On a certain class of abstract algebras

by

W. Narkiewicz (Wroclaw)

1. In [3], [8], [6], [7], [8] some classes of abstract algebras were
investigated in which the notion of independence has the fundamental
properties of linear independence. These classes were: v-algebras (called
also Marezewski’s algebras) and v*-algebras. For v-algebras a represen-
tation theorem was given by Urbanik [7]. A representation theorem
for v*-algebras having at least one independent triple of elements has
also been given by Urbanik [8]. The general form of v*-algebras without
an independent triple is not known except in the case of algebras which
have independent pairs of elements, are without an independent triple,
have a set of fundamental operations consisting of operations of 2 variables
and are without non-trivial operations of one variable. This case has
been. settled recently by Grétzer [2].

We shall say that a system {a,, .., as) of elements of an algebra
is C-independent if none of the ass belongs to the subalgebra generated
by the others. (We assume the convention that the subalgebra generated
Dby the void set consists of all algebraic constants, i.e. of values of constant
algebraic operations. It follows that a single element is C-independent
if and only if it is not an algebraic constant.)

The v*-algebras can be defined as algebras in which the following
two axioms hold:

(C) Independence in A coincides with C-independence.

(BEx) T b belongs to the subalgebra generated by (ay,...,as), but
does not belong to the subalgebra generated by (ay; .-, @y—-1), then aa
belongs to the subalgebra generated by (i, ..., @u-, b).

(Axiom (Bx) is the classical exchange axiom for linear independence.)

Thiv definition does not coincide with the original definition given
in [5] but their equivalence is easy provable.

In this paper we shall investigate, following a suggestion of Professor
B. Marczewski, algebras in which only axiom (C) holds. These algebras
we shall call v**-algebras. We obtain theorem IT which is similar to
theorem I in [5], which was obtained to characterize p*-algebras. As
a corollary we infer that finite o**-algebras ave v*-algebras, i.e. that
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for finite algebras axiom (Ex) is implied by (C). (Professor K. Urbat...
kindly communicated to me a divect proof of this statement. We reproduce
his proof in § 3.) It should be remarked that the converse implication,
ie. (Bx)—(C) for finite algebras, is not true. Indeed, let X = (a,D, ¢)
and let the only fundamental operation be f(x, y) defined by equations
fla,b) = (b, @) = a,f(a, ¢) = [(¢, a) = e, f(b,6) =7(c,b) = b, f(w, x) = w.
In the algebra thus defined every pair of elements is dependent, con-
sequently (Ex) holds but (C) does not hold, as every subset of X is
a subalgebra.

We also give a full deseription. of v**-algebras having only operations
depending on at most one variable.

For terminology and notation unsed here, see [4] and [5]. In particular
A™ iy the set of all algebraic operations of # varviables of the algebra
N = (4, d) and [ay, ..., az] is the subalgebra of A generated by the set
(g, .oy 6z). We shall also write (ag, ..., dj, ..., @) instead of (ay, ..., a7,
(i1, .y ) and instead of o&m (@1, ..., 2n) We shall often write simply .

2, Now we shall give some examples of o**-algebras which are
not v*-algebras.

(a) Let B be an associative ring with the unit element, without
divisors of zero, satisfying the following condition:

For every pair a, b from R there exists a ¢ in B such that « = ¢b
of b = ca.

Let L be a left-module over R, M —the set of all elements of £
which are left-divisible by each non-zero element of B, and finally let
Ay be an arbitrary submodule of AM.

If 4 is the class of operations f defined by

n
@y, oy @a) = D) Mattsta (hyy ooy n € By ae My),
k=1

then (L, 4) is a v**-algebra.
It 4 is the class of operations f defined by

k3 . n
f@n, o) = N hmeta  (heR D=1, acll),

k=1 k=1

then (L, 4) is a v**-algebra.

Evidently, if R is not a division ring, the algebras obtained in this
way cannot be v*-algebras.

(b) Let X be any non-empty set, and & a semigroup of transformations
of X satisfying the following conditions:

(i) The identical transformation belongs to 8.

(ii) The left-cancellation law holds in §.

(ii) For any four elements 7, ¢, F, ¢ of § from fy = I'G it follows
that, with a suitable H from 8, ¢ = HG or ¢ = Hyg.
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Let Xy={aeX: V s(a)=usya)} and let ¥ be a subset of X
8178268 -

containing X, and such that S(¥)C Y.

