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Two set-theoretical theorems in categories

by
J. R. Isbell (Seattle, Wash.)

Introduction. The problems treated in this paper (but not com-
pletely solved) are the following.

(1) What categories can be embedded in the category U of all sets
and all functions? ’

(2) What sense can be made of the idea of “category of all functors
from ¢l to 98"

The problems may not be closely related, but the partial results
given here depend on some common ideas. The remainder of the intro-
duction states these results, somewhat informally.

Concerning (1), the fact that not all categories can he embedded
in U was discovered independently by P. J. Freyd and the author; it
answers a question in [5]. A necessary condition will be given here, and
its nature is not complicated although the precise statement is com-
plicated. For any two objects X, ¥, supposing they are represented by
sets, pairs of mappings f: X —~Z, g: ¥Y—Z may be classified according
to the subset K of X x Y, K = {(z, ¥): f(#) = g(y)}. Therefore for such
a representation to be possible, there must be no more than a set of
distinet “equivalence classes” for each X and Y. I do not know whether
this condition is sufficient.

Concerning (2), the problem is demonstrably very complicated.
There are four successive obstructions to the definition of a category
of functors. (A) Unless the domain & is a small category (i.e. it has only
a set of objects), a functor on < is not a set and therefore not a member
of a class, in the usual axiomatic set theories. This obstruction may be
avoided by indexing functors with sets—necessarily metamathematically.
(B) If the range B is quite large (e.g. the category G of all abelian groups),
then for any one functor F: <{—93 there are more functors naturally
equivalent to ¥ than the mumber of sets in the universe. To avoid the
difficulty, one must be satisfied with a representative of each “equi-
valence class”. (C) Still there may be more than a universe of pairwise
inequivalent functors from o to 93. This happens for o =B = @, and
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it means that we must decide what restrict,ed class of functors will suffice

for the intended application. (D) The functors that are used must have
the property that any two of them are related by no more than a set
of natural transformations.

It will be shown that, in a suitable strong set theory, there are no
more obstruetions beyond (A)-(D). This suffices to correct [3], in which
I handled the whole problem (2) carelessly. Three categories of functors.
on an arbitrary category <l were introduced, called P (o), P*(s1), R(<l).
The results on “R(s{) are correct, if the special devices for (A) and (B)
above are incorporated in the definition. P () and PHA) do not exist,
becanse of (C).

1. Realizable notions. Consider the notion of a tail of ordinals,
i.e. the class of all ordinals >« for any fixed a. In the usual formulations.
of set theory there is no class of all tails; in fact, no class has a tail as
an element. However, there is a notion P, where P(X, Y) means that X
is an ordinal ¢ and ¥ is the tail of all ordinalg >a. Clearly P establishes
metamathematically a one-to-one correspondence between the “non-class’
of tails and the class of ordinals. We say that the notion of a tail is
realizable, and is realized by P.

Cantor’s theorem, or Russell’s paradox, shows that the mnotion of
a class is not realizable. There will be a metaarithmetic associated with
the concept of realizability, but that is not our present concern (1). I wish
only to add one more definition.

Let & be a unary notion and ¥ a binary notion which establishes
an equivalence relation on ¥ -classes. More fully, B(X, ¥) implies N (X)
?,nd ;V(Y), and Z is reflexive, symmetric, and transitive. The notion N
18 said to be realized (mod F) by a binary notion P if there is a clags N*
such that P(X, ¥) implies that X is a set and an element of N* and
N(Y); for each X ¢ N*, there is a unique ¥ sueh that P(X, ¥); and
Z}T. (¥) implies that there is (i) at most one X such that P(X,Y), and
(i) at %ea.st one X and one ¥’ such that P(X,Y') and E(Y’: Y)f

Brleﬂy, N is realizable mod ¥ if there i no more than a universe
of E-equivalence classes. One could impose a further restriction to the

effect that only one member of each E-class is used, but it seems un-
necessary.

