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In the paper Brdds-Tarski [1], the following properties of a cardinal
number a are formulated:

Pz There exists a simply ordered set of power a which has no well
ordered or inversely well ordered subset of power a.

P,: There exists a division of the complete graph on a set of power a
info two subgraphs neither of which includes a complete graph on a subset
of power a.

Py: In the set algebra of all subsets of a set of power a, every a-complete
prime ideal 48 principal.

Py: There is an a-complete and a-distributive Boolean olgebra which
is not isomorphic to any a-complete set algebra.

Q: There is a ramification system R of order a such that for any n < «
there are fewer than a elements of order n and every well ordered subset of
R has power less than a.

Here « is assumed to be an infinite cardinal.

Itis shown in [1] that P, implies P,, P, implies P;, and P, implies P,.
It is also shown that Q implies P, and that, for every inaccessible cardinal
o, P, implies Q. Erdés and Tarski raised the question whether any of
these implications holds in the opposite divection as well. It should be
mentioned that all the properties P,-P, hold for all accessible cardinals
but fail for the smallest inaccessible cardinal w. The problem whether Q
holds for all accessible cardinals is not completely settled; it is known,
however, that under the assumption of the generalized continuum hypo-
thesig, the solution of the problem is affirmative for every accessible
cardinal « which is not the immediate successor of a gingunlar cardinal.
For proofs and references for these results, see [1].

In Keisler-Tarski [6], the following condition is discussed:

8§: There is an a-complete set alyebra which is a- generated by o elements
and in which every a-complete prime ideal is principal.

It is known that, for all inaccessible a, S is equivalent to Q. Like
Pr-P,, S is known to hold for all accessible a’s and to fail for . Hence
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P, implies § and § implies Py for all ¢, and in discussing the problem
ofinverse implications raised in [1], it proves convenient to replace Q by S ().

The main result of this paper (Theorem 5, below) is that S implies P,
and that consequently the three properties P;, P, and S are equivalent (®).
On the other hand, from a result stated in Hanf-Scott [4], it follows that
Py does not imply S unless both hold for all cardinals larger than w.
(For a proof and a stronger form of this result, see [6].) Thus, among
the problems concerning the implications between the conditions P-P,
and S, essentially only one remains open, namely, the problem whether
P, implies P,.

Tarski has shown that properties Q, Py, and P, are related to meta-
mathematical problems concerning languages with infinitely long ex-
pressions. In particular, he introduced the metamathematical notion of
strong incompactness and has shown that Q, and hence also S, applies
to an inaccessible eardinal o just in ease « is strongly incompact. Using
incompactness results for languages with infinitely long expressions
obtained by the author of this paper, he has further succeeded in showing
that properties Q, S, Py, and P, apply to members of a very comprehensive
class of inaccessible cardinals larger than a; if we arrange all inaccessible
cardinals (>w) in a strietly increasing sequence 6,, 0y +eoy Ogy ..., then
these properties apply, for example, to all those 0 for which & < 6.
Our main theorem allows these results to be extended to properties P;
and P, as well. Thus we see that conditions P; and P, hold for an in-
accessible cardinal o just in case a is strongly incompact. Sinee it is known
that under the generalized continuum hypothesis all accessible cardinals
are strongly incompact, we conclude that under this hypothesis, each
of the conditions P,, P,, and S is necessary and sufficient for an arbitrary
cardinal « to be strongly incompact. Finally, P; and P,, like the other
Properties in [1] turn out to apply to a comprehensive class of inacecessible
cardinals. For the definition of the class of strongly incompact cardinals
and for results concerning its extent, the reader is referred to the papers
Tarski [13], Hanf [2], Hanf-Scott [4], and Xeisler-Tarski [6].

Property P, is closely related to certain properties of simply ordered
sets which were studied in Hausdorff [5] and Mahlo [8]. The results of
this paper can he extended to some of these properties, e.g. to the con-
structability of ordered sets with given species. The author is planning
to discuss this topic in a later paper.

(') This iz one of several helpful suggestions made by 'Larski dwming the pre-
paration of this paper. The equivalence of S and Q for inaccessible « ig shown in [61.
Theorem 4.31 where references to the earlier results in [1] and [9] are given. Note that
the elass C, of [6] is the class of all cardinals satisfying §. Thus Corollary 6 of this paper
gives additional necessary and sufficient conditions for a cardinal to belong to C,.