Now if 4 is the class of all
operations j defined by

f(ml’ ey Tp) = s(xy)
f(wly seey .T,L) = (

1<j<n se8),
(aeX),

then (X', A4) is a v**-algebra. If § is not a group, then that algebra cannot
be a v*-algebra. We shall prove later that almost every o**-algebra
in which all operations depend on at most one variable ean be constructed
in such a way.

From theorem ITI proved below and from the representation theorem
for v*-algebras containing at least one independent triplet, proved by
Urbanik [8], it follows that a finite v**-algebra containing at least one
independent triplet of elements is of the form (a) or (b). The problem
can be posed whether every o**-algebra contain‘ng at least one inde-
pendent triplet is of the form (a) or (b). We have not been able to prove
this or to give a counter-example.

3. Let A be a v**-algebra. The following three statements are easy
consequences of (C):

(i) Bvery subalgebra of % is also a v**-algebra.

(ii) If A has an independent n-tuple of elements, then the algebra
A" {5 also a v**-algebra.

(iii) Bvery selfdependent element in U is an algebraic constant.

Now we prove

TarorEM L. If a v**-alyebra has a basis, then all bases have the same
number of elements.

Proof. If A has an infinite basis, then all bases have the same
cardinal number (see [4], p. 50). Suppose thus that A has two finite hases
with a different number of elements, say (a,, ..., az) and (D, ..., by). Let
am > k. Then there exist algebraic operations fy(@y, ..y @)y ooy ful @y, -vy Bk,
G181y ey @m)y oory Prlity,y ooy y) such that fi(ay, oy @) =b (i =1,2,...,m)
and ¢y(by, ooy b)) = ay (f == 1,2, ..., k); consequently
(i=1,2,..,m),

fﬂ(gl('ﬁlz oy )y ey Gy mm)) == g

and 50 tho set (g, ..., gx) is a set of generators of the algebra A™. Let
us now define

Tig(yy ooy Cpema) = (5{Bry voey Bpmay Cumz) (== 1,2, 00y k).

Then evidently
Tl -

oy b)) == epa = fuea (b ooy R

8
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whenee (a8 fm 7 fm—1) the system (By, .., hz) is dependent in ATD
From (i) we infer that A7 is a v**-algebra; consequently with a suitable
Fed®™ and some § we have

Ry -oey Bmt) = F (Ba(@1 oy )y cooy B0y ony Bimea) 5 wony T 201, ey Ba))

AS [y, ooy ] =A™V, we have [hy, ..., gy ooy i) = A7V TE the
system  (Byy ..oy 71,;, .y Bi) 18 dependent, we can remove gome elements
from it and obtain a basis (B, ..., bs) of A™ Y, (We obtain a non-void
basis, in any case, as A™ ™ cannot be generated by an operation which
is selfdependent, i.e. constant (by (iii)).) So far we have proved that, if
a v**-algebra % has bases of & vesp. m elements, then A™ ™ hag two
bases consisting of ¢ (<k—1 of courge) and m—1 elements, respectively.
By repeating this argument we finally obtain a v**-algebra A" with
two bases consisting of 7 5= 1 and 1 elements, respectively. We can now
apply theorem 8 of [2] to find that 4” has a system of selfdependent
generators. But it is incompatible with (iii) as A™ would then consist
of constant operations only. The contradiction obtained proves the theoren.

It should be remarked that there exist v**-algebras without any
basis. For example, let U = (X, F) where X is the set of rational integers
and F consists of all functions f(#) = @ -+-a, where ¢ i§ & positive rational
integer. However, perhaps every v**-algebra laving operations of 2
variables which depend on every wvariable has a basis.

4. Let A = (4, 4) be any algebra. By 4 we shall denote the set
of ordered k-tuples of algebraic operations of % wvariables which arve
O-independent in the algebra 4®. Similarly, by Vi we shall denote the
set of ordered %k-tuples of elements of 2 which are C-independent. (It
should be remarked that in view of the convention agsumed in §1 the
definitions of 4r and Vi are formally different for % =1 and % 1.)
In [5] the following theorem was proved:

The algebra U is a v*-algebra if and only if 4y is a group of tvans-
formations Viy-—Vi whenever F; is non-void and, moreover, 4, has no
fixed points.

(The set 4 is here treated as a set of transformations acting from
Vi into the set of all k-tuples of elements of the algebra as follows:
{fry eeey fi) ((aly ey ak)) = (fl(a’l,' ey B8y ey fil @y ey (Lla)) )

We now prove a similar result for v**-algebras, namely:

TmroreM IL. If the algebra U is a v**-algebra, then:

(%) di is a semigroup of transformations Vy— Vi whenever Vi is non-
void and, moreover, in A, f(a) = g(a) implies f = g.