(*) These remarks suppose a stron, i
s © rem rong set theory (as in [4])
gﬁf;n&on of' rea.h?able ". In fact, Myhill has shown [6] that an axiom to the effect
hat | se :mver:; n;s a (non-standard) countable model is consistent with the usual
ystems. ortunately the same result for th i i H
Wo ashunt them oately T the axioms of [4] is not known; but
aﬁt]_mllz giu;uylil;bedno!:ed tfha.t the whole problem can be recast into ordinary cardinal
he device of miniaturization: i.e., considerin the mait] i iver
class M as a set in a larger universal clags V. ¢ mafhematical wniversal

or a narrowing of the
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2. Representable categories. Grothendieck’s definition of a cat-
egory [2] is by now standard (). The category of all seis W has for objects
all sets and for mappings all functions, with multiplication defined by
composition. A concrete category is a subcategory of U. A representable
category is a category isomorphic with a concrete category. The following
proposition is well known.

2.1. The dual of a representable category is representable.

Proof. Let @ be a concrete category. For each object X of @, let
X* denote the set of all subsets of X. For each mapping f: X—Y of
define f*: ¥*—X* by f*8) = f(8). One verifies at once that X —X*,
f—f* is a dual isomorphism. Thus the dual of @ or of any isomorphie
category is representable.

Now, let @ be an arbitrary category and X, ¥ objects of C. Let
L(X,Y)=1L be the clags of all ordered pairs (f, g) of mappings of @
of the form f: W—X, ¢: W—¥; similarly let R be the class of all (h, k),
h: X—Z, k: ¥4, For any subclass § of I, let S* denote the class of
all (h,%)eR such that hf= %y for all (f,¢)eS; and for TC R, let
T* = {(f, g) e L: hf = kg for all (k, k) e T}. Call § equational (a left equa-
tional class or left equational relation) if S8** = 8; and similarly for right
equational classes (relations) 7'C R.

In general, the notion of a left equational class for X, ¥, need not
be realizable. (This can be verified in Example 2.4.) We ave interested
in the case that this notion is realizable by a set, i.e. realized by a binary
notion establishing a one-to-one correspondence between all the equational
classes § CL(X, Y) and some index set I(X, ¥Y). We not that * establishes
2 one-to-one correspondence between left and right equational classes;
so if one of the notions is realizable by a set, the other is too. In this
case we call the pair (X, Y) classified.

A set ACL(X,Y)is a left classifying set if for every (f,¢) e L(X, Y)
there is exactly one (p, ¢) ¢ A such that {(f, ¢)}* = {(», @)}*

2.2, For every classified pair of objects of a category there ewists a left
classifying set. If every pair of objects is classified then there ewists a function
associating a left classifying set to each pair; there also exwists a function
associating to each pair (X, Y) a complete lattice I(X, ¥), in such a way
that there is a notion simultaneously realizing all the notions of left equational
class of X, ¥, upon I(X,Y¥).

The proof of all this naturally requires the assumption that the
universe can be well-ordered; and with that, it is trivial. For any well-
ordering of the universe, for each X, ¥, one has the class of all pairs

(2) One should note explicitly (as Grothendieck does not) that all the mappings
of the category form a class, and the multiplication table forms another class.
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7w eL(X, Y) such that =* # ¢* for every predecessor o of x; either it iy
a set or (X, ¥) is unclassified. Moreover, even if not all pairs are classifieq
there is a well-defined class consisting of all the left classifying sets which
this construction gives. The complete lattice I(X, Y) realizes the partial
ordering of inclusion on left equational classes; its elements may be defined
as suitable subsets of the left classifying set.

