a system {p, <, ... where p is an ordinal and
< is the less than relation restricted to ordinals less than g. Thus in the
proofs below, when we are considering models satisfying a set of sentences
which includes (3) and (4), we will restrict our attention to models
{0y <, ..o Actually, the ability to formulate sentence (4) in L, is crucial
to the method employed here. Indeed, if we add enough individual con-
stants to the langnage L,, we can show incompactness for many cardinals
(all those less than the first inaccessible to which Theorem 5 does not
apply) using only sentences of ordinary logic together with the single
infinite sentence (4).

In the following proofs, it will be convenient to have a formula
@, which defines the ordinal . Let @,(x) be the formula

@FoP LA Ae<eve < vl AV #)[2 <@ Veay 2 =0}

@,(y) is defined similarly with the free variable » replaced by y. It is
clear that @,(z) is a formula of the language L, whenever 5 < a. It is
easily seen that in a model (g, <, ...), an ordinal » satisfies the formula
D,(x) just in case » =1.

THEOREM 2. If a is singular, then o is strongly incompact.

Proof. Assuming « singnlar, we ean write

a ==\ Js<p Ve,

where § < a and y; < « for each £ < f. We form a set of sentences of
L, making use of the binary predicate < and a unary predicate ;.
I' consists of the sentences (3) and (4), the sentence

(8) Veep (@0l ye) (Vo) [Pro— \/n<vex = y]
and, for each 7 < a, the sentence

(6) (A a)[®,(x) A Py] .
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I" bas no model since by sentences (3) and (4), any model of I"is isomorphic
to a system {p, <, B;, and sentence (5) says that, for some £ < B, there
are at most y; (and hence fewer than o) ordinals in R, whereas by (8),
each ordinal 9 < ¢ is in R,. However, it is easy to see that any subset
I of I" of power less than a has a model since for some & < g, there will
be fewer than yg sentences of form (6) in I'". Thus a is strongly incompact.

TumorREM 3. If a is @ non-limit cardinal, then a is strongly incompact.

Proof. Suppose that « is the successor of the cardinal B. Let I" be
the set of sentences of L, consisting of sentences (3) and (4), the sentence

{7) AoV ) [ Vecp 2 = v:]
and, for cach ordinal 5 <, the sentence
(8) Fa)[Dy(@)].

Suppose that (g, <> is a model of I". From (8) we see that » < o for each
7 < a. But (7) says that ¢ has power at most 8. Therefore the set I" has
no model. Consider now any subset I'' of I" of power less than «. Let o
be the least ordinal which is larger than each ordinal 77 for which the
sentence of form (8) is in I™. Since there are at most B such ordinals,
we see that ¢ < a and that (g, <> is a model of I"". Thus we have shown
that a is strongly incompact.

3. Incompactness of inaccessible ecardinals. We wish now
to extend the class of aceessible cardinals to a much more comprehensive
class of incompaet cardinals. A set ¢ of ordinals is said to be relatively
closed if whenever a subset of ¢ has an upper bound in €, ity union is in C.
That is, if the union of ¢ is added to C, then the resulting set is closed
in the order topology on the ordinals. Given an arbitrary class X of
ordinals, we let M(X) be the class of all ordinals £ such that, for some
relatively closed OC X, & = | JC. This process of forming the class M(X)
from a class X was first employed by Mahlo (see [11]); if X is the class
of all strongly accessible cardinals, then M (X) is the class of all cardinals
which are not g, numbers in Mahlo’s sense. The present formulation in
terms of relatively closed sets was suggested by Tarski. Let AC be the
class of all accessible cardinals. We will be concerned with iterated ap-
plications of the operation M to the class AC.

To illustrate the effect of the operation M, let 6,, ..., 6, ... be the
sequence of all inaccessible cardinals. First we see that 0, e M(AC) unless
possibly there are §, inaccessible cardinals smaller than 6,; that is, unless
7 = 6,. For suppose 7 < 6,. Since 6, is regular, | Jec,0; < 6, and taking
C to be the set of all cardinals strietly between { Je,6; and 6,, we see
that C is a relatively closed set of accessible cardinals whose union is §,.
Thus 8, ¢ M(AC). But even many of those cardinals 6, for which % = 6,

- ©
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are in M(4C). Let 0g, ..., 6y, ... be the sequence of all such fixed points
of the original sequence. Again we can show that 6, e M(4C) unless
possibly # = 6;. For if < 6;, we take C to be the relative closure of
the set of cardinaly which are immediate successors of cardinals of the
form 6; which lie between | Jec,0; and 0;. If is then easy to see that ¢
is a relatively closed subset of AC whose union is ;. This process can
be carried still further by taking fixed points of this new sequence, etc.
Tor stronger results along this line, see Mahlo [11] and Lévy [10]. From
such results it can be seen that the ecardinals not in M(4C) must be very
rare indeed. However, we do not stop here.