Conwersely, if an algebra A satisfies condition (x), then W is @ v**- algebra.

Proof. The first part of this theorem follows immediately from the
fact that in a v**-algebra the set Ay is exactly the set of all independent
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ordered %-tuples of operations from A™ and ¥y is the set of all independent
ordered k-tuples of elements.

Suppose now that the algebra % = (4, d) satisfies (). For con-
venience we break the proof into several lemmas.

LemmA 1. Every selfdependent element of W is an algebraic constant.

Let f(w) # g(w), f(a) = g(a) = b, and aeV,. In view of (x) f,ged;
is impossible. If f,g¢ 4,, then f(w)=0b=g(x). I fed,, g¢4,,
then g(x) = b; thus b ¢ V,, but b =f(a) ¢V by (*), which is a contra-
diction.

LeynA 2. Suppose that (ay, ..., an) € dn and that, for every k (1 < k < n),
the SYStem (g, .. ik, .., an) 48 independent. If for some f, g € A™, f(ay, .., @)
= gy oy ) = by and Flay, .., ) # g0y, ..., @), then b is not an al-
gebraic constant.

Suppose that b is an algebraic constant and that f(w, ..., 24) i3 not
a constant operation. Then f has to depend on @,, for otherwise the gystem
{agy ..y @) would be dependent. Let F = (f, &, ..., 2s). If F e 4, then
(B, Gy ooy ) = P((y, vy @) € Vi, which is impossible since b e [ag, ..., dul-
Hence F ¢ A, and, since f depends on «,, with suitable j and H ¢ 4”7,
we have m; = H(f, @a,y ..., ¥y, ..., @z). By putting in the last equation
@ = aqy for 1 =1,2,...,n we obtain a contradiction of (ay, ..., &) € V.

Our theorem will be proved if we show that (ay, ..., as) € Vs implies
the independence of the system (ay, ..., @;). We shall prove this by in-
duction. For m =1 this statement is true by lemma 1. The following
lemma proves this statement for n = 2 (this must be done in view of
the remark after the definition of 4, and V).

LEMMA 3. If the systom (ay, @) is dependent, then it is also C-depend-
ent.

Suppose that flay, a) = ¢(ay, a) = b, f(wy, 2) 7 g(@1, %) and that
the pair (ay, @) is C-independent, i.e. belongs to V,. Then (f,g) does
not belong to 4, (otherwise (b;d) = (f,9)((ay, ar)) € Va); consequently
with some G(a) e AY, flay, @) = G, m)) or glm, m) = G(f (@, m).
In both cases by putting @, = a; (i =1,2) one obtains b = G(b), and
since G(w) 5 @, we find that b is selfdependent, and from lemma 1 it
follows that » must be an algebraic constant, contrary to lemma 2.

Now comes the inductional step. Let us assume that for all m << »
we have already proved the following:

(&) If the m-tuple (@, .., a,) is dependent, then it is also CO-de-
pendent.

Let f(dy, vy ) = §(tyy ooy @) = b, f5=g, and suppose that the
system. (ay, ..., ay) is C-independent, i.e. belongs to Vs, We can assume
that, for every k<l m, the system (a, ..., dky oy Gn) 18 independent.
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Leyna :L. For every (n—2)-tuple of indices 1 =514y, ooy by <1 one
of the following equations holds: )

(A) b= (@ y ey ti,,) With suitable ¢ e A™?,

(B) ay = w.(b’ Wiyy ooy Bigy ey Wy ,) with some § (1 <4

suitable pe A" S —2) and

g Evi(.leglbly I(f, i/i,( :Efll), ey &g, ,) does mot belong to y; consequently
here exists a ®eA™ Y gue 6 one the | vi o0 ¢ i
Thore exiy € such that one of the following three equations
(1) J(#1y ey dn) = (1)(!/(-'1"17 oy )y Biyy ey “"’in—z)’
(i) g(@yy ovry@n) = ’p(f(-""u veey Tn)y Ly woey miuue)7
(i @, = D{f (& i i
e 7‘,) 4 ﬁ(f(.ll,..,,mn),g(ml,...,m,,,),m;l,...,m,:,,...,mfn_e) with
0 ¥f Siii) then (B) holds with g (@, ..., #,—1) = D (2, %y, 0y, ..., ¥p-,). In the
othell cases we see ‘thmAz the system (b, ay, ..., @;,,) is dependent, for
thelhwxse, by substitution @; = as, we should have ®(wy, ..., @) = 2,
:)Vf (Cb ;neans tha;; fb = ¢, contrary to our assumption. The dependencci
y @iy ~ery Qi) by the inductional assumption implies t rut;
of one of the equation (A), (B). ! s fhe frufh
LeMMA 5. If F(x wa) € A™ ) and 1 ™ then ]
; b1y veey Tn) € A and F £ e then Flay, ..., ay) :
for j=1,2,..,n and n=2,3, ... ’ ' (o ey ) #105