(*) This 1esult was firat stated by the author in the ahstract [3].
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Tn order to establish the main result, we define the notion of a Boolean
algebra with an ordered a-basis and prove a theorem.(Theorem 1 below)
to the effect that, for a inaccessible, every «-distributive Boolean a,l.gebr‘a.
of power at most « has an ordered a-basis. Tl}e notion in question 1%
a genemliza,tion of the notion of an ordered basis introduced in Mostowski-
Tarski [11]; the theorem just mentioned generalizes the well known thegreln
by which every denumerable Boolean algebra has an ordered basis ().
In Theorems 2, 3, and 4, which are not needed for the main re'sult, we
investigate further the conditions under which an ordered a:ba;sm exists
and we show how to construct a Boolean algebra with a gqven.ordered
set as its ordered a-basis. Theorem 5 is proved simply by showing that
the ordered a-Dbasis of a Boolean algebra satisfying the conditi0n§ of §
must be a simply ordered set satisfying the conditions required in P,.

In this paper, we make use of the terminology of [1]; in particular,
recall that a-complete means that sets of power less‘ th:an « have least
upper (and greatest lower) bounds and that an a-d1§tr1but1ve Boolean
algebra is required to be «-complete. A set B will be said "00 be an ordfared
a-basis for an «-complete Boolean algebra A = (4, <) if and only if B
is an - complete subset of A which is simply ordered by < and, for every
e A, there exists a set R of ordered pairs of elements of B such that B
has power less than a and

& = Z(mm)elt(?/‘m) .

Tt is clear that an ordered a-basis of a Boolean algebra U a-generates U
Tn ease a = m or more generally, if o iy inaccessible and A is «- distributive,
the converse also holds; every a-complete simply ordered set of elements
of A which «-generates U is an ordered a-basis for . This follox.avs from
the fact that, by the distributive law, any element can be Wl‘llttell. a8
a sum of produets of elements of B and their complements, but in view
of the ordering and completeness of B, each of the produets 1:educe§ to
a difference 2—y of two elements of B (note that 0 and 1 are in B since
they are the empty sum and product respectively). '

Tarorem 1. Suppose that a is inacoessible. Then overy - distributive
Boolean. algebra of power at wmost a has an ordered a-basis.

Proof. Let 9 == (A, 5> bo an a-distributive Boolean algebra and
let aq, ..., fte, ..., where £ runs over all ordinals less than a, 'be a sequerl\ce
eonta'n’'ng all the elements of A. Using transfinite recursion, we define

(3) This result was included in a second paper on Boolean a.lgebl:us with ordered
bases prepared by Mostowski and Tarski. This paper was set in type in 1939 bu_t wgs
destroyed during the war. The paper has never been reconstructed. The result mentioned,
howewfer, can he derived from a result in Mostowski [10] concerning the Stone space
of 2 denumerable Boolean algebra.
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sets B, for each £ < ¢ ag follows: B,., consists of the elements of B,
together with all elements of the form @ -+ a,(s’ — %), where » and a' are
any two successive elements of Bn (that is, #, @’ ¢ B, and for no Y € By is
#<y<a') For n a limit ordinal (or zero), B, is the completion of
Us<aBg, that is, the set of all elements of 4 which are expressible ag
swns or products of elements of {Jje<,B:. We now show by induction
on 7 that the following conditions hold: (i) B; C B, for all & < 7. (ii) B, is
of power less than a. (ili) B, is a-complete and simply ordered by <.
(iv) a, is a sum of differences of elements of B,,,. Assume therefore that
(i)-(iv) hold for all #' < #. (i) then follows immediately from the con-
struction and (ii) is clear in the case that 5 = 5’ +1. In cage u I8 a limit
ordinal, B, has power at most 2° where g is the power of (Ji,B;. By
hypothesis of induction, each B, has power less than « and so (ii) follows
from the fact that « is inaccessible. For 7 a limit ordinal, (iii) is obvious
sinee the union of an increasing family of simply ordered sets is simply
ordered. For n =9 +1, B, is simply ordered since each new element
Z+ ay (2'—x) lies between two successive elements of By . B, is a-complete
since every subset of B, either has a largest element or has the game
least upper bound as the subset of B, obtained by replacing each element
&+ay(@ —x) by the larger element x'. Thus (iii) holds. By the dis-
tributive law,

1= [[yeB,,(?/ +%) = ZYEB,I(”er.’//‘ HysB,,—I’i'_l)

Now for each ¥ C B,, if some element 4 € Y is smaller than some z ¢ B,— ¥,
then y-% =0 and hence

Her?l : H‘yeﬁn—l’ ¥y=0.