Mahlo also considered iterations of the operation M to obtain still
more comprehensive classes of cardinals. We define M"(X) l‘eclu'siv.g-ly
by the conditions: (i) MY(X) =X, (ii) M (X) = M(M"(X)), and (iii),

for # a limit ordinal, M(X) = Jec, M4X). MYAC) is the class of

cardinals which are not hyperinaccessible of type 5 as defined in Lévy [10].
An immediate consequence of Theorem 5 below will be that if « is in-
accessible and o e M*(AC), then « is strongly incompact. Thus we will
have shown that all cardinalf a > w are incompact unless possibly o is
hyperinaccessible of type «. However, Theorem 5 will he fox*.lnulate(l
in such a way as to give strong incompactness for a comprehensive class
even of those cardinals which are hyperinaccessible of their own type.

Suppose now that a is inaccessible and o e M(AC). It follows from
the definition of M that if  is the fivst ordinal such that « e MY(AC),
then ¢ is not a Hmit ordinal and { < a. Taking % to be the predecessor
of the ordinal ¢, we have «¢ M(AC) but « e M (4C) and hence there
exigts a velatively closed subset ¢ of M"(4C) such that a=JC. _Thls
ordinal 7 and set ¢ give us a description of ¢ in terms of smaller ordinals
in much the same way that « was described in terms of the sequence
Yoy vees Vey oo i the proof of Theorem 2. Such a descriptim.l pe.r{mts us
to show that « is strongly incompact. (The notion of deseribability a’nd
its relationship to incompactuess is given explicitly in [6].) In carrying
out this incompactness proof in a natural way, it is seen t}mt thcf < relat.mn
plays a dual rdéle. On one hand it is used in the definition of 1naeee:s81ble
cardinal and relatively closed set. On the other hand it is used to index
the degrees of hyperinaccessibility. The generalization o'f Ma?)l(?’s con-
struction which will be presented here consists in allowing c‘llstmct re-
lations to play these two separate roles. Suppose then that R is any 'Wfﬂl‘
ordering relation on the ordinals. Let 0y, ..., 0y, ... be thg2 e)\numere.x,t»mn
of the ordinals in the order determined by R. We define M recursively
as follows:

i) M®(x) = X.
(il) M®T(X) = MP(X) o (M(MED(X))— (6, +1)).


GUEST


318 W. Hanf

(iii) If 5 is « Umit ordinal, then
M®(X) = Upe, MP2(X) .

Let MR(X) be the union over all 7 of the sets Mm’”)(X). The set 6,41
is subtracted in (ii) to insure that the cardinals added at the (17 4+1)st
step of the iteration are all larger than 0,; thus the condition « e M¥(x)
depends only on the relation R restricted to ordinals less than «. Due
to this fact, if « e M™(X), then we obtain a deseription of « in terms of
the relation R restricted to ordinals less than «, some ordinal 0, smaller
than a, and a relatively closed subset of a.

Taking R to be the ordinary < relation on the ordinals, we have
8, = 1 and by induction on » we easily show that M(<"’)(AC) is the set
of cardinals a such that either a <y and e e M*(AC) or a> 5 and « e M"(X).
Hence a e M“(4C) just in case « e M%(X), that is, just in case « is not hyper-
inaccessible of its own type. Thus we have formed a comprehensive class
M<(AC) of cardinals. Using this class as a starting point, we can form
further classes M(M<(4C)), M=(M*(4C)), M(M<(M<(AC))), ete. Assum-
ing that none of these classes containg all cardinals, it is easily seen that
each one is larger than the preceeding. Furthermore, given two well
orderings R and S on the ordinals, we can define (M%)®? ang (MS)® by
replacing the function M by M® in the definitions of MY™P sng ME.
Thus, the operation (M™) is the result of iterating the operation M<.
Tt can be seen that the class (M~)° (4C) is more comprehensive than
any of the classes mentioned above. However, in the next theorem we
establish certain closure principles which show that each of these classes
is already of the form M"(AC) for suitable R.

THEOREM 4. Suppose that S and T are well-ordering relations on the
ordinals. Then there exist well orderings R and R’ such that, for any set X
of cardinals,

(i) M¥(X) = M5 (M"(X))]

(i) ME(X) = (M7(X).