(F Suppo§e that F(ay, ..., an) =a;. Let %3 4§. Then the n-tuple
de, mla weoy @iy -oy Za) does N0t belong to Ay. If the operatiom F does not
isfill dox?1 la)z;c, then thg system (ay, ..., g, ..., ax) is dependent, but this
tuded by assumption. Thus F depends on o, and it exists # (1 <57 <
such that with a suitable @ e 4™ ‘ wren

- @ 5 5
Tr = G{E (g oony )y By, oy By ovny By ooey Tn) 5

when;lei ag = G(ag, @y, ey Gty oory By ooy ).
- th: ;@t equation can occur only if j = and G @y eeey Bpy) = @
— . 9 iy P,
but ¢ d:!lx : (@1, ..y :r,,) = Z; consequently I does not depend on my Th(:
ontradiction obtained proves the lemma. .
LEMMA 6. For ever ; indi
. ery pair of indices k, r (1 <k 0

Ay : X s ke 0= n) there ewist

an operation H ¢ A™ such that H(ty, ooy n) = b and ) fhare oot

4, = (n) ~ P
Ay =[H, ¢ 3oy 61(5"), . e.§.n)’ vy g;”):l #A(“‘)_

N) PPOS 1] Rt a .
1ppose a ($) - Palr he is I [hen e ary
b p k, 7 emma, 1 0 ITLe 1@ BV
operation 7 e .4 such that Z (aq, ey a,,) =D must depe]ld on &y &lld Lpy

for ()thel‘wi% 6]( ) or 67( ) C. elon 0 W W Ve Wil
£ anno d 5
» : I b g t Az. No ¢ prove the followi g
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(#) If there exisls a h-tuple of different indices jyy .., ji (L < ja <)
such that for every operation Z e A" satisfying Z(ay, .., an) =Db
(n) ~ln) ~n) (
[Z, €1y ey By y oney (,’j?_,’ g veey e;';), ey L‘S:l)] = A.(n),
then one can choose from the remaining indices <n such an inder jii1
that for every operation Z e A™ satisfying Z(ay, ..., an) = b:

-y ) ~() ~(n) a(n) ~(n) n) ;
LJ; €1y ey @iy g vy By g vey Oy very Elay ey G;L ]ZA(M'

Tt 8(ay, ey @n) = T'(ag, oy @) = b and 8 7= T Then with a suitable
e AV e lave

- . T , 2 ~
Sy, vevy ) == BT (g5 ey @)y Brye ooy Biy ooey By oo Ln) -
By putting here ®; = a1 (i =1,..,n) we obtain

D= F(Dy @yy evey Biyy ooy Qs ey Q) s

and so the system (b, ay, .., @y, veey ljpy ey @) s dependent (because
=™ would imply 8 == 7. ¥rom the inductional assumption follows
the truth of one of the following two equations:

(@) b = G(@yy wwes @y ooey iy vy tn) With @ suitable GedA"

D) @t = R, Gy, veey Biyy oovs Bigy wey By -ons On) with a suitable s and
El ’ 1y ¥n Tk

Re A(‘n——].t)
Case (a) is excluded by the remark at the beginning of this lemma.
In case (b) we infer by the use of lemma D that

1 . & i 2 ,
By = R(T (@ covy Bn)y Bay ooy iy ooy By vooy oy oo ) 5

consequently
2 60, o B0 oy B0y ey 8, ey 6] = A,
(1 -.; ¥n) the statement (3) follows
by putting frs: == 8. As the assumption of (4F) is satisfied for & =2, we
infer by induction that for ench operation Z(2, ..., ¥n) e A™ such that
Z(@yy oy ) = b we must have [Z] =A™, In particular, with some
K(r) e AV we have f(@y, .., %) = K(g(@y, ..., @) and so K(b) = b.
By lemma 1, b is an algebraic constant, which contradiets lemma 2. This
ends the proof of lemma 6.