Thus we need only consider the ease when each element y ¢ ¥ is larger
than any 2 e B,— Y. Taking « to be the sum of all the elements of B,—Y
and taking &’ to be the product of the elements of Y, we see that either
@' =w® or &’ is the successor of % in B,. In either case we have

Iyery- HyeB,,—Y?? =o' —z

where »' denotes the successor of @ in B, if there is one and denotes w
otherwise. Thus
Oy =g, 1= Z“Bn ay,- (&' —a).

Butb - (2’ —2) = [w+a, (' — )]« which is a difference of two elements
0}? B:,+1 and so a, is a sum of differences of elements of B,.;. Therefore
(iv) is established and the induction is complete. Let B be the union of
all B, for 9 < a. By (iii) and (i), B is simply ordered by <. By (iv) and (ii),
every element of 4 is a sum of fewer than « differences of elements of B.
Hence B is an ordered a-basis of A
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THEOREM 2. A necessary and sufficient condition for every a-dis-
wibutive Boolean algebra of power ai most a to have an ordered a-basis is
that « satisfy one of the following three conditions:

(a) « is inaccessible,

(b) a is singular,

(¢) for some B, < a< 2P (4.

Proof. The sufficieney of (a) is given by Theorem 1. In case « satisfies
(b) or (c), it tuns out that any «-distributive Boolean algebra of power
at most o is atomistic and has fewer than ¢ atoms. For « singular, this
is easily seen by writing 1 ~= [ueala ) as a product of fewer than «
products each of fewer than o terms a--@ and then applying the dis-
tributive law to each of these products of two-termed sums. Since ¥ is
a*-complete and of power at most o, it does not contain o disjoint elements,
and so the resulting sums must each have fewer than « non-zero terms.
Hence we can apply the distributive law a second time and we see that
every non-zero term of the final sum must be an atom. In the case g <a
< 9%, the atomicity of 2 follows immediately from the proof that ('111)
implies (i) in Theorem 2.14 of Smith-Tarski [12]. (This proof remains
valid if the formula 6(4) < f in (iii) is replaced by the condition that
the Boolean algebra does not contain a set of g disjoint elements.) Tt is
clear that any a-complete atomistic Boolean algebra with fewer than
a atoms has an ordered basis: Let a; for &< § be all the atoms of %;
then the set of all elements b, = s, @ forms an ordered a-basis for .

To show necessity, suppose that a does not satisfy (a), (b), or (e).
Then « is regular and, for some f < a, 2" = a for all y such that § < » < a.
Let U be the free a-distributive Boolean algebra on « generators. This
Boolean algebra has power a sinée the set of all elementsﬂwhich are
expressible as a sum or a product of generators has powe_sr 2,,,«. o = a,
then the set of all sums and products of these elements again has power a,
and so on, by transfinite induction up to «. Suppose B is an ordc?red
a-bagis for A, and that & is a set of § of the free generators 0’1‘_ 9A. Since
each generator ¢ e G can be expressed as a sum of fewer than o deferencfas
of elements of B, we see that all the elements of @ can be expressed in
terms of elements of some subget B’ of B of power less than . On the
other hand, each element of B’ can be expressed in terms of fewer than «
of the free generators; hence there is some set G of fewer than « generators

(*) Targki has pointed out that conditions (b) and () can be replaced by t'h-e gingle
condition: (d) For some 8, f < a < of. Furthermore, he pointed out 'th'a‘t condmon; h(a,)
and (b) ean be replaced by the single condition that a is a strong limit number. u:
a necessary and sufficient condition for every u-distributive Boolean ailg(;bra. of powe
at most a to have an ordered «-Dhasis is that either for every f < o, 2° < a or that
for some § < a, 2% < .
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such that B’ is included in the subalgebra «-generated by @'. Let B+
be the completion of B’; B* is then also ineluded in the subalgebra - ge-
nerated by . We wish now to show that there ig a set of a disjoint ele-
ments, each of which is a difference of elements of B*.