Proof. Any ordinal 0 can be written uniquely in the form o-»+n
for some ordinal » and integer n e o. We call o-» --2n the even ordinal
corresponding to 6 and w-»+2u -1 the odd ordinal corresponding to 6.
Let 0y, ..., 0,,... and 4, ..., b;s ... be enumerations of the ordinals in
the orders determined by S and T, respectively. (We may assume that T
is such that this second sequence has no last element.) We then construct
a new sequence 0¢’, ..., 0,, ... consisting of the even ordinals corresponding
to 65, ... followed by the odd ordinals corresponding to 0, ... Let R be
the relation on the ordinals determined by this new sequence. YWe then
show by induction on » that, for every set X of cardinals,

M X) = MTP(x)
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hen 6. is even and
v ! ME®N(X) = MO {M(X))

when 6, is the odd ordinal corvesponding to f;. Thus (i) follows.

To show (ii) we chose distinet ordinals 6; corresponding to each
pair 0, and 0; of ordinals in the original sequences in such a way that
the power of 6, is the maximum of the powers of 6, and 6; (‘ezfcept that
we only require 8,7 to be finite in case 0, and 6{-. are both finite). Then
we say that 0 is in the relation R’ to ;7 just in case ¢ < ¢ (I)r ;’ =
and 7 <#'. By an inductive argument we then show that if 6;); is the
gth ordinal in the sequence determined by R’, then

M®AX) = (M TO(X) (MO (M5 2(X)) — (61 +1)) .

Taking the union over all & we obtain the desired conclusion (ii).
Theorem 4 (i) and (ii) correspond to the addition and multiplication
of order types, respectively. Similar results corresponding to exponen-
tiation and higher order operations on order types are p‘ossible. For
example, the definition which corresponds to exponentiation is as follows:

MEENx) = M(x),
MK = M) O () — (8, 41)

and, for x a limit ordinal,

) (S,6)
XY = Usaa MEE(X) .

M(R
Ag in Theorem 4 we then have that M) (defined as the union over all )
is of the form M" for suitable T. '

Before proceeding to the main theovem we note that instead of
starting with the class 4C of all accessible cardinals, we could equally
well start with the class A0 of all accessible cardinals together with .all
ordinals which arve not cardinals. In fact, the class M™(40) contains
just the eardinals in M™AC) together with the ordinals which are not
cardinals. This follows from the fact that M(40 u X) = M(4C v X) v
v A0. For if a cardinal is the union of a relatively closed subset O of
AO U X, then it is the union of the relatively closed set ¢’ of AC \:JX
which is obtained from ¢ by replacing each ordinal which is not a cardinal
by the next larger cardinal. )

THEOREM 5. Suppose that R is ¢ well-ordering relation o5 the oz'dzm.uls
and o is an inaccessible cardinal larger than o. Then a e M'(AC) implies
that o s strongly incompact.

Proof. Let 0,,..., 0,, ... enumerate the ordinaly in the s(g%)uence
determined by R. Tet n be the least ordinal such that oM "(AC).
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Looking at the definition of M®AC) we see from (i) that 7 =0,
since a is inaecessible and from (iii) that # is not a limit ordinal sinee
for all &<, a¢ M®YAC). Hence (ii) must apply and so 7=l
and since a¢ M‘R’C)(AC), we must have ae M (M‘R’“(AC)) and aé 0, +1.
Hence 6; < « and for some relatively closed set 0 C M®9(AC) we have
a=|JC. We will now use the relation R (vestricted to a), the ordinal
6;, and the set € to construct a set I" of sentences of T, such that I has
1o model but every subset of I" of power less than « has a model. In forming
I'; we make use of four binary predicates <, Py, Py, and Py, two ternary
predicates P, and P;, and three unary predicates P, y Py, and Pg. (The
use of the two ternary predicates P, and Py to express accessibility is
due to Keisler, see [8].) The meaning of these predicates and the sen-
tences of I" will be made clear in the proof which follows. I" consists of
the sentences (3) and (4) of Section 2, the sentences

(9) (Ywaye)[Pywmy A Pywaz—y = o],

(10)  (Yw)(3F=)[e < wa(Vay)[Puwey —a < 2hy < w]]

(11)  (Ywz)|Pewrz < w-(Tey) [Py Az < 1] s

(12} (Vuway)[z < wry < wa(V2) [Pswirzes Pywyz] —x = y] ,

(13) (Vw)[P7 w—(3e)[2 < wA(Yay) [Psway —y < z]]] R

(14)  (Ywa)| Pyws—Pywy Pawv (3y) [Pryeny < wa(V2)[Pyws —Pysyl]],
(15)  (Ywa)|e <w—>@y)le < yry < waPyuwy]]

(16) (V-uxz:)[(Vz) [e<a—-@y)z<yry <an Pywyl|ra < w—»Parzm:] ,
17 @) (Vyiy <avy = a],

(18)  (Ya)[(V2)[s <2—@)l= < yry < 2nPayl] ~Pya)

(19)  (3w)[@o, (@) 7 (Vy) [Psy~>Pyya]] ,

and, for all ordinals & and 4 smaller than « and such that E,n €R,

the sentence

(20) (Foy) [De(x) 1 D, (y) A 1Py zy]

and, finally, for every ordinal 5 ¢ C, the sentence

(21) (30)[D,(z) A Pyx] .