Now we can finigh the proof of theore
an equation of the form (B) holds, then in
(n—2)-tuple of indices equations (A) hold and so:

Trom the avbitrarviness of 7'

m II Tf for no set of indices
view of lemma 4 for each

D == ug(@gy eony Gty ooy @y oeey )
very system (g, ..., @iy -+ an)

for each pair £ 5 §. From the independence of e
contrary to lemma 2. Thus

it follows that b is an algebraie constans,
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for a certain (n—2)-tuple of indices an equation of the form (1)
holds:
(1) ap =M(b, @y oy, ) (G k, j=1,..,1n-3).

Congsider the (n—2)-tuple (ay,, ..., a5, ,) where each j§; iy different
from k. If it were H (4, ..., @) = b with some H eA™ ™ then by
substituting the lagt equation into (1) we would obtain & contradiction
with the C-independence of (ay, ..., &z). Thus we must have

(2) by, == ]bg(b, Ajyy veny &rj” “eey afn-—z)

with some ¢ and e A",
Let » be the only number not greater than n which does not oceur
in the sequence jy, ..., fp—z, k and let uy write

() ~(n) () ()
Ry = [T> €j1s evy Bjg g wny Cipgy 67

for every I' such that 7'(ay, ..., ay) = b. From (2) and lemma 5 we infer
that &) « Ry and, morveover, by (1) and lemma 5 we have & € Ry,
whence Ry =A™ for every operation 7 such that T(ay, ooy ay) = D.
But this contradicts lemma 6. The contradiction obtained proves our
theorem. )

Remark. In the semigroups 4, the left-cancellation law holds.
Indeed, let gf = af, where f = (fy, ..., fa), ¢ = (1, s Gndy o= (Joyy ory Bn).
Then !li(fl(wu vy @)y ey fulyy oy Wn)) == 7"J(f1(501, vy )y eony By oony “’%)}
for each j=1,..,n As the system (f, .., /) is independent, thus
g; = hy for each §, ie. f = ¢g. As a corollary (we use here only the trivial
“only if” part of theorem II) follows

THEOREM ITI. A finite v**-algebra is a v*- algebra.

For the proof it suffices to remark that a transformation semigroup
of a finite set containing the identical transformation and with the left
cancellation law is a. group.

The following direct proof of this theorem is due to Professor K. Ur-
banik. Let % = [ey, ..., ¢4]. Then every independent n-tuple is a basis
for A because from [b,, ..., b JCA and from independence of the set
(D1 vy ba) fOllOws [by, ..., byl v A™ 91, whenee, from the finiteness of 9,
[byy oy bu] = A. The same is true for every subalgebra of . Now let
(€15 ey @p) be an independent set, and (ay, ..., ay, @) o dependent set.
Then, for some i, aie[a, ...,éa, ..., Guyrly Whence By == [ay, ..., o)
Clary vy gy wony @] = B,. Therefore B, has a Dasis of » = elements
and 50 [ay, ..., a,] = B,; consequently ., e By, q.e.d.

THEOREM IV. If U is o v**-algebra in which every operation depends

on at most one variable, then U has the form given in § 2, (b), or each element
of the algebra is an algebraic comstant.
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It suffices to prove that condition (iii) (§ 2, (b)) holds. Suppose that
v, is non-void and that f(x), g(x), F(v), G(x) are non-constant algebraic
o{)erations such that f{g(x)) =F(G(w)). Suppose, moreover, that the
pair (g(#), &(w)) belongs to d,. Then, since evidently (f(x), F(y)) €4y,
we have (f (g(w)},f(g(m))) = (f(z), F(y))- (y(x), GH{x)) € 45, which is clearly
impossible. Now let ¥, be void and let @ be an element which is not an
algebraic constant. Let f(z), g(x) be arbitrary non-constant operations
of one variable. Since V, is void, with some non-constant h(z) we must
have f(a) = h{g(a)) or g(a) = h(f(a)). From the independence of the
system (a) it follows that, for every # in 4, 7(2) = h{g(@)} or g(a) = h(f(2)),
which ends the proof.

4. In this part we shall show that some conditions imposed on
a v**-algebra imply that it must be a v*-algebra.

(i) If A is @ v**-algebra in which for some n (finile or not) every
independent n-tuple is o basis, then A is a v*-algebra.

Proof. If # is an infinite cardinal number, then (ay, a,,...) and
(ay, a3, ...) have to be bases, which is clearly impossible. No_w let % be
finite. It suffices to prove that Ai is a group for every & < .