For each subset ¢ of &, consider the element

= nﬂeﬁf/' ngeﬁ'-«(.‘ .(7

Since ¢ is non-zero, its representation as a sum of differences of elements
of B contains some non-zero difference b—a, where a,beB. Tt can be
shown that b—a is contained in some larger difference e—d with d,eeB*
which is also eontained in e. (If we use the irreducible representation of ¢
as defined following this theovem, then a and b will already be elements
of B*) By choosing such a difference ¢— d corresponding to each subset
0 of @, we obtain the desired set D of disjoint elements each of which
is a difference of elements of B*, Since @ has power #, D has power 2* = ¢,

Consider now a generator ¢ which is not in @. No element of D can
be included in or disjoint from g, for otherwise we would obtain an
identity among the generators which does mot hold in an arbitrary
a-distributive Boolean algebra. But by the simple ordering of B, any
difference of elements of B which does not contain any element of D
can intersect at most two elements of D. Thus g cannot be the sum of
fewer than « differences of elements of B and we are forced therefore
to conclude that ¥ does not have an ordered «-basis.

Assuming the generalized continuum  hypothesis, an immediate
consequence of Theorem 2 is that a necessary and sufficient condition
for every a-distributive Boolean algebra of power at most « to have
an ordered a-basis in that « be a limit eardinal. Tarski has pointed out
that the necessity of this condition actually implies the generalized con-
tinnum hypothesis. (Hence the necessity of the condition that « is a Limit
cardinal implies the sufficiency of the same condition.) Thus the generalized
continuum hypothesis is equivalent, for example, to the statement that
for every non-limit cardinal o, there exists an ao-distributive Boolean
algebra of power o which has no ordered «-basis.

We turn now to the problem of how the structure of an a-complete
Boolean algebra U is determined by the order type of its ordered «- basis B.
In the following, R and § are assumed to range over subsets of B x B
of power less than «. R ig a representation of g ¢ A if and only if

= Z(m,y)sR (?/*(U) .

We now formulate (solely in terms of the ordering on B) a condition on
& repregentation R which will ingure that no subset of R with two or
more elements can be replaced by a single element without changing
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the sum. R is drredueible if and only if the following conditions
he  sum. L I

hold: i
(i) For any v,y e Ry @<y |
(f) If <o, u>, <zyw> e R and (e, qy overlaps ey wd (ie. < e and
y > 2), then (@, Yy = &, w). » ] B
" (itt) Suppose that @,y € By, @ <y, and, for al s,teB, v << i<y
fmplies that {3,1> overlaps some {u,v) e R Then, for some <w,2) e R,
w<e<y <) . . .
We write 8 = R if, for every Ju,y> e S, there is some “u,2>e R
such that w <o <y 2. o . ]
THEROREM 3. Suppose that B is an ordered «-basis of an a-complete
Boolean algebra A. Then .
(a) If 8 and B arc irreducible vepresentations of a and b respectively,
then 8 < R holds if and only if a <b. .
(b) Every elemenl a € A has a unique irreducible representation.

Proof. I § < R, then clearly a << b. If ¢ < b, then Sgl? follow;
from condition (iii). Thus (a) holds and 116119@ every element has athtosS;
one irreducible representation. To show existence, suppos‘e @ -eA.S ?p IW;
be any representation of ¢ and let .U be. the range of the gela’mon Te. o
elements @, ¥ ¢ X will be said to be equivalent if @—y and y— 1? aB on
included in a. Taking R to be the set of all pairs <‘T’y>.£7 1>< slaés
that @ < y and « is the product and y the sum of some equ a. enfce clas
of X, we easily check that R is an irreducible representation of a.

THEOREM 4. Suppose that « 4s regular and B is an a-(;’omp%ete 28;-;11/.ply
ordered set. If either (1) a is a strong l?fmo".t number (f < a mn,plws om\z eotng
or (ii) B has no family of a disjoint intervals, .ﬂtm the're. exists an ao-? GM ,%;re,i
Boolean algebra A (unique wup to isomorphism) having B as an ord
’ baj&mccessawy and sufficient condition for A lo be a-d'asftv'?'b’c;'h;fe c:;
(iii) the completion of amy subset of B of power less than a contains a gop.