By (3) and (4), any model of I' is isomorphic to a model of the form
U= o, <, By, Ry, By, By, Rs, By, By, B,

where E,, R,, and B, are binary and R, and R; are ternary relations

on ¢ and Rg, R,, and R, are subsets of 9. We proceed to establish the
following:
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(a) If weRg or xRy, then x e AO. Suppose x ¢ Ry. Lt f. be the
set of ordered pairs <&, 7> such that <x, &, ) ¢ B,. By (9), f, is a function
and by (10), there is an ordinal 4 < » such that the domain of f« is a subset
of A and the range of f, is a subset of x. Sentence (11) then says that x
is the union of the range of f,. Hence » must be either a singular eardinal
or else an ordinal which is not a cardinal. Thug x ¢ 40Q. Suppose now
that % e B;. For each n <z, let F,(n) be the set of all ordinals & such
that (x,7, £> € Bs. By (12), F, is one to one and by (13), there is an
ordinal 4 < % such that each element of the range of F, is a subset of 4.
Thus we conclude that the power of « is less than or equal to 2* and hence
that » € AO.

0) If x<a and 0, <a and <x,0,> e Ry, then xeM®?(40). We
proceed by induction on 5. Assume therefore that, for all & < g, if 1< a
and 6; <a and <A, 0 eR,, then ie M™?(40). Suppose that x < a,
6, < a, and {x, 0,> ¢ B,. Let D, be the set of all ordinals 1 < » such that
(ty 4y € By. Now if xeR; or R,, then by (a) x e 40 C M®"(40) and
so we are done. But (14) says that either x is in B, or R, or for some
ordinal § we have <0, 0,> ¢ By, 0 <x, and for all 2eD,, (,06)¢cR,.
Thus we assume the latter. Now if <0, 6,)> ¢ R then (since both § and
6, ate less than a) by (20) we would have <0, 6, ¢ B,. Hence <6, 6,> ¢ R
and so 0 is 0; for some & < #. Thus {4, 6> ¢ B, for all 1 e D,. Hence we
conclude by the hypothesis of induction that D, C M™% 40). By (15),
the union of D, is » and by (16), D, is relatively closed. Therefore
#e M(M®9(40)). Since x¢ 6;-+1, we conclude that »eM™+940)
C M®7(40).

{¢) I" has no model. By (21), 0 C By C p. Since a = | J 0, we conclude
that o < . But (17) says that there is a largest ordinal in 9; that is,
that ¢ is a non-limit ordinal. Since a is a limit ordinal, we conclude that
a < p. By (18), R, is closed and 8o a e Ry and by (19), we conclude that
{a, 6;> € B,. Applying (b) it follows that oM™ (40)=MPI4C)
contrary to our choice of {. Therefore the assumption that U is a model
of I" leads to a contradiction.

Suppose now that I'" is a subset of I' of power less than a. Let ¢ be
the union of all ordinals # such that the formula D,(w) or P,(y) appears
in a sentence (of form (19), (20), or (21)) of I". Since « is not singular,
2 < a. We construct a model