2.3. THEOREM. In a representable category every pair of objests is
classified.

Proof. Let X, ¥ be objects of a concrete category €. For f: W-»X,
g: WY, h: X7, k: Y—+Z, define [f,g: W>X XY by [/, g1(p)
= (f(p),g(p)); and hxk: XXT—>ZxZ by hxk(z,y) = (hiz), k).
If 4 is the diagonal in Z x Z, the condition hf = kg means just [f, g1(W)
C (k% k)"X(4). Thus for a left classifying set we need only (at most) take
pairs (f, g) such that [f, gJ(W) assumes all possible values.

I do not know whether the condition of 2.3 is sufficient for repre-
sentability.

2.4, BExAMPLE. There exists a category in which just one pair of objects
is unclassified.

Construction. Let X, ¥ be two objects, and {4,}, {B,} two proper
classes of objects with the same index class. There are identity mappings;
for each a, there are four mappings, one each 4,—»X, 4, Y, X-B,,
¥ —B,; the product mapping 4,—B, is unique, but for A = a the
mappings 4,~~X-+B; and 4,— ¥ By are different. Then the properties
are obvious.

3. Realizability for functors. It is becoming customary to
speak of the category of all functors (of a fixed variance) from C to ),
whose objects are all such functors and whose mappings are the natural
transformations. If @ has only a set of objects, this is perfectly correct.
Otherwise, in usual set theories, no functor on @ can be a member of
anything; evidently we can form categories only by means of realizations.
We want the following metatheorem.

3.1. THEOREM. Let @, D, be categories, N a motion of functor from C
to CD (of fized variance), B an equivalence notion on N -functors such that
N is realizable (modB), and B implies natural equivalence. Suppose that
for every two N -functors F, @, the notion of natural transformation from It
to G is realizable by o set M(F, G). Then there exist a category N and a notion
D establishing an isomorphic ‘correspondence of all N-functors (modE)
wilh the objects of N and of all natural transformations of N -functors
(mod B) with the mappings of .

In order to prove this, we need a strong set theory such as the theory
of A. P. Morse presented in the appendix to [4], or.else restrictions on
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the notion N and the notion P realizing it (mod B). Let us simply assume
the Morse set theory; then any meaningful notion of sets defines the
members of a class. We still need a well-ordering of the universe. Then
if P rvealizes N (modF) upon the class N* we can select a subclass N’
upon which N is realized (modE) by unique representatives; that is,
different members a, f of V' correspond to non-E-equivalent functors.
For any two N -functors F, &, we can realize the notion of natural
transformation from F to G upon a particular set M (F, @) by noting
that these transformations must be determined by their effect on some
set of objects of @. (Using well-ordering, we can do this with a notion M)
For a, § in N’, we construct Map(a, f) by attaching « and g as distin-
guishing tags to the elements of M(F, @), where P(a,F) and P(f, G).
Then 97 is defined without difficulty. To write out the required notion
@ we need to select, for each N -functor F, a particular natural equiv-
alence of F with its E-equivalent representative F’ corresponding by
P to aeN'. Take the natural equivalence whose index in My¥#,F') is
‘first in the well-ordering.

In [3] I attempted to introduce categories of proper and of reflexive
set funetors on an arbitrary category C. A proper set functor was defined
simply as a set functor dominated by some set of objects of ©. This
notion need not be realizable modulo natural equivalence.

To see this, consider the full subcategory of Example 2.4 formed
by X and the B,. For any class K of B,’s, there is a covariant set functor
dominated by X which associates to X a two-point set, to the B, in K
two-point sets, and to the other B, one-point sets. No two of these are
naturally equivalent, and there are more than a universe of them.

Also, for any single non-trivial set functor F on a category larger
than a set, the notion of functor naturally equivalent to F is not realizable
absolutely (i.e. modulo identity); for there are more than a universe
of them. The category of reflexive set functors is to be taken modulo
natural equivalence. The proof that the conditions of 3.1 are satistied
breaks -naturally into two parts, around the notion of classifying set for
a set functor.