Proof. Let A = R, <, where R iz the family f’f all im’educibllz
subsets of B x B of power less than a. To show that R is cllolse“d‘ tt(; ;Ena
of fewer than a elements, let R’ be a subset of X of power less th .

(") In case 13 iy n densly ovdered set, these f:onditioxls l}a.:urc r; :szl.:};eiogz):zl‘g:;g:
meaning, namely, that the set I is made up of pairs of ‘(!andp(;;n ie?m ;\lgebra of regular
of some regular open set. Kelley used this cogstructmu of f;h: oothod of Kelley’s proof
open sets in [7], p. 1172 to investigate Souslin’y prnb‘le{n. l‘lme m; o statod by Kelloy,
of Theorem 12 is used in Theorem 4 helow. Although it is not exp. w; ylinem‘ o ot
we can conclude that the Boolean algebra of regjulm open Set‘s"; 'iutive fust in case
which gatisfies the countable interval condition is countably distribut
the linear continnum has no interval of real type.
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Then the set X of all endpoints of elements of R’ i% of power less than a
Two elements #, y of X are said to be equivalent unless there exigt elementg
2, w e B such that ¢ <z < w wy(ry<Ke< w < @) and for every Rep
and {s,%) e R, <s,t> does not overlap <z, wd. Taking least upper and
greatest lower bounds of the equivalence classes of X, we obtain an
irreducible set which is easily shown to be the least upper bound of 9,
To show that 9 is closed to complementation, let R be an element of o
and let X be the set of endpoints of R. Taking R’ to be the set of intervalg
(&, y» such that & and y are successive elements of the completion of X
and {z, y> ¢ B, we see that either assumption (i) ov (ii) implies that R’
is of power less than «. Tt is then easy to check that R’ is irreducible and
is in fact the complement of R, Identifying each element b ¢ B (b #0)
with the irreducible set {0, >} (and identifying 0, the smallest element
of B, with the empty set), we see that B is an ordered a-basis of 9.

To show the second part of the theorem, suppose first that A is
a-distributive and X is a subset of B of power less than «. Writing 1 ag
the product of terms #+ 7 for g € X we see by the distributive law that
there must be a subset ¥ of X such that the term

Hme}'fl"nzex-y z

iy different from 0. Thig gives two successive elements

Zoex-ye and [op
of the completion of X, Hence condition (ili) follows from the «-dis-

tributivity of 9r. Suppose now that (iii) holds and we have a double

indexed family @iy (tel, jed) of elements of A where I and J are of
power less than . Tt is clear that

& = H'leI stJ (78]

is an upper bound of all the products

H iel A1)

for f e J7. Suppose that there were a smaller upper bound b. Let ey y>
be some interval contained in a—b and let X be the set of all end points
of the elements a;; which lie between @ and 4. By (iii) the completion
of X must contain s 8ap. Thus there exist elements § and t such that
2 <8 <t<yand no element of X lies between s and ¢. Hence the interval

” LL AT
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i Thig is impossible since s < ¢ and (s, t) is included in a—b.

;Lg[n (31?: Zcies ]312'13;5 11?1)113;‘ bound of the products and we conclude that

e;

’ dl?;fg;x 8. If a cardinal a has properly S, then it has property P,.
Proof. Since P; holds for all accessible cardinals, we need onls;}
ider the case when a is inaccessible. Let.‘ll b(? an a-complete se

e hich is a-generated by « elements and in which every a-complete

algebr@ Wflllfs ‘1'inci1m1. A clearly has power a and since it is a set alge.bra,

pn'me ld;'dt 'ibﬁtive..ﬂenc.e by Theorem 1, % hag an ordered a-basis B

S ; clearly be of power a. Thus it remains to show that B has

e Blmu?del',ed‘ or inversely well ordered subset of power «. Suppose,

e T o tw;’ that @g, ..., @y, ... i8 an a-termed increasing sequence

o don COtn lo(f )JTS’, (The cs;se of an a-termed decreasing sequence will be

g:eflle‘:seﬁes quite@nalogous.) ‘We wish now to construct an a-complete

non-iﬂtl;l (i;pal;lexﬁzlze;;dﬁila?ll : [e; A such that a < @, for some n < a. Let