W= {o+1, <, Byyoeny By

of I' ag follows: R, is the relation R restricted to g+1. B, is the set of
all pairs (x, 0,> where #,0,< ¢ and xeM™(AC). For each » < g,
if for some », % e M™"(4C)— M™V(AC), then we choose a relatively
closed set D, C M®P(AC) such that » = |JD,; otherwise, let D, = x.
Fundamenta Mathematicae, T, LITI 22
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R, is then the set of all pairs {», 1> where 1 e D,. For each ordinal x < g,
if % is a singular cardinal or an ordinal which is not a cardinal, we clioose
a particular function £, with domain some ordinal 2 < » and with a range
which is included in x and has its union equal to x; otherwise, let f, be
empty. R, is the set of triples (%, &, 5) where (&, #) ¢ f,. For each ordinal
#< g, if x< 2" for some A< x, then let ¥, be a function mapping x
one-to-one onto some family of subsets of A; otherwise let F, be defined
by F.(n) = {n} for each n < . Ej; is then the set of all triples <x, g, &
such that £ eF.(y). e is the set of all » < ¢ such that » iy a singular
cardinal or an ordinal which is not a cardinal. R, is the set of all ordinalg
%< o such that x < 2* for some A< ». Finally, Ry is the intersection
of 0 and ¢+1. It is now a routine matter to check that A is a model of I''.
We return now to those weakly inaccessible cardinals for which
Theorem 1 gives incompactness but not strong incompactness. Let BC
be the class of all cardinals a such that either a is strongly accessible or
a = f7 for some cardinals 8, y < a. By the theorems of Section 2, every
cardinal in BC is strongly incompact. In the next theorem, we show that
this class can be extended to a much wider class of inaccessible cardinals.
(The author originally obtained this result using the class of strongly
accessible cardinals as a starting point; Tarski suggested starting with
this wider class.)
THEOREM 6. Suppose that R is a well-ordering relation on the ordinals
and a is a nondenwmerable cardinal in M®(BC). Then a is strongly incompact.
Proof. If a e BC, we have strong incompactness by Theorem 1, 2, or 3.
In case a ¢ BC, the proof follows closely the proof of Theorem 5. Relations
E; and R, are replaced by relations which express the fact that either
the cardinal » is the successor of a smaller cardinal 1 (i.e. one-to-one
funetions are introduced which map each ordinal smaller than x into A)
or that the ordinals less than » are in one-to-one correspondence with
functions mapping y into p where #,y < w». In connection with the latter,
we must include, for each 8, y < a, an infinite sentence which says that
every function mapping y into 8 appears in such a correspondence.
Let M*X) be the union over all well-ordering relations R of the
sets M®(X). By the preceeding theorems, every non-denumerable cardinal
in M*(4C) is incompact and every non-denumerable eardinal in M*(BC)
is strongly incompact. However, it is possible to show that the first
non-denumerable cardinal, if any, not in M*(4C) (or not in M*(BC))
i strongly incompact. In fact, we can consider various ways of enlarging
the class M*(4C) and show, for example, that all the non-denumerable
cardinals in M(M*AC)) or M*(M*AC)) are incompact. We could also
define various classes (M*)™™(4C), (M**(4C), and (M*)*(4C) formed
by iterating the M* operation or even the classes M*®™(4€), M*™(4C),
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and M‘**)(AC) formed by iterating the * operation itself. Unless one
of these classes contains all cardinals, then each class we have mentioned
is much more comprehensive than the earlier ones. Furthermore, we can
show that the non-denumerable cardinals in each of these classes are
incompact (in fact, strongly incompact except possibly for certain ac-
cessible cardinals). These facts can be proved in a manner quite analogous
to the proof of Theorem 5. In the same way that the relation R, gave
us an indexed family of rvelatively closed sets, we make use, for example,
of indexed families of well-ordering relations.
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On a problem of Erdés and Tarski

by
W. Hanf (Endicott, N.Y.)

In the paper Brdds-Tarski [1], the following properties of a cardinal
number a are formulated:

Pz There exists a simply ordered set of power a which has no well
ordered or inversely well ordered subset of power a.

P,: There exists a division of the complete graph on a set of power a
info two subgraphs neither of which includes a complete graph on a subset
of power a.

Py: In the set algebra of all subsets of a set of power a, every a-complete
prime ideal 48 principal.

Py: There is an a-complete and a-distributive Boolean olgebra which
is not isomorphic to any a-complete set algebra.

Q: There is a ramification system R of order a such that for any n < «
there are fewer than a elements of order n and every well ordered subset of
R has power less than a.

Here « is assumed to be an infinite cardinal.

Itis shown in [1] that P, implies P,, P, implies P;, and P, implies P,.
It is also shown that Q implies P, and that, for every inaccessible cardinal
o, P, implies Q. Erdés and Tarski raised the question whether any of
these implications holds in the opposite divection as well. It should be
mentioned that all the properties P,-P, hold for all accessible cardinals
but fail for the smallest inaccessible cardinal w. The problem whether Q
holds for all accessible cardinals is not completely settled; it is known,
however, that under the assumption of the generalized continuum hypo-
thesig, the solution of the problem is affirmative for every accessible
cardinal « which is not the immediate successor of a gingunlar cardinal.
For proofs and references for these results, see [1].

In Keisler-Tarski [6], the following condition is discussed:

8§: There is an a-complete set alyebra which is a- generated by o elements
and in which every a-complete prime ideal is principal.

It is known that, for all inaccessible a, S is equivalent to Q. Like
Pr-P,, S is known to hold for all accessible a’s and to fail for . Hence
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