LEMMA. If i is a group, then Ay, is also a group.

We can imbed 4y, isomorphically in Ax as follows:

I8 (fl(:vl, vey Bre1) g eeey Fra{@Byy weey ~l‘n~1)) —

- (fl(‘l’u vy )y wees Frma(@yy -y Bnm)y xn) .

Let Z = i(d;_y). It suffices to prove that « « Z implies o™ € Z. sz)t
a = (fuy ey -1y @,) and o’ = (a5 vy Gn)- (He-'f‘e 115 g1 belong to 4™,
bub the f’s depend only on the first #—1 variables.) Then

gj(fl(wly wory Bnt) y voey Fra( @1y oy Bnm1) s wﬂ) =a; (j=1,2,..,%),
(3) fi(gl(‘”.l’ ceey Bn)y eony Gnlry oo w")) =0 (=121,
Ga(@yy very Tn) = Tn .

Let gy ey Bp1) == {1y wery Tnm1, @) for § =1,2, .., n—1L Then

evidently
(4) fﬂ(ﬁ(wly ey Bpm1)y oy /A .’)9'71,1)) =a ({=1,2,., n—1).

By putting, in (3), @5 = gj{@, ., a-1) for ,j =1,2,.., 91,—]:11(1 V:i
obtain, by the use of (4), g1y ey Bus; Ta) = Gi(@1y -y Bn-a)y ADA S
@™t =Gl ey Gn—1y Ln) € Z. . )

Tu view of this lemma it suffices to prove that 4y is a group. Let
fedny f="(fu s fn)y aDd let (ag, - n)e Vo, Tet by =filay, b ),
j=1,..,n The system (b, .., ba) is independent, and 5o it is 2 basis;
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consequently with suitable ¢y, ..., ¢n We have a; = #i(Dyy vy bu)y§ =1, ..., 0.
Since the system (g, ..., gu) is evidently independent, it follows from the
independence of the systems (ap, ..., @) and (b, ..., &) that (g, .., ¢)
=7 which ends the proof.

(i) If A is @ v**-algebra with a finite basis in which every independent
set can be extended to a basis, then W is a v*-algebra.

Proof. Let U possess a basis of n elements. Then every independent
n-tuple forms a basis (because it can be extended to a basis and from
theorem I it follows that every basis has n elements) and it remains to
apply the foregoing statement.

(iii) If 4 is a v**-algebra with a finite dasis and W does not contain
o subalgebra different from W but with W isomorphie, then A is a v*-algebra.

This statement is an immediate congequence of (i), sinee it follows
from the assumption that every independent #n-tuple (wheve n is the
power of the Dasis) is a basis.

The last statement shows that if we introduce the notion of dimension
for v**-algebra with a finite basis as the cardinal number of the basis
{(which is well-defined in view of theorem I), then the dimension of a sub-
algebra can be equal to the dimension of the algebra and that this pe-
culiarity does not occur only for v*-algebras.

Statement (iii) is not true for algebras with an infinite basis, becawse
[, 0y ...]~ [@g, ...]. We do not know whether (ii) is false for algebras
with an infinite basis.
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Convergence functions and their related topologies ™
by
D. Kent (Albuquerque, N. Mex.)

Introduction

A cowvergence funelion is a correspondence between the filters on
a given set § and the subsets of § which specifies which filters converge
to which points of 8. This concept is defined to include types of con-
vergence which are more general than that defined by specifying a topology
on 8. Thus a convergence function may be regarded as a generalization
of a topology.

Various generalizations of the latter concept have been made in
the past with the help of convergence criteria; structures of this type
have been identified with such names as “limitierung”, “pseudo-topologie”,
and ‘“pretopologie”. These latter structures may be regarded as special
cases of convergence functions, more topology-like than the basic strue-
tures which we investigate.

The method used here to study the convergence function is to place
it in the ordered environment of a complete lattice C(8), whose elements
are all the convergence functions on an arbitrary set 8. Letting ¢ be an
arbitrary convergence function on 8, we associate with ¢ various topologies
which are related to ¢ in a more or less natural way. To associate topo-
logies with ¢ systematically, the concept of linkage function is introduced.
A linkage function may be regarded as a method for obtaining a topology
from a convergence function which is valid for any convergence function
in C(8).

We investigate and compare four fandamental linkage functions.
The first section introduces some relevant definitions, gives certain
structural properties of C(§), and defines what is perhaps the simples.t
and most natural of linkage functions. A different linkage function 1is
investigated in each of the remaining three sections.
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