I, be Ehe lset of all @ ¢ 4 such that o < &, for all n < a. -I(;etll =f i{l—{—IIis

I2 and I, and hence I are easily seen to be a-complete idea sdo . :

v ince if a, ¢ I, and a, € I,, then a, < w, for some 5 < aand a, < Ty

o 50 4 - a. <l1 "To show that I is a prime ideal, consider any element

ledzol;l;;l sgme if‘..g;' B B, R is of power less than a and

@ = 2(1/./3)612 (#—y).

We distinguish two cases: . 1

Case 1. For all {y, 2> e R, zcl, or §el, Then, for all <y,2)> ¢ R,
#—y eI, Hence a ¢ I. B e

Case 2. For some <y,2)eR, 2¢ I, and 7¢ I,. 11'1‘3013:} thﬁeiif;n; o1
of I, and I,, it is seen that, for any we B, w e:TI or We 21 ° Henc;
andlysl Since z2—y < o, we conclude that @ <z+y e+ Ip.

1-

gel. . L

Finally, I is non-principal, for if ¢ e 4 is an atom,.:]llle;l a< : fgl,.
where y and # ave two successive clements of B. But ei ;, ym\ﬁ ?,,< ;
some 7 << ¢ in which case & < @, .:md 80 @ e-I1 or y > ?igdoz.;omil)lete
in which case 7 and hence @ ave in I,. Thus I is the requi
non-principal prime ideal of U, ‘ .

COROLLARY 6, Properties Py, Py, and S are equivalent.
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Additions to some results of Erdés and Tarski
by
D. Monk (Boulder, Colo.) and D. Scott (Berkeley, Calif.)

Brdos and Tarski in [3], Theorvem 1.3, establish a connection be:tweeu
% representation problem for certain Boolean algebras and a Plolﬂem
about ramification systems (the exn,(f,h’ problem (1re‘pendth O]i @ gl;feil
cardinal number). In this note we thmu a Te§u1t (_Lhecnvem d.l?)\\‘hmxv
yields the converse of the implicat’im} proved in [3]. Aetua]ly{ \w) hl()\\
that the ramification problem ix equivalent to zm.e.ol?apactness ‘pmb exln(
involving some special topological spaces. The deﬁpljo%o‘llloﬁ flhfbe sliif;z
is given in Section 1, where the (*,ompzwm%ess pur(.)ble.m 1;5 rela e fo fa ep e
ideal probleni studied by Keister and Tarski in [4]. Jille 1)'1(;)0 10— -%mm
alence of the representation 1)1‘01)10;1(1 of [3] and the prime ideal proble

o found in [4], Theorem 4.16. .

anIg‘)ng;;?éln”; Ltlg; compactness problem. is reformulm';cd in sm?pler
set-theoretical terms which make no reference to topological spaces.

‘ 3 . Throughout this note
1. a-products of topological spaces i
a B ind y vl\:ill denote infinite cardinal numbers. Cardinals ave conmdejre(i
aJ;s s’pecial kinds of ordinal numbers (initial numbers), apd.e'ach 01‘d1.11a1
coincides with the set of all smallex ordinals. Th}e &-th (ﬁﬁulute gm;ginif
f « then at = The cardinal nu y

ix denoted by w;. If « = wg, then o gty o n
la seb A is dg;lotizd Dy |4} The set of all subsets of a set 4 is denoted
by S(4), and further

SA) = (BeS(A): |B|<aj.

A topological space X iy a-uofm,ple;w if 1‘,}10 intersectlol‘l 0: ::cé%jléllﬁ
of power smaller than « of open sety is again open. ’?V.‘E]l]yng oace X
course c,-completo. Note that if a is » smgul:rr cm-(}{noh ,f 2 -coI:nplete
is a-complete it and only if A is a*'-complete: The nouf)n o fan C;O ogical
space is a natural generalization of the ordinary ?oblonbo ; r}))priately
space, and many of the usual topological concepts may be Pdl-) with bwo
modified for this class (see, e.g., [8]). We shall be co.ncernfeﬂle e
of these concepts, namely compaciness and the formation o P

topology.
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