For the remainder of this paper, the reader must be familiar with [3].
Let F be a contravariant set functor on © which is dominated by a set
S of objects of @. For any objects X, ¥, in §, let I (depending on X, ¥,
and 8) denote the set of all ordered pairs (f, ¢) with j: WX, g: W1,
Wed. Let R be R(X,Y) as defined in Section 2. For T C R, let 1% be
the intersection of this smaller I with the equational class T* as defined
earlier. Similarly for a subset U of F(X)xF(Y), U% is the set of all
(f, ¢) e L such that for each (p, ¢) in U, F(f)(p) = F(g9)(q). A right classi-
fying set of X, ¥, 8, F is a set A C R such that every U%, UCF(X) x F(¥),
78 1'% for some 7'C 4.
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3.2. The notion N of a contravariant set funcior on C dominated by
o set 8 of objects relative to which every pair of objects of S ?ms a right
classifying set, with the notion B of natural equivalence, sat@sjw's th? con-
ditions of 3.1. The notion of a reflexive coniravariant set functor implies N,

Proof. This proof can be done in the usual set theories such as [1],
weaker than Morse’s theory. As usual, the universe is to be well-ordered.

First we must define a class N* of sets H and a correspondence P
associating to each H an N -functor P(H) on €, so that P(H) determines
H uniquely and every N-functor is naturally equivalent to at least one
P(H). We describe the construction of P(H) simultaneously with the
conditions for H ¢ N*. H must be an ordered triple (H,, H,, H;). H, is
a contravariant set funetor on a small full subeategory o of @, whose
objects form a set §; S is an initial segment of the objects of @ in the
fixed well-ordering. H, is a function whose domain is the set of all ordered
pairs (X, ¥) of elements of 8. The value H,(X, Y) is a set 4 CR(X, ¥),
again an initial segment. H, is a “classifying” function defined for every
(p,q) e H(X) % H,(Y) whose value Hy(p, ¢) is a non-empty set of subsets
of Hy(X, Y). Hy(p, q) must be just the set of all T'C Hy(X, ¥) such that
T% = K, for some K CL.

Given such an H = (H,, H,, H;), P(H) is to be a functor extending
H,, dominated by 8, with right classifying sets given by H, and the
precise classification given by H,. ({(p, ¢)}= K.) One condition for
H < N* is that such a functor F exists. Clearly the illegitimate bound
variable F' can be removed by eircumloeution; the “instructions” H,, H,, H,
tell us everything about the functor ¥ except for naming the elements
of F(X) for X not in § The precise construction of P(H) must be nor-
malized, say by making the additional sets P (H)(X) out of ordinals not
oceurring in H,. Finally (so that P(H) will determine H) for H e N*
we require that none of the initial segments § or H,(X , ¥) can be re-
placed by proper segments of themselves.

It remains to check that for two N -functors F, @, the natural
transformations from F to & are realizable by a set. This is straightforward,
using natural equivalences of F' with some P (H), of & with some P(K).

Remark. If F is reflexive and § dominates both F' and the conjugate
functor F*, all the required right classifying sets can be found among
the mappings with range in §.

We conclude by checking the remark in the introduction that there
are more than a universe of inequivalent functors on @ to C. First, consider
funetors on U to U. Let K be any class of cardinal numbers >1. (There
are more choices of K than the number of sets in the universe.) For each
set X in U, we enlarge X by adding a “base point” 0 and, for each cardinal
m e K, the set of all ordered m-tuples of distinct elements of X ; call

=]
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the new set ¥(X). A function f: XY induces F(f): F(X)—-F(Y) as
follows. F(f)| X =f. An m-tuple {ma} goes to {f(x)} if all f(z,) are
distinet, otherwise to 0; and 0 goes to 0. These functors ave easily seen
to be inequivalent. Moreover, they give us inequivalent functors on G
to G if we map §—U by taking each group to the set of its elements,
and U back to ¢ by taking a set X to a group freely generated by X.
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